summaryrefslogtreecommitdiff
path: root/libraries/base/GHC/Arr.hs
blob: cefef97f0f91b7f3e0ceb55687192f61e41a1f22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
{-# LANGUAGE Unsafe #-}
{-# LANGUAGE NoImplicitPrelude, MagicHash, UnboxedTuples, RoleAnnotations #-}
{-# OPTIONS_HADDOCK hide #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  GHC.Arr
-- Copyright   :  (c) The University of Glasgow, 1994-2000
-- License     :  see libraries/base/LICENSE
--
-- Maintainer  :  cvs-ghc@haskell.org
-- Stability   :  internal
-- Portability :  non-portable (GHC extensions)
--
-- GHC\'s array implementation.
--
-----------------------------------------------------------------------------

module GHC.Arr (
        Ix(..), Array(..), STArray(..),

        indexError, hopelessIndexError,
        arrEleBottom, array, listArray,
        (!), safeRangeSize, negRange, safeIndex, badSafeIndex,
        bounds, numElements, numElementsSTArray, indices, elems,
        assocs, accumArray, adjust, (//), accum,
        amap, ixmap,
        eqArray, cmpArray, cmpIntArray,
        newSTArray, boundsSTArray,
        readSTArray, writeSTArray,
        freezeSTArray, thawSTArray,
        foldlElems, foldlElems', foldl1Elems,
        foldrElems, foldrElems', foldr1Elems,

        -- * Unsafe operations
        fill, done,
        unsafeArray, unsafeArray',
        lessSafeIndex, unsafeAt, unsafeReplace,
        unsafeAccumArray, unsafeAccumArray', unsafeAccum,
        unsafeReadSTArray, unsafeWriteSTArray,
        unsafeFreezeSTArray, unsafeThawSTArray,
    ) where

import GHC.Enum
import GHC.Num
import GHC.ST
import GHC.Base
import GHC.List
import GHC.Real( fromIntegral )
import GHC.Show

infixl 9  !, //

default ()

-- | The 'Ix' class is used to map a contiguous subrange of values in
-- a type onto integers.  It is used primarily for array indexing
-- (see the array package).
--
-- The first argument @(l,u)@ of each of these operations is a pair
-- specifying the lower and upper bounds of a contiguous subrange of values.
--
-- An implementation is entitled to assume the following laws about these
-- operations:
--
-- * @'inRange' (l,u) i == 'elem' i ('range' (l,u))@ @ @
--
-- * @'range' (l,u) '!!' 'index' (l,u) i == i@, when @'inRange' (l,u) i@
--
-- * @'map' ('index' (l,u)) ('range' (l,u))) == [0..'rangeSize' (l,u)-1]@ @ @
--
-- * @'rangeSize' (l,u) == 'length' ('range' (l,u))@ @ @
--
-- Minimal complete instance: 'range', 'index' and 'inRange'.
--
class (Ord a) => Ix a where
    -- | The list of values in the subrange defined by a bounding pair.
    range               :: (a,a) -> [a]
    -- | The position of a subscript in the subrange.
    index               :: (a,a) -> a -> Int
    -- | Like 'index', but without checking that the value is in range.
    unsafeIndex         :: (a,a) -> a -> Int
    -- | Returns 'True' the given subscript lies in the range defined
    -- the bounding pair.
    inRange             :: (a,a) -> a -> Bool
    -- | The size of the subrange defined by a bounding pair.
    rangeSize           :: (a,a) -> Int
    -- | like 'rangeSize', but without checking that the upper bound is
    -- in range.
    unsafeRangeSize     :: (a,a) -> Int

        -- Must specify one of index, unsafeIndex

        -- 'index' is typically over-ridden in instances, with essentially
        -- the same code, but using indexError instead of hopelessIndexError
        -- Reason: we have 'Show' at the instances
    {-# INLINE index #-}  -- See Note [Inlining index]
    index b i | inRange b i = unsafeIndex b i
              | otherwise   = hopelessIndexError

    unsafeIndex b i = index b i

    rangeSize b@(_l,h) | inRange b h = unsafeIndex b h + 1
                       | otherwise   = 0        -- This case is only here to
                                                -- check for an empty range
        -- NB: replacing (inRange b h) by (l <= h) fails for
        --     tuples.  E.g.  (1,2) <= (2,1) but the range is empty

    unsafeRangeSize b@(_l,h) = unsafeIndex b h + 1

{-
Note that the following is NOT right
        rangeSize (l,h) | l <= h    = index b h + 1
                        | otherwise = 0

Because it might be the case that l<h, but the range
is nevertheless empty.  Consider
        ((1,2),(2,1))
Here l<h, but the second index ranges from 2..1 and
hence is empty


Note [Inlining index]
~~~~~~~~~~~~~~~~~~~~~
We inline the 'index' operation,

 * Partly because it generates much faster code
   (although bigger); see Trac #1216

 * Partly because it exposes the bounds checks to the simplifier which
   might help a big.

If you make a per-instance index method, you may consider inlining it.

Note [Double bounds-checking of index values]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When you index an array, a!x, there are two possible bounds checks we might make:

  (A) Check that (inRange (bounds a) x) holds.

      (A) is checked in the method for 'index'

  (B) Check that (index (bounds a) x) lies in the range 0..n,
      where n is the size of the underlying array

      (B) is checked in the top-level function (!), in safeIndex.

Of course it *should* be the case that (A) holds iff (B) holds, but that
is a property of the particular instances of index, bounds, and inRange,
so GHC cannot guarantee it.

 * If you do (A) and not (B), then you might get a seg-fault,
   by indexing at some bizarre location.  Trac #1610

 * If you do (B) but not (A), you may get no complaint when you index
   an array out of its semantic bounds.  Trac #2120

At various times we have had (A) and not (B), or (B) and not (A); both
led to complaints.  So now we implement *both* checks (Trac #2669).

For 1-d, 2-d, and 3-d arrays of Int we have specialised instances to avoid this.

Note [Out-of-bounds error messages]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The default method for 'index' generates hoplelessIndexError, because
Ix doesn't have Show as a superclass.  For particular base types we
can do better, so we override the default method for index.
-}

-- Abstract these errors from the relevant index functions so that
-- the guts of the function will be small enough to inline.

{-# NOINLINE indexError #-}
indexError :: Show a => (a,a) -> a -> String -> b
indexError rng i tp
  = error (showString "Ix{" . showString tp . showString "}.index: Index " .
           showParen True (showsPrec 0 i) .
           showString " out of range " $
           showParen True (showsPrec 0 rng) "")

hopelessIndexError :: Int -- Try to use 'indexError' instead!
hopelessIndexError = error "Error in array index"

----------------------------------------------------------------------
instance  Ix Char  where
    {-# INLINE range #-}
    range (m,n) = [m..n]

    {-# INLINE unsafeIndex #-}
    unsafeIndex (m,_n) i = fromEnum i - fromEnum m

    {-# INLINE index #-}  -- See Note [Out-of-bounds error messages]
                          -- and Note [Inlining index]
    index b i | inRange b i =  unsafeIndex b i
              | otherwise   =  indexError b i "Char"

    inRange (m,n) i     =  m <= i && i <= n

----------------------------------------------------------------------
instance  Ix Int  where
    {-# INLINE range #-}
        -- The INLINE stops the build in the RHS from getting inlined,
        -- so that callers can fuse with the result of range
    range (m,n) = [m..n]

    {-# INLINE unsafeIndex #-}
    unsafeIndex (m,_n) i = i - m

    {-# INLINE index #-}  -- See Note [Out-of-bounds error messages]
                          -- and Note [Inlining index]
    index b i | inRange b i =  unsafeIndex b i
              | otherwise   =  indexError b i "Int"

    {-# INLINE inRange #-}
    inRange (I# m,I# n) (I# i) =  isTrue# (m <=# i) && isTrue# (i <=# n)

instance Ix Word where
    range (m,n)         = [m..n]
    unsafeIndex (m,_) i = fromIntegral (i - m)
    inRange (m,n) i     = m <= i && i <= n

----------------------------------------------------------------------
instance  Ix Integer  where
    {-# INLINE range #-}
    range (m,n) = [m..n]

    {-# INLINE unsafeIndex #-}
    unsafeIndex (m,_n) i   = fromInteger (i - m)

    {-# INLINE index #-}  -- See Note [Out-of-bounds error messages]
                          -- and Note [Inlining index]
    index b i | inRange b i =  unsafeIndex b i
              | otherwise   =  indexError b i "Integer"

    inRange (m,n) i     =  m <= i && i <= n

----------------------------------------------------------------------
instance Ix Bool where -- as derived
    {-# INLINE range #-}
    range (m,n) = [m..n]

    {-# INLINE unsafeIndex #-}
    unsafeIndex (l,_) i = fromEnum i - fromEnum l

    {-# INLINE index #-}  -- See Note [Out-of-bounds error messages]
                          -- and Note [Inlining index]
    index b i | inRange b i =  unsafeIndex b i
              | otherwise   =  indexError b i "Bool"

    inRange (l,u) i = fromEnum i >= fromEnum l && fromEnum i <= fromEnum u

----------------------------------------------------------------------
instance Ix Ordering where -- as derived
    {-# INLINE range #-}
    range (m,n) = [m..n]

    {-# INLINE unsafeIndex #-}
    unsafeIndex (l,_) i = fromEnum i - fromEnum l

    {-# INLINE index #-}  -- See Note [Out-of-bounds error messages]
                          -- and Note [Inlining index]
    index b i | inRange b i =  unsafeIndex b i
              | otherwise   =  indexError b i "Ordering"

    inRange (l,u) i = fromEnum i >= fromEnum l && fromEnum i <= fromEnum u

----------------------------------------------------------------------
instance Ix () where
    {-# INLINE range #-}
    range   ((), ())    = [()]
    {-# INLINE unsafeIndex #-}
    unsafeIndex   ((), ()) () = 0
    {-# INLINE inRange #-}
    inRange ((), ()) () = True

    {-# INLINE index #-}  -- See Note [Inlining index]
    index b i = unsafeIndex b i

----------------------------------------------------------------------
instance (Ix a, Ix b) => Ix (a, b) where -- as derived
    {-# SPECIALISE instance Ix (Int,Int) #-}

    {-# INLINE range #-}
    range ((l1,l2),(u1,u2)) =
      [ (i1,i2) | i1 <- range (l1,u1), i2 <- range (l2,u2) ]

    {-# INLINE unsafeIndex #-}
    unsafeIndex ((l1,l2),(u1,u2)) (i1,i2) =
      unsafeIndex (l1,u1) i1 * unsafeRangeSize (l2,u2) + unsafeIndex (l2,u2) i2

    {-# INLINE inRange #-}
    inRange ((l1,l2),(u1,u2)) (i1,i2) =
      inRange (l1,u1) i1 && inRange (l2,u2) i2

    -- Default method for index

----------------------------------------------------------------------
instance  (Ix a1, Ix a2, Ix a3) => Ix (a1,a2,a3)  where
    {-# SPECIALISE instance Ix (Int,Int,Int) #-}

    range ((l1,l2,l3),(u1,u2,u3)) =
        [(i1,i2,i3) | i1 <- range (l1,u1),
                      i2 <- range (l2,u2),
                      i3 <- range (l3,u3)]

    unsafeIndex ((l1,l2,l3),(u1,u2,u3)) (i1,i2,i3) =
      unsafeIndex (l3,u3) i3 + unsafeRangeSize (l3,u3) * (
      unsafeIndex (l2,u2) i2 + unsafeRangeSize (l2,u2) * (
      unsafeIndex (l1,u1) i1))

    inRange ((l1,l2,l3),(u1,u2,u3)) (i1,i2,i3) =
      inRange (l1,u1) i1 && inRange (l2,u2) i2 &&
      inRange (l3,u3) i3

    -- Default method for index

----------------------------------------------------------------------
instance  (Ix a1, Ix a2, Ix a3, Ix a4) => Ix (a1,a2,a3,a4)  where
    range ((l1,l2,l3,l4),(u1,u2,u3,u4)) =
      [(i1,i2,i3,i4) | i1 <- range (l1,u1),
                       i2 <- range (l2,u2),
                       i3 <- range (l3,u3),
                       i4 <- range (l4,u4)]

    unsafeIndex ((l1,l2,l3,l4),(u1,u2,u3,u4)) (i1,i2,i3,i4) =
      unsafeIndex (l4,u4) i4 + unsafeRangeSize (l4,u4) * (
      unsafeIndex (l3,u3) i3 + unsafeRangeSize (l3,u3) * (
      unsafeIndex (l2,u2) i2 + unsafeRangeSize (l2,u2) * (
      unsafeIndex (l1,u1) i1)))

    inRange ((l1,l2,l3,l4),(u1,u2,u3,u4)) (i1,i2,i3,i4) =
      inRange (l1,u1) i1 && inRange (l2,u2) i2 &&
      inRange (l3,u3) i3 && inRange (l4,u4) i4

    -- Default method for index

instance  (Ix a1, Ix a2, Ix a3, Ix a4, Ix a5) => Ix (a1,a2,a3,a4,a5)  where
    range ((l1,l2,l3,l4,l5),(u1,u2,u3,u4,u5)) =
      [(i1,i2,i3,i4,i5) | i1 <- range (l1,u1),
                          i2 <- range (l2,u2),
                          i3 <- range (l3,u3),
                          i4 <- range (l4,u4),
                          i5 <- range (l5,u5)]

    unsafeIndex ((l1,l2,l3,l4,l5),(u1,u2,u3,u4,u5)) (i1,i2,i3,i4,i5) =
      unsafeIndex (l5,u5) i5 + unsafeRangeSize (l5,u5) * (
      unsafeIndex (l4,u4) i4 + unsafeRangeSize (l4,u4) * (
      unsafeIndex (l3,u3) i3 + unsafeRangeSize (l3,u3) * (
      unsafeIndex (l2,u2) i2 + unsafeRangeSize (l2,u2) * (
      unsafeIndex (l1,u1) i1))))

    inRange ((l1,l2,l3,l4,l5),(u1,u2,u3,u4,u5)) (i1,i2,i3,i4,i5) =
      inRange (l1,u1) i1 && inRange (l2,u2) i2 &&
      inRange (l3,u3) i3 && inRange (l4,u4) i4 &&
      inRange (l5,u5) i5

    -- Default method for index

-- | The type of immutable non-strict (boxed) arrays
-- with indices in @i@ and elements in @e@.
data Array i e
   = Array            !i         -- the lower bound, l
                      !i         -- the upper bound, u
       {-# UNPACK #-} !Int       -- A cache of (rangeSize (l,u))
                                 -- used to make sure an index is
                                 -- really in range
                      (Array# e) -- The actual elements

-- | Mutable, boxed, non-strict arrays in the 'ST' monad.  The type
-- arguments are as follows:
--
--  * @s@: the state variable argument for the 'ST' type
--
--  * @i@: the index type of the array (should be an instance of 'Ix')
--
--  * @e@: the element type of the array.
--
data STArray s i e
  = STArray           !i               -- the lower bound, l
                      !i               -- the upper bound, u
      {-# UNPACK #-}  !Int             -- A cache of (rangeSize (l,u))
                                       -- used to make sure an index is
                                       -- really in range
                   (MutableArray# s e) -- The actual elements
        -- No Ix context for STArray.  They are stupid,
        -- and force an Ix context on the equality instance.

-- Index types should have nominal role, because of Ix class. See also #9220.
type role Array nominal representational
type role STArray nominal nominal representational

-- Just pointer equality on mutable arrays:
instance Eq (STArray s i e) where
    STArray _ _ _ arr1# == STArray _ _ _ arr2# =
        isTrue# (sameMutableArray# arr1# arr2#)

----------------------------------------------------------------------
-- Operations on immutable arrays

{-# NOINLINE arrEleBottom #-}
arrEleBottom :: a
arrEleBottom = error "(Array.!): undefined array element"

-- | Construct an array with the specified bounds and containing values
-- for given indices within these bounds.
--
-- The array is undefined (i.e. bottom) if any index in the list is
-- out of bounds.  The Haskell 2010 Report further specifies that if any
-- two associations in the list have the same index, the value at that
-- index is undefined (i.e. bottom).  However in GHC's implementation,
-- the value at such an index is the value part of the last association
-- with that index in the list.
--
-- Because the indices must be checked for these errors, 'array' is
-- strict in the bounds argument and in the indices of the association
-- list, but non-strict in the values.  Thus, recurrences such as the
-- following are possible:
--
-- > a = array (1,100) ((1,1) : [(i, i * a!(i-1)) | i <- [2..100]])
--
-- Not every index within the bounds of the array need appear in the
-- association list, but the values associated with indices that do not
-- appear will be undefined (i.e. bottom).
--
-- If, in any dimension, the lower bound is greater than the upper bound,
-- then the array is legal, but empty.  Indexing an empty array always
-- gives an array-bounds error, but 'bounds' still yields the bounds
-- with which the array was constructed.
{-# INLINE array #-}
array :: Ix i
        => (i,i)        -- ^ a pair of /bounds/, each of the index type
                        -- of the array.  These bounds are the lowest and
                        -- highest indices in the array, in that order.
                        -- For example, a one-origin vector of length
                        -- '10' has bounds '(1,10)', and a one-origin '10'
                        -- by '10' matrix has bounds '((1,1),(10,10))'.
        -> [(i, e)]     -- ^ a list of /associations/ of the form
                        -- (/index/, /value/).  Typically, this list will
                        -- be expressed as a comprehension.  An
                        -- association '(i, x)' defines the value of
                        -- the array at index 'i' to be 'x'.
        -> Array i e
array (l,u) ies
    = let n = safeRangeSize (l,u)
      in unsafeArray' (l,u) n
                      [(safeIndex (l,u) n i, e) | (i, e) <- ies]

{-# INLINE unsafeArray #-}
unsafeArray :: Ix i => (i,i) -> [(Int, e)] -> Array i e
unsafeArray b ies = unsafeArray' b (rangeSize b) ies

{-# INLINE unsafeArray' #-}
unsafeArray' :: Ix i => (i,i) -> Int -> [(Int, e)] -> Array i e
unsafeArray' (l,u) n@(I# n#) ies = runST (ST $ \s1# ->
    case newArray# n# arrEleBottom s1# of
        (# s2#, marr# #) ->
            foldr (fill marr#) (done l u n marr#) ies s2#)

{-# INLINE fill #-}
fill :: MutableArray# s e -> (Int, e) -> STRep s a -> STRep s a
-- NB: put the \s after the "=" so that 'fill'
--     inlines when applied to three args
fill marr# (I# i#, e) next
 = \s1# -> case writeArray# marr# i# e s1# of
             s2# -> next s2#

{-# INLINE done #-}
done :: Ix i => i -> i -> Int -> MutableArray# s e -> STRep s (Array i e)
-- See NB on 'fill'
-- Make sure it is strict in 'n'
done l u n@(I# _) marr#
  = \s1# -> case unsafeFreezeArray# marr# s1# of
              (# s2#, arr# #) -> (# s2#, Array l u n arr# #)

-- | Construct an array from a pair of bounds and a list of values in
-- index order.
{-# INLINE listArray #-}
listArray :: Ix i => (i,i) -> [e] -> Array i e
listArray (l,u) es = runST (ST $ \s1# ->
    case safeRangeSize (l,u)            of { n@(I# n#) ->
    case newArray# n# arrEleBottom s1#  of { (# s2#, marr# #) ->
      let
        go y r = \ i# s3# ->
            case writeArray# marr# i# y s3# of
              s4# -> if (isTrue# (i# ==# n# -# 1#))
                     then s4#
                     else r (i# +# 1#) s4#
      in
        done l u n marr# (
          if n == 0
          then s2#
          else foldr go (\_ s# -> s#) es 0# s2#)}})

-- | The value at the given index in an array.
{-# INLINE (!) #-}
(!) :: Ix i => Array i e -> i -> e
arr@(Array l u n _) ! i = unsafeAt arr $ safeIndex (l,u) n i

{-# INLINE safeRangeSize #-}
safeRangeSize :: Ix i => (i, i) -> Int
safeRangeSize (l,u) = let r = rangeSize (l, u)
                      in if r < 0 then negRange
                                  else r

-- Don't inline this error message everywhere!!
negRange :: Int   -- Uninformative, but Ix does not provide Show
negRange = error "Negative range size"

{-# INLINE[1] safeIndex #-}
-- See Note [Double bounds-checking of index values]
-- Inline *after* (!) so the rules can fire
-- Make sure it is strict in n
safeIndex :: Ix i => (i, i) -> Int -> i -> Int
safeIndex (l,u) n@(I# _) i
  | (0 <= i') && (i' < n) = i'
  | otherwise             = badSafeIndex i' n
  where
    i' = index (l,u) i

-- See Note [Double bounds-checking of index values]
{-# RULES
"safeIndex/I"       safeIndex = lessSafeIndex :: (Int,Int) -> Int -> Int -> Int
"safeIndex/(I,I)"   safeIndex = lessSafeIndex :: ((Int,Int),(Int,Int)) -> Int -> (Int,Int) -> Int
"safeIndex/(I,I,I)" safeIndex = lessSafeIndex :: ((Int,Int,Int),(Int,Int,Int)) -> Int -> (Int,Int,Int) -> Int
  #-}

lessSafeIndex :: Ix i => (i, i) -> Int -> i -> Int
-- See Note [Double bounds-checking of index values]
-- Do only (A), the semantic check
lessSafeIndex (l,u) _ i = index (l,u) i

-- Don't inline this long error message everywhere!!
badSafeIndex :: Int -> Int -> Int
badSafeIndex i' n = error ("Error in array index; " ++ show i' ++
                        " not in range [0.." ++ show n ++ ")")

{-# INLINE unsafeAt #-}
unsafeAt :: Ix i => Array i e -> Int -> e
unsafeAt (Array _ _ _ arr#) (I# i#) =
    case indexArray# arr# i# of (# e #) -> e

-- | The bounds with which an array was constructed.
{-# INLINE bounds #-}
bounds :: Ix i => Array i e -> (i,i)
bounds (Array l u _ _) = (l,u)

-- | The number of elements in the array.
{-# INLINE numElements #-}
numElements :: Ix i => Array i e -> Int
numElements (Array _ _ n _) = n

-- | The list of indices of an array in ascending order.
{-# INLINE indices #-}
indices :: Ix i => Array i e -> [i]
indices (Array l u _ _) = range (l,u)

-- | The list of elements of an array in index order.
{-# INLINE elems #-}
elems :: Ix i => Array i e -> [e]
elems arr@(Array _ _ n _) =
    [unsafeAt arr i | i <- [0 .. n - 1]]

-- | A right fold over the elements
{-# INLINABLE foldrElems #-}
foldrElems :: Ix i => (a -> b -> b) -> b -> Array i a -> b
foldrElems f b0 = \ arr@(Array _ _ n _) ->
  let
    go i | i == n    = b0
         | otherwise = f (unsafeAt arr i) (go (i+1))
  in go 0

-- | A left fold over the elements
{-# INLINABLE foldlElems #-}
foldlElems :: Ix i => (b -> a -> b) -> b -> Array i a -> b
foldlElems f b0 = \ arr@(Array _ _ n _) ->
  let
    go i | i == (-1) = b0
         | otherwise = f (go (i-1)) (unsafeAt arr i)
  in go (n-1)

-- | A strict right fold over the elements
{-# INLINABLE foldrElems' #-}
foldrElems' :: Ix i => (a -> b -> b) -> b -> Array i a -> b
foldrElems' f b0 = \ arr@(Array _ _ n _) ->
  let
    go i a | i == (-1) = a
           | otherwise = go (i-1) (f (unsafeAt arr i) $! a)
  in go (n-1) b0

-- | A strict left fold over the elements
{-# INLINABLE foldlElems' #-}
foldlElems' :: Ix i => (b -> a -> b) -> b -> Array i a -> b
foldlElems' f b0 = \ arr@(Array _ _ n _) ->
  let
    go i a | i == n    = a
           | otherwise = go (i+1) (a `seq` f a (unsafeAt arr i))
  in go 0 b0

-- | A left fold over the elements with no starting value
{-# INLINABLE foldl1Elems #-}
foldl1Elems :: Ix i => (a -> a -> a) -> Array i a -> a
foldl1Elems f = \ arr@(Array _ _ n _) ->
  let
    go i | i == 0    = unsafeAt arr 0
         | otherwise = f (go (i-1)) (unsafeAt arr i)
  in
    if n == 0 then error "foldl1: empty Array" else go (n-1)

-- | A right fold over the elements with no starting value
{-# INLINABLE foldr1Elems #-}
foldr1Elems :: Ix i => (a -> a -> a) -> Array i a -> a
foldr1Elems f = \ arr@(Array _ _ n _) ->
  let
    go i | i == n-1  = unsafeAt arr i
         | otherwise = f (unsafeAt arr i) (go (i + 1))
  in
    if n == 0 then error "foldr1: empty Array" else go 0

-- | The list of associations of an array in index order.
{-# INLINE assocs #-}
assocs :: Ix i => Array i e -> [(i, e)]
assocs arr@(Array l u _ _) =
    [(i, arr ! i) | i <- range (l,u)]

-- | The 'accumArray' function deals with repeated indices in the association
-- list using an /accumulating function/ which combines the values of
-- associations with the same index.
-- For example, given a list of values of some index type, @hist@
-- produces a histogram of the number of occurrences of each index within
-- a specified range:
--
-- > hist :: (Ix a, Num b) => (a,a) -> [a] -> Array a b
-- > hist bnds is = accumArray (+) 0 bnds [(i, 1) | i<-is, inRange bnds i]
--
-- If the accumulating function is strict, then 'accumArray' is strict in
-- the values, as well as the indices, in the association list.  Thus,
-- unlike ordinary arrays built with 'array', accumulated arrays should
-- not in general be recursive.
{-# INLINE accumArray #-}
accumArray :: Ix i
        => (e -> a -> e)        -- ^ accumulating function
        -> e                    -- ^ initial value
        -> (i,i)                -- ^ bounds of the array
        -> [(i, a)]             -- ^ association list
        -> Array i e
accumArray f initial (l,u) ies =
    let n = safeRangeSize (l,u)
    in unsafeAccumArray' f initial (l,u) n
                         [(safeIndex (l,u) n i, e) | (i, e) <- ies]

{-# INLINE unsafeAccumArray #-}
unsafeAccumArray :: Ix i => (e -> a -> e) -> e -> (i,i) -> [(Int, a)] -> Array i e
unsafeAccumArray f initial b ies = unsafeAccumArray' f initial b (rangeSize b) ies

{-# INLINE unsafeAccumArray' #-}
unsafeAccumArray' :: Ix i => (e -> a -> e) -> e -> (i,i) -> Int -> [(Int, a)] -> Array i e
unsafeAccumArray' f initial (l,u) n@(I# n#) ies = runST (ST $ \s1# ->
    case newArray# n# initial s1#          of { (# s2#, marr# #) ->
    foldr (adjust f marr#) (done l u n marr#) ies s2# })

{-# INLINE adjust #-}
adjust :: (e -> a -> e) -> MutableArray# s e -> (Int, a) -> STRep s b -> STRep s b
-- See NB on 'fill'
adjust f marr# (I# i#, new) next
  = \s1# -> case readArray# marr# i# s1# of
                (# s2#, old #) ->
                    case writeArray# marr# i# (f old new) s2# of
                        s3# -> next s3#

-- | Constructs an array identical to the first argument except that it has
-- been updated by the associations in the right argument.
-- For example, if @m@ is a 1-origin, @n@ by @n@ matrix, then
--
-- > m//[((i,i), 0) | i <- [1..n]]
--
-- is the same matrix, except with the diagonal zeroed.
--
-- Repeated indices in the association list are handled as for 'array':
-- Haskell 2010 specifies that the resulting array is undefined (i.e. bottom),
-- but GHC's implementation uses the last association for each index.
{-# INLINE (//) #-}
(//) :: Ix i => Array i e -> [(i, e)] -> Array i e
arr@(Array l u n _) // ies =
    unsafeReplace arr [(safeIndex (l,u) n i, e) | (i, e) <- ies]

{-# INLINE unsafeReplace #-}
unsafeReplace :: Ix i => Array i e -> [(Int, e)] -> Array i e
unsafeReplace arr ies = runST (do
    STArray l u n marr# <- thawSTArray arr
    ST (foldr (fill marr#) (done l u n marr#) ies))

-- | @'accum' f@ takes an array and an association list and accumulates
-- pairs from the list into the array with the accumulating function @f@.
-- Thus 'accumArray' can be defined using 'accum':
--
-- > accumArray f z b = accum f (array b [(i, z) | i <- range b])
--
{-# INLINE accum #-}
accum :: Ix i => (e -> a -> e) -> Array i e -> [(i, a)] -> Array i e
accum f arr@(Array l u n _) ies =
    unsafeAccum f arr [(safeIndex (l,u) n i, e) | (i, e) <- ies]

{-# INLINE unsafeAccum #-}
unsafeAccum :: Ix i => (e -> a -> e) -> Array i e -> [(Int, a)] -> Array i e
unsafeAccum f arr ies = runST (do
    STArray l u n marr# <- thawSTArray arr
    ST (foldr (adjust f marr#) (done l u n marr#) ies))

{-# INLINE [1] amap #-}
amap :: Ix i => (a -> b) -> Array i a -> Array i b
amap f arr@(Array l u n@(I# n#) _) = runST (ST $ \s1# ->
    case newArray# n# arrEleBottom s1# of
        (# s2#, marr# #) ->
          let go i s#
                | i == n    = done l u n marr# s#
                | otherwise = fill marr# (i, f (unsafeAt arr i)) (go (i+1)) s#
          in go 0 s2# )

{-
amap was originally defined like this:

 amap f arr@(Array l u n _) =
     unsafeArray' (l,u) n [(i, f (unsafeAt arr i)) | i <- [0 .. n - 1]]

There are two problems:

1. The enumFromTo implementation produces (spurious) code for the impossible
case of n<0 that ends up duplicating the array freezing code.

2. This implementation relies on list fusion for efficiency. In order to
implement the amap/coerce rule, we need to delay inlining amap until simplifier
phase 1, which is when the eftIntList rule kicks in and makes that impossible.
-}


-- See Breitner, Eisenberg, Peyton Jones, and Weirich, "Safe Zero-cost
-- Coercions for Haskell", section 6.5:
--   http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/coercible.pdf
{-# RULES
"amap/coerce" amap coerce = coerce
 #-}

-- Second functor law:
{-# RULES
"amap/amap" forall f g a . amap f (amap g a) = amap (f . g) a
 #-}

-- | 'ixmap' allows for transformations on array indices.
-- It may be thought of as providing function composition on the right
-- with the mapping that the original array embodies.
--
-- A similar transformation of array values may be achieved using 'fmap'
-- from the 'Array' instance of the 'Functor' class.
{-# INLINE ixmap #-}
ixmap :: (Ix i, Ix j) => (i,i) -> (i -> j) -> Array j e -> Array i e
ixmap (l,u) f arr =
    array (l,u) [(i, arr ! f i) | i <- range (l,u)]

{-# INLINE eqArray #-}
eqArray :: (Ix i, Eq e) => Array i e -> Array i e -> Bool
eqArray arr1@(Array l1 u1 n1 _) arr2@(Array l2 u2 n2 _) =
    if n1 == 0 then n2 == 0 else
    l1 == l2 && u1 == u2 &&
    and [unsafeAt arr1 i == unsafeAt arr2 i | i <- [0 .. n1 - 1]]

{-# INLINE [1] cmpArray #-}
cmpArray :: (Ix i, Ord e) => Array i e -> Array i e -> Ordering
cmpArray arr1 arr2 = compare (assocs arr1) (assocs arr2)

{-# INLINE cmpIntArray #-}
cmpIntArray :: Ord e => Array Int e -> Array Int e -> Ordering
cmpIntArray arr1@(Array l1 u1 n1 _) arr2@(Array l2 u2 n2 _) =
    if n1 == 0 then
        if n2 == 0 then EQ else LT
    else if n2 == 0 then GT
    else case compare l1 l2 of
             EQ    -> foldr cmp (compare u1 u2) [0 .. (n1 `min` n2) - 1]
             other -> other
  where
    cmp i rest = case compare (unsafeAt arr1 i) (unsafeAt arr2 i) of
        EQ    -> rest
        other -> other

{-# RULES "cmpArray/Int" cmpArray = cmpIntArray #-}

----------------------------------------------------------------------
-- Array instances

instance Ix i => Functor (Array i) where
    fmap = amap

instance (Ix i, Eq e) => Eq (Array i e) where
    (==) = eqArray

instance (Ix i, Ord e) => Ord (Array i e) where
    compare = cmpArray

instance (Ix a, Show a, Show b) => Show (Array a b) where
    showsPrec p a =
        showParen (p > appPrec) $
        showString "array " .
        showsPrec appPrec1 (bounds a) .
        showChar ' ' .
        showsPrec appPrec1 (assocs a)
        -- Precedence of 'array' is the precedence of application

-- The Read instance is in GHC.Read

----------------------------------------------------------------------
-- Operations on mutable arrays

{-
Idle ADR question: What's the tradeoff here between flattening these
datatypes into @STArray ix ix (MutableArray# s elt)@ and using
it as is?  As I see it, the former uses slightly less heap and
provides faster access to the individual parts of the bounds while the
code used has the benefit of providing a ready-made @(lo, hi)@ pair as
required by many array-related functions.  Which wins? Is the
difference significant (probably not).

Idle AJG answer: When I looked at the outputted code (though it was 2
years ago) it seems like you often needed the tuple, and we build
it frequently. Now we've got the overloading specialiser things
might be different, though.
-}

{-# INLINE newSTArray #-}
newSTArray :: Ix i => (i,i) -> e -> ST s (STArray s i e)
newSTArray (l,u) initial = ST $ \s1# ->
    case safeRangeSize (l,u)            of { n@(I# n#) ->
    case newArray# n# initial s1#       of { (# s2#, marr# #) ->
    (# s2#, STArray l u n marr# #) }}

{-# INLINE boundsSTArray #-}
boundsSTArray :: STArray s i e -> (i,i)
boundsSTArray (STArray l u _ _) = (l,u)

{-# INLINE numElementsSTArray #-}
numElementsSTArray :: STArray s i e -> Int
numElementsSTArray (STArray _ _ n _) = n

{-# INLINE readSTArray #-}
readSTArray :: Ix i => STArray s i e -> i -> ST s e
readSTArray marr@(STArray l u n _) i =
    unsafeReadSTArray marr (safeIndex (l,u) n i)

{-# INLINE unsafeReadSTArray #-}
unsafeReadSTArray :: Ix i => STArray s i e -> Int -> ST s e
unsafeReadSTArray (STArray _ _ _ marr#) (I# i#)
    = ST $ \s1# -> readArray# marr# i# s1#

{-# INLINE writeSTArray #-}
writeSTArray :: Ix i => STArray s i e -> i -> e -> ST s ()
writeSTArray marr@(STArray l u n _) i e =
    unsafeWriteSTArray marr (safeIndex (l,u) n i) e

{-# INLINE unsafeWriteSTArray #-}
unsafeWriteSTArray :: Ix i => STArray s i e -> Int -> e -> ST s ()
unsafeWriteSTArray (STArray _ _ _ marr#) (I# i#) e = ST $ \s1# ->
    case writeArray# marr# i# e s1# of
        s2# -> (# s2#, () #)

----------------------------------------------------------------------
-- Moving between mutable and immutable

freezeSTArray :: Ix i => STArray s i e -> ST s (Array i e)
freezeSTArray (STArray l u n@(I# n#) marr#) = ST $ \s1# ->
    case newArray# n# arrEleBottom s1#  of { (# s2#, marr'# #) ->
    let copy i# s3# | isTrue# (i# ==# n#) = s3#
                    | otherwise =
            case readArray# marr# i# s3# of { (# s4#, e #) ->
            case writeArray# marr'# i# e s4# of { s5# ->
            copy (i# +# 1#) s5# }} in
    case copy 0# s2#                    of { s3# ->
    case unsafeFreezeArray# marr'# s3#  of { (# s4#, arr# #) ->
    (# s4#, Array l u n arr# #) }}}

{-# INLINE unsafeFreezeSTArray #-}
unsafeFreezeSTArray :: Ix i => STArray s i e -> ST s (Array i e)
unsafeFreezeSTArray (STArray l u n marr#) = ST $ \s1# ->
    case unsafeFreezeArray# marr# s1#   of { (# s2#, arr# #) ->
    (# s2#, Array l u n arr# #) }

thawSTArray :: Ix i => Array i e -> ST s (STArray s i e)
thawSTArray (Array l u n@(I# n#) arr#) = ST $ \s1# ->
    case newArray# n# arrEleBottom s1#  of { (# s2#, marr# #) ->
    let copy i# s3# | isTrue# (i# ==# n#) = s3#
                    | otherwise =
            case indexArray# arr# i#    of { (# e #) ->
            case writeArray# marr# i# e s3# of { s4# ->
            copy (i# +# 1#) s4# }} in
    case copy 0# s2#                    of { s3# ->
    (# s3#, STArray l u n marr# #) }}

{-# INLINE unsafeThawSTArray #-}
unsafeThawSTArray :: Ix i => Array i e -> ST s (STArray s i e)
unsafeThawSTArray (Array l u n arr#) = ST $ \s1# ->
    case unsafeThawArray# arr# s1#      of { (# s2#, marr# #) ->
    (# s2#, STArray l u n marr# #) }