summaryrefslogtreecommitdiff
path: root/libraries/base/Control/Applicative.hs
blob: bb49d2131c3d01c1952e76c8ec9a7632e83c3021 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE NoImplicitPrelude #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Control.Applicative
-- Copyright   :  Conor McBride and Ross Paterson 2005
-- License     :  BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  experimental
-- Portability :  portable
--
-- This module describes a structure intermediate between a functor and
-- a monad (technically, a strong lax monoidal functor).  Compared with
-- monads, this interface lacks the full power of the binding operation
-- '>>=', but
--
-- * it has more instances.
--
-- * it is sufficient for many uses, e.g. context-free parsing, or the
--   'Data.Traversable.Traversable' class.
--
-- * instances can perform analysis of computations before they are
--   executed, and thus produce shared optimizations.
--
-- This interface was introduced for parsers by Niklas Röjemo, because
-- it admits more sharing than the monadic interface.  The names here are
-- mostly based on parsing work by Doaitse Swierstra.
--
-- For more details, see
-- <http://www.soi.city.ac.uk/~ross/papers/Applicative.html Applicative Programming with Effects>,
-- by Conor McBride and Ross Paterson.

module Control.Applicative (
    -- * Applicative functors
    Applicative(..),
    -- * Alternatives
    Alternative(..),
    -- * Instances
    Const(..), WrappedMonad(..), WrappedArrow(..), ZipList(..),
    -- * Utility functions
    (<$>), (<$), (<**>),
    liftA, liftA3,
    optional,
    asum,
    ) where

import Control.Category hiding ((.), id)
import Control.Arrow
import Data.Maybe
import Data.Tuple
import Data.Eq
import Data.Ord
import Data.Foldable (Foldable(..), asum)
import Data.Functor ((<$>))
import Data.Functor.Const (Const(..))

import GHC.Base
import GHC.Generics
import GHC.List (repeat, zipWith)
import GHC.Read (Read)
import GHC.Show (Show)

-- $setup
-- >>> import Prelude

newtype WrappedMonad m a = WrapMonad { unwrapMonad :: m a }
                         deriving ( Generic  -- ^ @since 4.7.0.0
                                  , Generic1 -- ^ @since 4.7.0.0
                                  , Monad    -- ^ @since 4.7.0.0
                                  )

-- | @since 2.01
instance Monad m => Functor (WrappedMonad m) where
    fmap f (WrapMonad v) = WrapMonad (liftM f v)

-- | @since 2.01
instance Monad m => Applicative (WrappedMonad m) where
    pure = WrapMonad . pure
    WrapMonad f <*> WrapMonad v = WrapMonad (f `ap` v)
    liftA2 f (WrapMonad x) (WrapMonad y) = WrapMonad (liftM2 f x y)

-- | @since 2.01
instance MonadPlus m => Alternative (WrappedMonad m) where
    empty = WrapMonad mzero
    WrapMonad u <|> WrapMonad v = WrapMonad (u `mplus` v)

newtype WrappedArrow a b c = WrapArrow { unwrapArrow :: a b c }
                           deriving ( Generic  -- ^ @since 4.7.0.0
                                    , Generic1 -- ^ @since 4.7.0.0
                                    )

-- | @since 2.01
instance Arrow a => Functor (WrappedArrow a b) where
    fmap f (WrapArrow a) = WrapArrow (a >>> arr f)

-- | @since 2.01
instance Arrow a => Applicative (WrappedArrow a b) where
    pure x = WrapArrow (arr (const x))
    liftA2 f (WrapArrow u) (WrapArrow v) =
      WrapArrow (u &&& v >>> arr (uncurry f))

-- | @since 2.01
instance (ArrowZero a, ArrowPlus a) => Alternative (WrappedArrow a b) where
    empty = WrapArrow zeroArrow
    WrapArrow u <|> WrapArrow v = WrapArrow (u <+> v)

-- | Lists, but with an 'Applicative' functor based on zipping.
newtype ZipList a = ZipList { getZipList :: [a] }
                  deriving ( Show     -- ^ @since 4.7.0.0
                           , Eq       -- ^ @since 4.7.0.0
                           , Ord      -- ^ @since 4.7.0.0
                           , Read     -- ^ @since 4.7.0.0
                           , Functor  -- ^ @since 2.01
                           , Foldable -- ^ @since 4.9.0.0
                           , Generic  -- ^ @since 4.7.0.0
                           , Generic1 -- ^ @since 4.7.0.0
                           )
-- See Data.Traversable for Traversable instance due to import loops

-- |
-- > f <$> ZipList xs1 <*> ... <*> ZipList xsN
-- >     = ZipList (zipWithN f xs1 ... xsN)
--
-- where @zipWithN@ refers to the @zipWith@ function of the appropriate arity
-- (@zipWith@, @zipWith3@, @zipWith4@, ...). For example:
--
-- > (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
-- >     = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
-- >     = ZipList {getZipList = ["a5","b6b6","c7c7c7"]}
--
-- @since 2.01
instance Applicative ZipList where
    pure x = ZipList (repeat x)
    liftA2 f (ZipList xs) (ZipList ys) = ZipList (zipWith f xs ys)

-- | @since 4.11.0.0
instance Alternative ZipList where
   empty = ZipList []
   ZipList xs0 <|> ZipList ys0 = ZipList $ go xs0 ys0
     where
       go (x:xs) (_:ys) = x : go xs ys
       go    []     ys  = ys
       go    xs      _  = xs

-- extra functions

-- | One or none.
--
-- It is useful for modelling any computation that is allowed to fail.
--
-- ==== __Examples__
--
-- Using the 'Alternative' instance of "Control.Monad.Except", the following functions:
--
-- >>> import Control.Monad.Except
--
-- >>> canFail = throwError "it failed" :: Except String Int
-- >>> final = return 42                :: Except String Int
--
-- Can be combined by allowing the first function to fail:
--
-- >>> runExcept $ canFail *> final
-- Left "it failed"
-- >>> runExcept $ optional canFail *> final
-- Right 42

optional :: Alternative f => f a -> f (Maybe a)
optional v = Just <$> v <|> pure Nothing