1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
|
%
% (c) The AQUA Project, Glasgow University, 1994-1998
%
\section[PrelRead]{Module @PrelRead@}
Instances of the Read class.
\begin{code}
{-# OPTIONS -fno-implicit-prelude #-}
module PrelRead where
import PrelErr ( error )
import PrelEnum ( Enum(..) )
import PrelNum
import PrelNumExtra
import PrelList
import PrelTup
import PrelMaybe
import PrelShow -- isAlpha etc
import PrelBase
import Monad
-- needed for readIO.
import PrelIOBase ( IO, userError )
import PrelException ( ioError )
\end{code}
%*********************************************************
%* *
\subsection{The @Read@ class}
%* *
%*********************************************************
Note: if you compile this with -DNEW_READS_REP, you'll get
a (simpler) ReadS representation that only allow one valid
parse of a string of characters, instead of a list of
possible ones.
[changing the ReadS rep has implications for the deriving
machinery for Read, a change that hasn't been made, so you
probably won't want to compile in this new rep. except
when in an experimental mood.]
\begin{code}
#ifndef NEW_READS_REP
type ReadS a = String -> [(a,String)]
#else
type ReadS a = String -> Maybe (a,String)
#endif
class Read a where
readsPrec :: Int -> ReadS a
readList :: ReadS [a]
readList = readList__ reads
\end{code}
%*********************************************************
%* *
\subsection{Utility functions}
%* *
%*********************************************************
\begin{code}
reads :: (Read a) => ReadS a
reads = readsPrec 0
read :: (Read a) => String -> a
read s =
case read_s s of
#ifndef NEW_READS_REP
[x] -> x
[] -> error "Prelude.read: no parse"
_ -> error "Prelude.read: ambiguous parse"
#else
Just x -> x
Nothing -> error "Prelude.read: no parse"
#endif
where
read_s str = do
(x,str1) <- reads str
("","") <- lex str1
return x
-- raises an exception instead of an error
readIO :: Read a => String -> IO a
readIO s = case (do { (x,t) <- reads s ; ("","") <- lex t ; return x }) of
#ifndef NEW_READS_REP
[x] -> return x
[] -> ioError (userError "Prelude.readIO: no parse")
_ -> ioError (userError "Prelude.readIO: ambiguous parse")
#else
Just x -> return x
Nothing -> ioError (userError "Prelude.readIO: no parse")
#endif
\end{code}
\begin{code}
readParen :: Bool -> ReadS a -> ReadS a
readParen b g = if b then mandatory else optional
where optional r = g r ++ mandatory r
mandatory r = do
("(",s) <- lex r
(x,t) <- optional s
(")",u) <- lex t
return (x,u)
readList__ :: ReadS a -> ReadS [a]
readList__ readx
= readParen False (\r -> do
("[",s) <- lex r
readl s)
where readl s =
(do { ("]",t) <- lex s ; return ([],t) }) ++
(do { (x,t) <- readx s ; (xs,u) <- readl2 t ; return (x:xs,u) })
readl2 s =
(do { ("]",t) <- lex s ; return ([],t) }) ++
(do { (",",t) <- lex s ; (x,u) <- readx t ; (xs,v) <- readl2 u ; return (x:xs,v) })
\end{code}
%*********************************************************
%* *
\subsection{Lexical analysis}
%* *
%*********************************************************
This lexer is not completely faithful to the Haskell lexical syntax.
Current limitations:
Qualified names are not handled properly
A `--' does not terminate a symbol
Octal and hexidecimal numerics are not recognized as a single token
\begin{code}
lex :: ReadS String
lex "" = return ("","")
lex (c:s) | isSpace c = lex (dropWhile isSpace s)
lex ('\'':s) = do
(ch, '\'':t) <- lexLitChar s
guard (ch /= "'")
return ('\'':ch++"'", t)
lex ('"':s) = do
(str,t) <- lexString s
return ('"':str, t)
where
lexString ('"':s) = return ("\"",s)
lexString s = do
(ch,t) <- lexStrItem s
(str,u) <- lexString t
return (ch++str, u)
lexStrItem ('\\':'&':s) = return ("\\&",s)
lexStrItem ('\\':c:s) | isSpace c = do
('\\':t) <- return (dropWhile isSpace s)
return ("\\&",t)
lexStrItem s = lexLitChar s
lex (c:s) | isSingle c = return ([c],s)
| isSym c = do
(sym,t) <- return (span isSym s)
return (c:sym,t)
| isAlpha c = do
(nam,t) <- return (span isIdChar s)
return (c:nam, t)
| isDigit c = do
let
(pred, s', isDec) =
case s of
('o':rs) -> (isOctDigit, rs, False)
('O':rs) -> (isOctDigit, rs, False)
('x':rs) -> (isHexDigit, rs, False)
('X':rs) -> (isHexDigit, rs, False)
_ -> (isDigit, s, True)
(ds,s) <- return (span pred s')
(fe,t) <- lexFracExp isDec s
return (c:ds++fe,t)
| otherwise = mzero -- bad character
where
isSingle c = c `elem` ",;()[]{}_`"
isSym c = c `elem` "!@#$%&*+./<=>?\\^|:-~"
isIdChar c = isAlphaNum c || c `elem` "_'"
lexFracExp True ('.':cs) = do
(ds,t) <- lex0Digits cs
(e,u) <- lexExp t
return ('.':ds++e,u)
lexFracExp _ s = return ("",s)
lexExp (e:s) | e `elem` "eE" =
(do
(c:t) <- return s
guard (c `elem` "+-")
(ds,u) <- lexDecDigits t
return (e:c:ds,u)) ++
(do
(ds,t) <- lexDecDigits s
return (e:ds,t))
lexExp s = return ("",s)
lexDigits :: ReadS String
lexDigits = lexDecDigits
lexDecDigits :: ReadS String
lexDecDigits = nonnull isDigit
lexOctDigits :: ReadS String
lexOctDigits = nonnull isOctDigit
lexHexDigits :: ReadS String
lexHexDigits = nonnull isHexDigit
-- 0 or more digits
lex0Digits :: ReadS String
lex0Digits s = return (span isDigit s)
nonnull :: (Char -> Bool) -> ReadS String
nonnull p s = do
(cs@(_:_),t) <- return (span p s)
return (cs,t)
lexLitChar :: ReadS String
lexLitChar ('\\':s) = do
(esc,t) <- lexEsc s
return ('\\':esc, t)
where
lexEsc (c:s) | c `elem` escChars = return ([c],s)
lexEsc s@(d:_) | isDigit d = checkSize 10 lexDecDigits s
lexEsc ('o':d:s) | isOctDigit d = checkSize 8 lexOctDigits (d:s)
lexEsc ('O':d:s) | isOctDigit d = checkSize 8 lexOctDigits (d:s)
lexEsc ('x':d:s) | isHexDigit d = checkSize 16 lexHexDigits (d:s)
lexEsc ('X':d:s) | isHexDigit d = checkSize 16 lexHexDigits (d:s)
lexEsc ('^':c:s) | c >= '@' && c <= '_' = [(['^',c],s)] -- cf. cntrl in 2.6 of H. report.
lexEsc s@(c:_) | isUpper c = fromAsciiLab s
lexEsc _ = mzero
escChars = "abfnrtv\\\"'"
fromAsciiLab (x:y:z:ls) | isUpper y && (isUpper z || isDigit z) &&
[x,y,z] `elem` asciiEscTab = return ([x,y,z], ls)
fromAsciiLab (x:y:ls) | isUpper y &&
[x,y] `elem` asciiEscTab = return ([x,y], ls)
fromAsciiLab _ = mzero
asciiEscTab = "DEL" : asciiTab
{-
Check that the numerically escaped char literals are
within accepted boundaries.
Note: this allows char lits with leading zeros, i.e.,
\0000000000000000000000000000001.
-}
checkSize base f str = do
(num, res) <- f str
-- Note: this is assumes that a Char is 8 bits long.
if (toAnInt base num) > 255 then
mzero
else
case base of
8 -> return ('o':num, res)
16 -> return ('x':num, res)
_ -> return (num, res)
toAnInt base xs = foldl (\ acc n -> acc*base + n) 0 (map digitToInt xs)
lexLitChar (c:s) = return ([c],s)
lexLitChar "" = mzero
digitToInt :: Char -> Int
digitToInt c
| isDigit c = fromEnum c - fromEnum '0'
| c >= 'a' && c <= 'f' = fromEnum c - fromEnum 'a' + 10
| c >= 'A' && c <= 'F' = fromEnum c - fromEnum 'A' + 10
| otherwise = error ("Char.digitToInt: not a digit " ++ show c) -- sigh
\end{code}
%*********************************************************
%* *
\subsection{Instances of @Read@}
%* *
%*********************************************************
\begin{code}
instance Read Char where
readsPrec _ = readParen False
(\r -> do
('\'':s,t) <- lex r
(c,"\'") <- readLitChar s
return (c,t))
readList = readParen False (\r -> do
('"':s,t) <- lex r
(l,_) <- readl s
return (l,t))
where readl ('"':s) = return ("",s)
readl ('\\':'&':s) = readl s
readl s = do
(c,t) <- readLitChar s
(cs,u) <- readl t
return (c:cs,u)
instance Read Bool where
readsPrec _ = readParen False
(\r ->
lex r >>= \ lr ->
(do { ("True", rest) <- return lr ; return (True, rest) }) ++
(do { ("False", rest) <- return lr ; return (False, rest) }))
instance Read Ordering where
readsPrec _ = readParen False
(\r ->
lex r >>= \ lr ->
(do { ("LT", rest) <- return lr ; return (LT, rest) }) ++
(do { ("EQ", rest) <- return lr ; return (EQ, rest) }) ++
(do { ("GT", rest) <- return lr ; return (GT, rest) }))
instance Read a => Read (Maybe a) where
readsPrec _ = readParen False
(\r ->
lex r >>= \ lr ->
(do { ("Nothing", rest) <- return lr ; return (Nothing, rest)}) ++
(do
("Just", rest1) <- return lr
(x, rest2) <- reads rest1
return (Just x, rest2)))
instance (Read a, Read b) => Read (Either a b) where
readsPrec _ = readParen False
(\r ->
lex r >>= \ lr ->
(do
("Left", rest1) <- return lr
(x, rest2) <- reads rest1
return (Left x, rest2)) ++
(do
("Right", rest1) <- return lr
(x, rest2) <- reads rest1
return (Right x, rest2)))
instance Read Int where
readsPrec _ x = readSigned readDec x
instance Read Integer where
readsPrec _ x = readSigned readDec x
instance Read Float where
readsPrec _ x = readSigned readFloat x
instance Read Double where
readsPrec _ x = readSigned readFloat x
instance (Integral a, Read a) => Read (Ratio a) where
readsPrec p = readParen (p > ratio_prec)
(\r -> do
(x,s) <- reads r
("%",t) <- lex s
(y,u) <- reads t
return (x%y,u))
instance (Read a) => Read [a] where
readsPrec _ = readList
instance Read () where
readsPrec _ = readParen False
(\r -> do
("(",s) <- lex r
(")",t) <- lex s
return ((),t))
instance (Read a, Read b) => Read (a,b) where
readsPrec _ = readParen False
(\r -> do
("(",s) <- lex r
(x,t) <- readsPrec 0 s
(",",u) <- lex t
(y,v) <- readsPrec 0 u
(")",w) <- lex v
return ((x,y), w))
instance (Read a, Read b, Read c) => Read (a, b, c) where
readsPrec _ = readParen False
(\a -> do
("(",b) <- lex a
(x,c) <- readsPrec 0 b
(",",d) <- lex c
(y,e) <- readsPrec 0 d
(",",f) <- lex e
(z,g) <- readsPrec 0 f
(")",h) <- lex g
return ((x,y,z), h))
instance (Read a, Read b, Read c, Read d) => Read (a, b, c, d) where
readsPrec _ = readParen False
(\a -> do
("(",b) <- lex a
(w,c) <- readsPrec 0 b
(",",d) <- lex c
(x,e) <- readsPrec 0 d
(",",f) <- lex e
(y,g) <- readsPrec 0 f
(",",h) <- lex g
(z,h) <- readsPrec 0 h
(")",i) <- lex h
return ((w,x,y,z), i))
instance (Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) where
readsPrec _ = readParen False
(\a -> do
("(",b) <- lex a
(v,c) <- readsPrec 0 b
(",",d) <- lex c
(w,e) <- readsPrec 0 d
(",",f) <- lex e
(x,g) <- readsPrec 0 f
(",",h) <- lex g
(y,i) <- readsPrec 0 h
(",",j) <- lex i
(z,k) <- readsPrec 0 j
(")",l) <- lex k
return ((v,w,x,y,z), l))
\end{code}
%*********************************************************
%* *
\subsection{Reading characters}
%* *
%*********************************************************
\begin{code}
readLitChar :: ReadS Char
readLitChar [] = mzero
readLitChar ('\\':s) = readEsc s
where
readEsc ('a':s) = return ('\a',s)
readEsc ('b':s) = return ('\b',s)
readEsc ('f':s) = return ('\f',s)
readEsc ('n':s) = return ('\n',s)
readEsc ('r':s) = return ('\r',s)
readEsc ('t':s) = return ('\t',s)
readEsc ('v':s) = return ('\v',s)
readEsc ('\\':s) = return ('\\',s)
readEsc ('"':s) = return ('"',s)
readEsc ('\'':s) = return ('\'',s)
readEsc ('^':c:s) | c >= '@' && c <= '_'
= return (chr (ord c - ord '@'), s)
readEsc s@(d:_) | isDigit d
= do
(n,t) <- readDec s
return (chr n,t)
readEsc ('o':s) = do
(n,t) <- readOct s
return (chr n,t)
readEsc ('x':s) = do
(n,t) <- readHex s
return (chr n,t)
readEsc s@(c:_) | isUpper c
= let table = ('\DEL', "DEL") : zip ['\NUL'..] asciiTab
in case [(c,s') | (c, mne) <- table,
([],s') <- [match mne s]]
of (pr:_) -> return pr
[] -> mzero
readEsc _ = mzero
readLitChar (c:s) = return (c,s)
match :: (Eq a) => [a] -> [a] -> ([a],[a])
match (x:xs) (y:ys) | x == y = match xs ys
match xs ys = (xs,ys)
\end{code}
%*********************************************************
%* *
\subsection{Reading numbers}
%* *
%*********************************************************
Note: reading numbers at bases different than 10, does not
include lexing common prefixes such as '0x' or '0o' etc.
\begin{code}
{-# SPECIALISE readDec ::
ReadS Int,
ReadS Integer #-}
readDec :: (Integral a) => ReadS a
readDec = readInt 10 isDigit (\d -> ord d - ord_0)
{-# SPECIALISE readOct ::
ReadS Int,
ReadS Integer #-}
readOct :: (Integral a) => ReadS a
readOct = readInt 8 isOctDigit (\d -> ord d - ord_0)
{-# SPECIALISE readHex ::
ReadS Int,
ReadS Integer #-}
readHex :: (Integral a) => ReadS a
readHex = readInt 16 isHexDigit hex
where hex d = ord d - (if isDigit d then ord_0
else ord (if isUpper d then 'A' else 'a') - 10)
readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a
readInt radix isDig digToInt s = do
(ds,r) <- nonnull isDig s
return (foldl1 (\n d -> n * radix + d) (map (fromInt . digToInt) ds), r)
{-# SPECIALISE readSigned ::
ReadS Int -> ReadS Int,
ReadS Integer -> ReadS Integer,
ReadS Double -> ReadS Double #-}
readSigned :: (Real a) => ReadS a -> ReadS a
readSigned readPos = readParen False read'
where read' r = read'' r ++
(do
("-",s) <- lex r
(x,t) <- read'' s
return (-x,t))
read'' r = do
(str,s) <- lex r
(n,"") <- readPos str
return (n,s)
\end{code}
The functions readFloat below uses rational arithmetic
to ensure correct conversion between the floating-point radix and
decimal. It is often possible to use a higher-precision floating-
point type to obtain the same results.
\begin{code}
{-# SPECIALISE readFloat ::
ReadS Double,
ReadS Float #-}
readFloat :: (RealFloat a) => ReadS a
readFloat r = do
(x,t) <- readRational r
return (fromRational x,t)
readRational :: ReadS Rational -- NB: doesn't handle leading "-"
readRational r =
(do
(n,d,s) <- readFix r
(k,t) <- readExp s
return ((n%1)*10^^(k-d), t )) ++
(do
("NaN",t) <- lex r
return (0/0,t) ) ++
(do
("Infinity",t) <- lex r
return (1/0,t) )
where
readFix r = do
(ds,s) <- lexDecDigits r
(ds',t) <- lexDotDigits s
return (read (ds++ds'), length ds', t)
readExp (e:s) | e `elem` "eE" = readExp' s
readExp s = return (0,s)
readExp' ('+':s) = readDec s
readExp' ('-':s) = do
(k,t) <- readDec s
return (-k,t)
readExp' s = readDec s
lexDotDigits ('.':s) = lex0Digits s
lexDotDigits s = return ("",s)
readRational__ :: String -> Rational -- we export this one (non-std)
-- NB: *does* handle a leading "-"
readRational__ top_s
= case top_s of
'-' : xs -> - (read_me xs)
xs -> read_me xs
where
read_me s
= case (do { (x,t) <- readRational s ; ("","") <- lex t ; return x }) of
#ifndef NEW_READS_REP
[x] -> x
[] -> error ("readRational__: no parse:" ++ top_s)
_ -> error ("readRational__: ambiguous parse:" ++ top_s)
#else
Just x -> x
Nothing -> error ("readRational__: no parse:" ++ top_s)
#endif
\end{code}
|