1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2011
*
* Registers used in STG code. Might or might not correspond to
* actual machine registers.
*
* Do not #include this file directly: #include "Rts.h" instead.
*
* To understand the structure of the RTS headers, see the wiki:
* http://hackage.haskell.org/trac/ghc/wiki/Commentary/SourceTree/Includes
*
* ---------------------------------------------------------------------------*/
#ifndef MACHREGS_H
#define MACHREGS_H
/* This file is #included into Haskell code in the compiler: #defines
* only in here please.
*/
/*
* Undefine these as a precaution: some of them were found to be
* defined by system headers on ARM/Linux.
*/
#undef REG_R1
#undef REG_R2
#undef REG_R3
#undef REG_R4
#undef REG_R5
#undef REG_R6
#undef REG_R7
#undef REG_R8
#undef REG_R9
#undef REG_R10
/*
* Defining MACHREGS_NO_REGS to 1 causes no global registers to be used.
* MACHREGS_NO_REGS is typically controlled by NO_REGS, which is
* typically defined by GHC, via a command-line option passed to gcc,
* when the -funregisterised flag is given.
*
* NB. When MACHREGS_NO_REGS to 1, calling & return conventions may be
* different. For example, all function arguments will be passed on
* the stack, and components of an unboxed tuple will be returned on
* the stack rather than in registers.
*/
#if MACHREGS_NO_REGS == 1
/* Nothing */
#elif MACHREGS_NO_REGS == 0
/* ----------------------------------------------------------------------------
Caller saves and callee-saves regs.
Caller-saves regs have to be saved around C-calls made from STG
land, so this file defines CALLER_SAVES_<reg> for each <reg> that
is designated caller-saves in that machine's C calling convention.
As it stands, the only registers that are ever marked caller saves
are the RX, FX, DX and USER registers; as a result, if you
decide to caller save a system register (e.g. SP, HP, etc), note that
this code path is completely untested! -- EZY
-------------------------------------------------------------------------- */
/* -----------------------------------------------------------------------------
The x86 register mapping
Ok, we've only got 6 general purpose registers, a frame pointer and a
stack pointer. \tr{%eax} and \tr{%edx} are return values from C functions,
hence they get trashed across ccalls and are caller saves. \tr{%ebx},
\tr{%esi}, \tr{%edi}, \tr{%ebp} are all callee-saves.
Reg STG-Reg
---------------
ebx Base
ebp Sp
esi R1
edi Hp
Leaving SpLim out of the picture.
-------------------------------------------------------------------------- */
#if MACHREGS_i386
#define REG(x) __asm__("%" #x)
#ifndef not_doing_dynamic_linking
#define REG_Base ebx
#endif
#define REG_Sp ebp
#ifndef STOLEN_X86_REGS
#define STOLEN_X86_REGS 4
#endif
#if STOLEN_X86_REGS >= 3
# define REG_R1 esi
#endif
#if STOLEN_X86_REGS >= 4
# define REG_Hp edi
#endif
#define REG_XMM1 xmm0
#define REG_XMM2 xmm1
#define REG_XMM3 xmm2
#define REG_XMM4 xmm3
#define REG_YMM1 ymm0
#define REG_YMM2 ymm1
#define REG_YMM3 ymm2
#define REG_YMM4 ymm3
#define REG_ZMM1 zmm0
#define REG_ZMM2 zmm1
#define REG_ZMM3 zmm2
#define REG_ZMM4 zmm3
#define MAX_REAL_VANILLA_REG 1 /* always, since it defines the entry conv */
#define MAX_REAL_FLOAT_REG 0
#define MAX_REAL_DOUBLE_REG 0
#define MAX_REAL_LONG_REG 0
#define MAX_REAL_XMM_REG 4
#define MAX_REAL_YMM_REG 4
#define MAX_REAL_ZMM_REG 4
/* -----------------------------------------------------------------------------
The x86-64 register mapping
%rax caller-saves, don't steal this one
%rbx YES
%rcx arg reg, caller-saves
%rdx arg reg, caller-saves
%rsi arg reg, caller-saves
%rdi arg reg, caller-saves
%rbp YES (our *prime* register)
%rsp (unavailable - stack pointer)
%r8 arg reg, caller-saves
%r9 arg reg, caller-saves
%r10 caller-saves
%r11 caller-saves
%r12 YES
%r13 YES
%r14 YES
%r15 YES
%xmm0-7 arg regs, caller-saves
%xmm8-15 caller-saves
Use the caller-saves regs for Rn, because we don't always have to
save those (as opposed to Sp/Hp/SpLim etc. which always have to be
saved).
--------------------------------------------------------------------------- */
#elif MACHREGS_x86_64
#define REG(x) __asm__("%" #x)
#define REG_Base r13
#define REG_Sp rbp
#define REG_Hp r12
#define REG_R1 rbx
#define REG_R2 r14
#define REG_R3 rsi
#define REG_R4 rdi
#define REG_R5 r8
#define REG_R6 r9
#define REG_SpLim r15
#define REG_F1 xmm1
#define REG_F2 xmm2
#define REG_F3 xmm3
#define REG_F4 xmm4
#define REG_F5 xmm5
#define REG_F6 xmm6
#define REG_D1 xmm1
#define REG_D2 xmm2
#define REG_D3 xmm3
#define REG_D4 xmm4
#define REG_D5 xmm5
#define REG_D6 xmm6
#define REG_XMM1 xmm1
#define REG_XMM2 xmm2
#define REG_XMM3 xmm3
#define REG_XMM4 xmm4
#define REG_XMM5 xmm5
#define REG_XMM6 xmm6
#define REG_YMM1 ymm1
#define REG_YMM2 ymm2
#define REG_YMM3 ymm3
#define REG_YMM4 ymm4
#define REG_YMM5 ymm5
#define REG_YMM6 ymm6
#define REG_ZMM1 zmm1
#define REG_ZMM2 zmm2
#define REG_ZMM3 zmm3
#define REG_ZMM4 zmm4
#define REG_ZMM5 zmm5
#define REG_ZMM6 zmm6
#if !defined(mingw32_HOST_OS)
#define CALLER_SAVES_R3
#define CALLER_SAVES_R4
#endif
#define CALLER_SAVES_R5
#define CALLER_SAVES_R6
#define CALLER_SAVES_F1
#define CALLER_SAVES_F2
#define CALLER_SAVES_F3
#define CALLER_SAVES_F4
#define CALLER_SAVES_F5
#if !defined(mingw32_HOST_OS)
#define CALLER_SAVES_F6
#endif
#define CALLER_SAVES_D1
#define CALLER_SAVES_D2
#define CALLER_SAVES_D3
#define CALLER_SAVES_D4
#define CALLER_SAVES_D5
#if !defined(mingw32_HOST_OS)
#define CALLER_SAVES_D6
#endif
#define CALLER_SAVES_XMM1
#define CALLER_SAVES_XMM2
#define CALLER_SAVES_XMM3
#define CALLER_SAVES_XMM4
#define CALLER_SAVES_XMM5
#if !defined(mingw32_HOST_OS)
#define CALLER_SAVES_XMM6
#endif
#define CALLER_SAVES_YMM1
#define CALLER_SAVES_YMM2
#define CALLER_SAVES_YMM3
#define CALLER_SAVES_YMM4
#define CALLER_SAVES_YMM5
#if !defined(mingw32_HOST_OS)
#define CALLER_SAVES_YMM6
#endif
#define CALLER_SAVES_ZMM1
#define CALLER_SAVES_ZMM2
#define CALLER_SAVES_ZMM3
#define CALLER_SAVES_ZMM4
#define CALLER_SAVES_ZMM5
#if !defined(mingw32_HOST_OS)
#define CALLER_SAVES_ZMM6
#endif
#define MAX_REAL_VANILLA_REG 6
#define MAX_REAL_FLOAT_REG 6
#define MAX_REAL_DOUBLE_REG 6
#define MAX_REAL_LONG_REG 0
#define MAX_REAL_XMM_REG 6
#define MAX_REAL_YMM_REG 6
#define MAX_REAL_ZMM_REG 6
/* -----------------------------------------------------------------------------
The PowerPC register mapping
0 system glue? (caller-save, volatile)
1 SP (callee-save, non-volatile)
2 AIX, powerpc64-linux:
RTOC (a strange special case)
darwin:
(caller-save, volatile)
powerpc32-linux:
reserved for use by system
3-10 args/return (caller-save, volatile)
11,12 system glue? (caller-save, volatile)
13 on 64-bit: reserved for thread state pointer
on 32-bit: (callee-save, non-volatile)
14-31 (callee-save, non-volatile)
f0 (caller-save, volatile)
f1-f13 args/return (caller-save, volatile)
f14-f31 (callee-save, non-volatile)
\tr{14}--\tr{31} are wonderful callee-save registers on all ppc OSes.
\tr{0}--\tr{12} are caller-save registers.
\tr{%f14}--\tr{%f31} are callee-save floating-point registers.
We can do the Whole Business with callee-save registers only!
-------------------------------------------------------------------------- */
#elif MACHREGS_powerpc
#define REG(x) __asm__(#x)
#define REG_R1 r14
#define REG_R2 r15
#define REG_R3 r16
#define REG_R4 r17
#define REG_R5 r18
#define REG_R6 r19
#define REG_R7 r20
#define REG_R8 r21
#if MACHREGS_darwin
#define REG_F1 f14
#define REG_F2 f15
#define REG_F3 f16
#define REG_F4 f17
#define REG_D1 f18
#define REG_D2 f19
#else
#define REG_F1 fr14
#define REG_F2 fr15
#define REG_F3 fr16
#define REG_F4 fr17
#define REG_D1 fr18
#define REG_D2 fr19
#endif
#define REG_Sp r22
#define REG_SpLim r24
#define REG_Hp r25
#define REG_Base r27
/* -----------------------------------------------------------------------------
The Sun SPARC register mapping
!! IMPORTANT: if you change this register mapping you must also update
compiler/nativeGen/SPARC/Regs.hs. That file handles the
mapping for the NCG. This one only affects via-c code.
The SPARC register (window) story: Remember, within the Haskell
Threaded World, we essentially ``shut down'' the register-window
mechanism---the window doesn't move at all while in this World. It
*does* move, of course, if we call out to arbitrary~C...
The %i, %l, and %o registers (8 each) are the input, local, and
output registers visible in one register window. The 8 %g (global)
registers are visible all the time.
zero: always zero
scratch: volatile across C-fn calls. used by linker.
app: usable by application
system: reserved for system
alloc: allocated to in the register allocator, intra-closure only
GHC usage v8 ABI v9 ABI
Global
%g0 zero zero zero
%g1 alloc scratch scrach
%g2 alloc app app
%g3 alloc app app
%g4 alloc app scratch
%g5 system scratch
%g6 system system
%g7 system system
Output: can be zapped by callee
%o0-o5 alloc caller saves
%o6 C stack ptr
%o7 C ret addr
Local: maintained by register windowing mechanism
%l0 alloc
%l1 R1
%l2 R2
%l3 R3
%l4 R4
%l5 R5
%l6 alloc
%l7 alloc
Input
%i0 Sp
%i1 Base
%i2 SpLim
%i3 Hp
%i4 alloc
%i5 R6
%i6 C frame ptr
%i7 C ret addr
The paired nature of the floating point registers causes complications for
the native code generator. For convenience, we pretend that the first 22
fp regs %f0 .. %f21 are actually 11 double regs, and the remaining 10 are
float (single) regs. The NCG acts accordingly. That means that the
following FP assignment is rather fragile, and should only be changed
with extreme care. The current scheme is:
%f0 /%f1 FP return from C
%f2 /%f3 D1
%f4 /%f5 D2
%f6 /%f7 ncg double spill tmp #1
%f8 /%f9 ncg double spill tmp #2
%f10/%f11 allocatable
%f12/%f13 allocatable
%f14/%f15 allocatable
%f16/%f17 allocatable
%f18/%f19 allocatable
%f20/%f21 allocatable
%f22 F1
%f23 F2
%f24 F3
%f25 F4
%f26 ncg single spill tmp #1
%f27 ncg single spill tmp #2
%f28 allocatable
%f29 allocatable
%f30 allocatable
%f31 allocatable
-------------------------------------------------------------------------- */
#elif MACHREGS_sparc
#define REG(x) __asm__("%" #x)
#define CALLER_SAVES_USER
#define CALLER_SAVES_F1
#define CALLER_SAVES_F2
#define CALLER_SAVES_F3
#define CALLER_SAVES_F4
#define CALLER_SAVES_D1
#define CALLER_SAVES_D2
#define REG_R1 l1
#define REG_R2 l2
#define REG_R3 l3
#define REG_R4 l4
#define REG_R5 l5
#define REG_R6 i5
#define REG_F1 f22
#define REG_F2 f23
#define REG_F3 f24
#define REG_F4 f25
/* for each of the double arg regs,
Dn_2 is the high half. */
#define REG_D1 f2
#define REG_D1_2 f3
#define REG_D2 f4
#define REG_D2_2 f5
#define REG_Sp i0
#define REG_SpLim i2
#define REG_Hp i3
#define REG_Base i1
#define NCG_FirstFloatReg f22
/* -----------------------------------------------------------------------------
The ARM EABI register mapping
Here we consider ARM mode (i.e. 32bit isns)
and also CPU with full VFPv3 implementation
ARM registers (see Chapter 5.1 in ARM IHI 0042D)
r15 PC The Program Counter.
r14 LR The Link Register.
r13 SP The Stack Pointer.
r12 IP The Intra-Procedure-call scratch register.
r11 v8 Variable-register 8.
r10 v7 Variable-register 7.
r9 v6/SB/TR Platform register. The meaning of this register is
defined by the platform standard.
r8 v5 Variable-register 5.
r7 v4 Variable register 4.
r6 v3 Variable register 3.
r5 v2 Variable register 2.
r4 v1 Variable register 1.
r3 a4 Argument / scratch register 4.
r2 a3 Argument / scratch register 3.
r1 a2 Argument / result / scratch register 2.
r0 a1 Argument / result / scratch register 1.
VFPv2/VFPv3/NEON registers
s0-s15/d0-d7/q0-q3 Argument / result/ scratch registers
s16-s31/d8-d15/q4-q7 callee-saved registers (must be preserved across
subrutine calls)
VFPv3/NEON registers (added to the VFPv2 registers set)
d16-d31/q8-q15 Argument / result/ scratch registers
----------------------------------------------------------------------------- */
#elif MACHREGS_arm
#define REG(x) __asm__(#x)
#define REG_Base r4
#define REG_Sp r5
#define REG_Hp r6
#define REG_R1 r7
#define REG_R2 r8
#define REG_R3 r9
#define REG_R4 r10
#define REG_SpLim r11
#if !defined(arm_HOST_ARCH_PRE_ARMv6)
/* d8 */
#define REG_F1 s16
#define REG_F2 s17
/* d9 */
#define REG_F3 s18
#define REG_F4 s19
#define REG_D1 d10
#define REG_D2 d11
#endif
#else
#error Cannot find platform to give register info for
#endif
#else
#error Bad MACHREGS_NO_REGS value
#endif
/* -----------------------------------------------------------------------------
* These constants define how many stg registers will be used for
* passing arguments (and results, in the case of an unboxed-tuple
* return).
*
* We usually set MAX_REAL_VANILLA_REG and co. to be the number of the
* highest STG register to occupy a real machine register, otherwise
* the calling conventions will needlessly shuffle data between the
* stack and memory-resident STG registers. We might occasionally
* set these macros to other values for testing, though.
*
* Registers above these values might still be used, for instance to
* communicate with PrimOps and RTS functions.
*/
#ifndef MAX_REAL_VANILLA_REG
# if defined(REG_R10)
# define MAX_REAL_VANILLA_REG 10
# elif defined(REG_R9)
# define MAX_REAL_VANILLA_REG 9
# elif defined(REG_R8)
# define MAX_REAL_VANILLA_REG 8
# elif defined(REG_R7)
# define MAX_REAL_VANILLA_REG 7
# elif defined(REG_R6)
# define MAX_REAL_VANILLA_REG 6
# elif defined(REG_R5)
# define MAX_REAL_VANILLA_REG 5
# elif defined(REG_R4)
# define MAX_REAL_VANILLA_REG 4
# elif defined(REG_R3)
# define MAX_REAL_VANILLA_REG 3
# elif defined(REG_R2)
# define MAX_REAL_VANILLA_REG 2
# elif defined(REG_R1)
# define MAX_REAL_VANILLA_REG 1
# else
# define MAX_REAL_VANILLA_REG 0
# endif
#endif
#ifndef MAX_REAL_FLOAT_REG
# if defined(REG_F4)
# define MAX_REAL_FLOAT_REG 4
# elif defined(REG_F3)
# define MAX_REAL_FLOAT_REG 3
# elif defined(REG_F2)
# define MAX_REAL_FLOAT_REG 2
# elif defined(REG_F1)
# define MAX_REAL_FLOAT_REG 1
# else
# define MAX_REAL_FLOAT_REG 0
# endif
#endif
#ifndef MAX_REAL_DOUBLE_REG
# if defined(REG_D2)
# define MAX_REAL_DOUBLE_REG 2
# elif defined(REG_D1)
# define MAX_REAL_DOUBLE_REG 1
# else
# define MAX_REAL_DOUBLE_REG 0
# endif
#endif
#ifndef MAX_REAL_LONG_REG
# if defined(REG_L1)
# define MAX_REAL_LONG_REG 1
# else
# define MAX_REAL_LONG_REG 0
# endif
#endif
#ifndef MAX_REAL_XMM_REG
# if defined(REG_XMM6)
# define MAX_REAL_XMM_REG 6
# elif defined(REG_XMM5)
# define MAX_REAL_XMM_REG 5
# elif defined(REG_XMM4)
# define MAX_REAL_XMM_REG 4
# elif defined(REG_XMM3)
# define MAX_REAL_XMM_REG 3
# elif defined(REG_XMM2)
# define MAX_REAL_XMM_REG 2
# elif defined(REG_XMM1)
# define MAX_REAL_XMM_REG 1
# else
# define MAX_REAL_XMM_REG 0
# endif
#endif
/* define NO_ARG_REGS if we have no argument registers at all (we can
* optimise certain code paths using this predicate).
*/
#if MAX_REAL_VANILLA_REG < 2
#define NO_ARG_REGS
#else
#undef NO_ARG_REGS
#endif
#endif /* MACHREGS_H */
|