1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
<Chapter id="bugs-and-infelicities">
<title>Known bugs and infelicities</title>
<sect1 id="vs-Haskell-defn">
<title>Haskell 98 vs. Glasgow Haskell: language non-compliance
</title>
<indexterm><primary>GHC vs the Haskell 98 language</primary></indexterm>
<indexterm><primary>Haskell 98 language vs GHC</primary></indexterm>
<para>This section lists Glasgow Haskell infelicities in its
implementation of Haskell 98. See also the “when things
go wrong” section (<XRef LinkEnd="wrong">) for information
about crashes, space leaks, and other undesirable phenomena.</para>
<para>The limitations here are listed in Haskell Report order
(roughly).</para>
<sect2 id="haskell98-divergence">
<title>Divergence from Haskell 98</title>
<sect3 id="infelicities-lexical">
<title>Lexical syntax</title>
<itemizedlist>
<listitem>
<para>The Haskell report specifies that programs may be
written using Unicode. GHC only accepts the ISO-8859-1
character set at the moment.</para>
</listitem>
<listitem>
<para>Certain lexical rules regarding qualified identifiers
are slightly different in GHC compared to the Haskell
report. When you have
<replaceable>module</replaceable><literal>.</literal><replaceable>reservedop</replaceable>,
such as <literal>M.\</literal>, GHC will interpret it as a
single qualified operator rather than the two lexemes
<literal>M</literal> and <literal>.\</literal>.</para>
</listitem>
</itemizedlist>
</sect3>
<sect3 id="infelicities-syntax">
<title>Context-free syntax</title>
<itemizedlist>
<listitem>
<para>GHC doesn't do fixity resolution in expressions during
parsing. For example, according to the Haskell report, the
following expression is legal Haskell:
<programlisting>
let x = 42 in x == 42 == True</programlisting>
and parses as:
<programlisting>
(let x = 42 in x == 42) == True</programlisting>
because according to the report, the <literal>let</literal>
expression <quote>extends as far to the right as
possible</quote>. Since it can't extend past the second
equals sign without causing a parse error
(<literal>==</literal> is non-fix), the
<literal>let</literal>-expression must terminate there. GHC
simply gobbles up the whole expression, parsing like this:
<programlisting>
(let x = 42 in x == 42 == True)</programlisting>
The Haskell report is arguably wrong here, but nevertheless
it's a difference between GHC & Haskell 98.</para>
</listitem>
</itemizedlist>
</sect3>
<sect3 id="infelicities-exprs-pats">
<title>Expressions and patterns</title>
<para>None known.</para>
</sect3>
<sect3 id="infelicities-decls">
<title>Declarations and bindings</title>
<para>None known.</para>
</sect3>
<sect3 id="infelicities-Modules">
<title>Module system and interface files</title>
<para>None known.</para>
</sect3>
<sect3 id="infelicities-numbers">
<title>Numbers, basic types, and built-in classes</title>
<variablelist>
<varlistentry>
<term>Multiply-defined array elements—not checked:</term>
<listitem>
<para>This code fragment <emphasis>should</emphasis>
elicit a fatal error, but it does not:
<programlisting>
main = print (array (1,1) [(1,2), (1,3)])</programlisting>
</para>
</listitem>
</varlistentry>
</variablelist>
</sect3>
<sect3 id="infelicities-Prelude">
<title>In <literal>Prelude</literal> support</title>
<variablelist>
<varlistentry>
<term>The <literal>Char</literal> type</term>
<indexterm><primary><literal>Char</literal></primary><secondary>size
of</secondary></indexterm>
<listitem>
<para>The Haskell report says that the
<literal>Char</literal> type holds 16 bits. GHC follows
the ISO-10646 standard a little more closely:
<literal>maxBound :: Char</literal> in GHC is
<literal>0x10FFFF</literal>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Arbitrary-sized tuples</term>
<listitem>
<para>Tuples are currently limited to size 100. HOWEVER:
standard instances for tuples (<literal>Eq</literal>,
<literal>Ord</literal>, <literal>Bounded</literal>,
<literal>Ix</literal> <literal>Read</literal>, and
<literal>Show</literal>) are available
<emphasis>only</emphasis> up to 16-tuples.</para>
<para>This limitation is easily subvertible, so please ask
if you get stuck on it.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><literal>Read</literal>ing integers</term>
<listitem>
<para>GHC's implementation of the
<literal>Read</literal> class for integral types accepts
hexadeciaml and octal literals (the code in the Haskell
98 report doesn't). So, for example,
<programlisting>read "0xf00" :: Int</programlisting>
works in GHC.</para>
<para>A possible reason for this is that <literal>readLitChar</literal> accepts hex and
octal escapes, so it seems inconsistent not to do so for integers too.</para>
</listitem>
</varlistentry>
</variablelist>
</sect3>
</sect2>
<sect2 id="haskell98-undefined">
<title>GHC's interpretation of undefined behaviour in
Haskell 98</title>
<para>This section documents GHC's take on various issues that are
left undefined or implementation specific in Haskell 98.</para>
<variablelist>
<varlistentry>
<term>Sized integral types</term>
<indexterm><primary><literal>Int</literal></primary><secondary>size of</secondary>
</indexterm>
<listitem>
<para>In GHC the <literal>Int</literal> type follows the
size of an address on the host architecture; in other words
it holds 32 bits on a 32-bit machine, and 64-bits on a
64-bit machine.</para>
<para>Arithmetic on <literal>Int</literal> is unchecked for
overflow<indexterm><primary>overflow</primary><secondary><literal>Int</literal></secondary>
</indexterm>, so all operations on <literal>Int</literal> happen
modulo
2<superscript><replaceable>n</replaceable></superscript>
where <replaceable>n</replaceable> is the size in bits of
the <literal>Int</literal> type.</para>
<para>The <literal>fromInteger</literal><indexterm><primary><literal>fromInteger</literal></primary>
</indexterm>function (and hence
also <literal>fromIntegral</literal><indexterm><primary><literal>fromIntegral</literal></primary>
</indexterm>) is a special case when
converting to <literal>Int</literal>. The value of
<literal>fromIntegral x :: Int</literal> is given by taking
the lower <replaceable>n</replaceable> bits of <literal>(abs
x)</literal>, multiplied by the sign of <literal>x</literal>
(in 2's complement <replaceable>n</replaceable>-bit
arithmetic). This behaviour was chosen so that for example
writing <literal>0xffffffff :: Int</literal> preserves the
bit-pattern in the resulting <literal>Int</literal>.</para>
<para>Negative literals, such as <literal>-3</literal>, are
specified by (a careful reading of) the Haskell Report as
meaning <literal>Prelude.negate (Prelude.fromInteger 3)</literal>.
So <literal>-2147483648</literal> means <literal>negate (fromInteger 2147483648)</literal>.
Since <literal>fromInteger</literal> takes the lower 32 bits of the representation,
<literal>fromInteger (2147483648::Integer)</literal>, computed at type <literal>Int</literal> is
<literal>-2147483648::Int</literal>. The <literal>negate</literal> operation then
overflows, but it is unchecked, so <literal>negate (-2147483648::Int)</literal> is just
<literal>-2147483648</literal>. In short, one can write <literal>minBound::Int</literal> as
a literal with the expected meaning (but that is not in general guaranteed.
</para>
<para>The <literal>fromIntegral</literal> function also
preserves bit-patterns when converting between the sized
integral types (<literal>Int8</literal>,
<literal>Int16</literal>, <literal>Int32</literal>,
<literal>Int64</literal> and the unsigned
<literal>Word</literal> variants), see the modules
<literal>Data.Int</literal> and <literal>Data.Word</literal>
in the library documentation.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Unchecked float arithmetic</term>
<listitem>
<para>Operations on <literal>Float</literal> and
<literal>Double</literal> numbers are
<emphasis>unchecked</emphasis> for overflow, underflow, and
other sad occurrences. (note, however that some
architectures trap floating-point overflow and
loss-of-precision and report a floating-point exception,
probably terminating the
program)<indexterm><primary>floating-point
exceptions</primary></indexterm>.</para>
</listitem>
</varlistentry>
</variablelist>
</sect2>
</sect1>
<sect1 id="bugs">
<title>Known bugs or infelicities</title>
<para>In addition to the divergences from the Haskell 98 standard
listed above, GHC has the following known bugs or
infelicities.</para>
<itemizedlist>
<listitem>
<para> GHC can warn about non-exhaustive or overlapping
patterns (see <xref linkend="options-sanity">, and usually
does so correctly. But not always. It gets confused by
string patterns, and by guards, and can then emit bogus
warnings. The entire overlap-check code needs an overhaul
really.</para>
</listitem>
<listitem>
<para>Dangers with multiple <literal>Main</literal>
modules.</para>
<para>GHC does not insist that module <literal>Main</literal>
lives in a file called <filename>Main.hs</filename>. This is
useful if you want multiple versions of
<literal>Main</literal>. But there's a danger: when compiling
module <literal>Main</literal> (regardless of what file it
comes from), GHC looks for the interface
<filename>Main.hi</filename>; it uses this to get version
information from the last time it recompiled
<literal>Main</literal>. The trouble is that this
<filename>Main.hi</filename> may not correspond to the source
file being compiled.</para>
<para>Solution: remove <filename>Main.hi</filename> first. A
better solution would be for GHC to record the source-file
filename in the interface file, or even an MD5 checksum.
</para>
</listitem>
<listitem>
<para>GHC does not allow you to have a data type with a context
that mentions type variables that are not data type parameters.
For example:
<programlisting>
data C a b => T a = MkT a
</programlisting>
so that <literal>MkT</literal>'s type is
<programlisting>
MkT :: forall a b. C a b => a -> T a
</programlisting>
In principle, with a suitable class declaration with a functional dependency,
it's possible that this type is not ambiguous; but GHC nevertheless rejects
it. The type variables mentioned in the context of the data type declaration must
be among the type parameters of the data type.</para>
</listitem>
<listitem>
<para>GHCi does not respect the <literal>default</literal>
declaration in the module whose scope you are in. Instead,
for expressions typed at the command line, you always get the
default default-type behaviour; that is,
<literal>default(Int,Double)</literal>.</para>
<para>It would be better for GHCi to record what the default
settings in each module are, and use those of the 'current'
module (whatever that is).</para>
</listitem>
<listitem>
<para>GHCi does not keep careful track of what instance
declarations are 'in scope' if they come from other packages.
Instead, all instance declarations that GHC has seen in other
packages are all in scope everywhere, whether or not the
module from that package is used by the command-line
expression.</para>
</listitem>
<listitem>
<para>GHC's inliner can be persuaded into non-termination
using the standard way to encode recursion via a data type:</para>
<programlisting>
data U = MkU (U -> Bool)
russel :: U -> Bool
russel u@(MkU p) = not $ p u
x :: Bool
x = russel (MkU russel)
</programlisting>
<para>We have never found another class of programs, other
than this contrived one, that makes GHC diverge, and fixing
the problem would impose an extra overhead on every
compilation. So the bug remains un-fixed. There is more
background in <ulink
url="http://research.microsoft.com/~simonpj/Papers/inlining">
Secrets of the GHC inliner</ulink>.</para>
</listitem>
</itemizedlist>
</sect1>
</chapter>
<!-- Emacs stuff:
;;; Local Variables: ***
;;; mode: sgml ***
;;; sgml-parent-document: ("users_guide.sgml" "book" "chapter" "sect1") ***
;;; End: ***
-->
|