summaryrefslogtreecommitdiff
path: root/libraries/base/GHC/Natural.hs
blob: 424b2e6eef25c7a4d9da027bd36059a5ff9928b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE UnboxedSums #-}

{-# OPTIONS_HADDOCK not-home #-}

-- | Compatibility module for pre ghc-bignum code.
module GHC.Natural
   ( Natural (NatS#, NatJ#)
   , B.BigNat (..)
   , mkNatural
   , isValidNatural
     -- * Arithmetic
   , plusNatural
   , minusNatural
   , minusNaturalMaybe
   , timesNatural
   , negateNatural
   , signumNatural
   , quotRemNatural
   , quotNatural
   , remNatural
   , gcdNatural
   , lcmNatural
     -- * Bits
   , andNatural
   , orNatural
   , xorNatural
   , bitNatural
   , testBitNatural
   , popCountNatural
   , shiftLNatural
   , shiftRNatural
     -- * Conversions
   , naturalToInteger
   , naturalToWord
   , naturalToWordMaybe
   , wordToNatural
   , wordToNatural#
   , naturalFromInteger
     -- * Modular arithmetic
   , powModNatural
   )
where

import GHC.Prim
import GHC.Types
import GHC.Maybe
import GHC.Num.Natural (Natural)
import GHC.Num.Integer (Integer)
import qualified GHC.Num.BigNat  as B
import qualified GHC.Num.Natural as N
import qualified GHC.Num.Integer as I

{-# COMPLETE NatS#, NatJ# #-}

pattern NatS# :: Word# -> Natural
pattern NatS# w = N.NS w

pattern NatJ# :: B.BigNat -> Natural
pattern NatJ# b <- N.NB (B.BN# -> b)
   where
      NatJ# b = N.NB (B.unBigNat b)

int2Word :: Int -> Word
int2Word (I# i) = W# (int2Word# i)

word2Int :: Word -> Int
word2Int (W# w) = I# (word2Int# w)

-- | Construct 'Natural' value from list of 'Word's.
mkNatural :: [Word] -> Natural
mkNatural = N.naturalFromWordList

-- | Test whether all internal invariants are satisfied by 'Natural' value
--
-- This operation is mostly useful for test-suites and/or code which
-- constructs 'Integer' values directly.
--
-- @since 4.8.0.0
isValidNatural :: Natural -> Bool
isValidNatural = N.naturalCheck

-- | 'Natural' Addition
plusNatural :: Natural -> Natural -> Natural
plusNatural = N.naturalAdd

-- | 'Natural' subtraction. May @'Control.Exception.throw'
-- 'Control.Exception.Underflow'@.
minusNatural :: Natural -> Natural -> Natural
minusNatural = N.naturalSubThrow

-- | 'Natural' subtraction. Returns 'Nothing's for non-positive results.
--
-- @since 4.8.0.0
minusNaturalMaybe :: Natural -> Natural -> Maybe Natural
minusNaturalMaybe x y = case N.naturalSub x y of
   (# (# #) |   #) -> Nothing
   (#       | n #) -> Just n

-- | 'Natural' multiplication
timesNatural :: Natural -> Natural -> Natural
timesNatural = N.naturalMul

negateNatural :: Natural -> Natural
negateNatural = N.naturalNegate

signumNatural :: Natural -> Natural
signumNatural = N.naturalSignum

quotRemNatural :: Natural -> Natural -> (Natural, Natural)
quotRemNatural = N.naturalQuotRem

remNatural :: Natural -> Natural -> Natural
remNatural = N.naturalRem

quotNatural :: Natural -> Natural -> Natural
quotNatural = N.naturalQuot

-- | Compute greatest common divisor.
gcdNatural :: Natural -> Natural -> Natural
gcdNatural = N.naturalGcd

-- | Compute least common multiple.
lcmNatural :: Natural -> Natural -> Natural
lcmNatural = N.naturalLcm

andNatural :: Natural -> Natural -> Natural
andNatural = N.naturalAnd

orNatural :: Natural -> Natural -> Natural
orNatural = N.naturalOr

xorNatural :: Natural -> Natural -> Natural
xorNatural = N.naturalXor

bitNatural :: Int# -> Natural
bitNatural i = N.naturalBit# (int2Word# i)

testBitNatural :: Natural -> Int -> Bool
testBitNatural n i = N.naturalTestBit n (int2Word i)

popCountNatural :: Natural -> Int
popCountNatural n = word2Int (N.naturalPopCount n)

shiftLNatural :: Natural -> Int -> Natural
shiftLNatural n i = N.naturalShiftL n (int2Word  i)

shiftRNatural :: Natural -> Int -> Natural
shiftRNatural n i = N.naturalShiftR n (int2Word i)

-- | @since 4.12.0.0
naturalToInteger :: Natural -> Integer
naturalToInteger = I.integerFromNatural

naturalToWord :: Natural -> Word
naturalToWord = N.naturalToWord

-- | @since 4.10.0.0
naturalFromInteger :: Integer -> Natural
naturalFromInteger = I.integerToNatural

-- | Construct 'Natural' from 'Word' value.
--
-- @since 4.8.0.0
wordToNatural :: Word -> Natural
wordToNatural = N.naturalFromWord

-- | Try downcasting 'Natural' to 'Word' value.
-- Returns 'Nothing' if value doesn't fit in 'Word'.
--
-- @since 4.8.0.0
naturalToWordMaybe :: Natural -> Maybe Word
naturalToWordMaybe n = case N.naturalToWordMaybe# n of
   (#       | w #) -> Just (W# w)
   (# (# #) |   #) -> Nothing

wordToNatural# :: Word -> Natural
wordToNatural# = N.naturalFromWord

-- | \"@'powModNatural' /b/ /e/ /m/@\" computes base @/b/@ raised to
-- exponent @/e/@ modulo @/m/@.
--
-- @since 4.8.0.0
powModNatural :: Natural -> Natural -> Natural -> Natural
powModNatural = N.naturalPowMod