1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
|
%
% (c) The AQUA Project, Glasgow University, 1993-1998
%
\begin{code}
module StixPrim ( primCode, amodeToStix, amodeToStix' ) where
#include "HsVersions.h"
import MachMisc
import Stix
import StixInteger
import AbsCSyn hiding ( spRel )
import AbsCUtils ( getAmodeRep, mixedTypeLocn )
import SMRep ( fixedHdrSize )
import Literal ( Literal(..), word2IntLit )
import PrimOp ( PrimOp(..), CCall(..), CCallTarget(..) )
import PrimRep ( PrimRep(..) )
import UniqSupply ( returnUs, thenUs, getUniqueUs, UniqSM )
import Constants ( mIN_INTLIKE, mIN_CHARLIKE, uF_UPDATEE, bLOCK_SIZE,
rESERVED_STACK_WORDS )
import CLabel ( mkIntlikeClosureLabel, mkCharlikeClosureLabel,
mkMAP_FROZEN_infoLabel, mkForeignLabel )
import CallConv ( cCallConv )
import Outputable
import FastTypes
#include "NCG.h"
\end{code}
The main honcho here is primCode, which handles the guts of COpStmts.
\begin{code}
primCode
:: [CAddrMode] -- results
-> PrimOp -- op
-> [CAddrMode] -- args
-> UniqSM StixTreeList
\end{code}
First, the dreaded @ccall@. We can't handle @casm@s.
Usually, this compiles to an assignment, but when the left-hand side
is empty, we just perform the call and ignore the result.
btw Why not let programmer use casm to provide assembly code instead
of C code? ADR
The (MP) integer operations are a true nightmare. Since we don't have
a convenient abstract way of allocating temporary variables on the (C)
stack, we use the space just below HpLim for the @MP_INT@ structures,
and modify our heap check accordingly.
\begin{code}
-- NB: ordering of clauses somewhere driven by
-- the desire to getting sane patt-matching behavior
primCode [res] IntegerCmpOp args@[sa1,da1, sa2,da2]
= gmpCompare res (sa1,da1, sa2,da2)
primCode [res] IntegerCmpIntOp args@[sa1,da1,ai]
= gmpCompareInt res (sa1,da1,ai)
primCode [res] Integer2IntOp arg@[sa,da]
= gmpInteger2Int res (sa,da)
primCode [res] Integer2WordOp arg@[sa,da]
= gmpInteger2Word res (sa,da)
primCode [res] Int2AddrOp [arg]
= simpleCoercion AddrRep res arg
primCode [res] Addr2IntOp [arg]
= simpleCoercion IntRep res arg
primCode [res] Int2WordOp [arg]
= simpleCoercion IntRep{-WordRep?-} res arg
primCode [res] Word2IntOp [arg]
= simpleCoercion IntRep res arg
primCode [res] AddrToHValueOp [arg]
= simpleCoercion PtrRep res arg
\end{code}
\begin{code}
primCode [res] SameMutableArrayOp args
= let
compare = StPrim AddrEqOp (map amodeToStix args)
assign = StAssign IntRep (amodeToStix res) compare
in
returnUs (\xs -> assign : xs)
primCode res@[_] SameMutableByteArrayOp args
= primCode res SameMutableArrayOp args
primCode res@[_] SameMutVarOp args
= primCode res SameMutableArrayOp args
primCode res@[_] SameMVarOp args
= primCode res SameMutableArrayOp args
\end{code}
Freezing an array of pointers is a double assignment. We fix the
header of the ``new'' closure because the lhs is probably a better
addressing mode for the indirection (most likely, it's a VanillaReg).
\begin{code}
primCode [lhs] UnsafeFreezeArrayOp [rhs]
= let
lhs' = amodeToStix lhs
rhs' = amodeToStix rhs
header = StInd PtrRep lhs'
assign = StAssign PtrRep lhs' rhs'
freeze = StAssign PtrRep header mutArrPtrsFrozen_info
in
returnUs (\xs -> assign : freeze : xs)
primCode [lhs] UnsafeFreezeByteArrayOp [rhs]
= simpleCoercion PtrRep lhs rhs
\end{code}
Returning the size of (mutable) byte arrays is just
an indexing operation.
\begin{code}
primCode [lhs] SizeofByteArrayOp [rhs]
= let
lhs' = amodeToStix lhs
rhs' = amodeToStix rhs
sz = StIndex IntRep rhs' fixedHS
assign = StAssign IntRep lhs' (StInd IntRep sz)
in
returnUs (\xs -> assign : xs)
primCode [lhs] SizeofMutableByteArrayOp [rhs]
= let
lhs' = amodeToStix lhs
rhs' = amodeToStix rhs
sz = StIndex IntRep rhs' fixedHS
assign = StAssign IntRep lhs' (StInd IntRep sz)
in
returnUs (\xs -> assign : xs)
\end{code}
Most other array primitives translate to simple indexing.
\begin{code}
primCode lhs@[_] IndexArrayOp args
= primCode lhs ReadArrayOp args
primCode [lhs] ReadArrayOp [obj, ix]
= let
lhs' = amodeToStix lhs
obj' = amodeToStix obj
ix' = amodeToStix ix
base = StIndex IntRep obj' arrPtrsHS
assign = StAssign PtrRep lhs' (StInd PtrRep (StIndex PtrRep base ix'))
in
returnUs (\xs -> assign : xs)
primCode [] WriteArrayOp [obj, ix, v]
= let
obj' = amodeToStix obj
ix' = amodeToStix ix
v' = amodeToStix v
base = StIndex IntRep obj' arrPtrsHS
assign = StAssign PtrRep (StInd PtrRep (StIndex PtrRep base ix')) v'
in
returnUs (\xs -> assign : xs)
primCode [] WriteForeignObjOp [obj, v]
= let
obj' = amodeToStix obj
v' = amodeToStix v
obj'' = StIndex AddrRep obj' (StInt 4711) -- fixedHS
assign = StAssign AddrRep (StInd AddrRep obj'') v'
in
returnUs (\xs -> assign : xs)
-- NB: indexing in "pk" units, *not* in bytes (WDP 95/09)
primCode ls IndexByteArrayOp_Char rs = primCode_ReadByteArrayOp Int8Rep ls rs
primCode ls IndexByteArrayOp_Int rs = primCode_ReadByteArrayOp IntRep ls rs
primCode ls IndexByteArrayOp_Word rs = primCode_ReadByteArrayOp WordRep ls rs
primCode ls IndexByteArrayOp_Addr rs = primCode_ReadByteArrayOp AddrRep ls rs
primCode ls IndexByteArrayOp_Float rs = primCode_ReadByteArrayOp FloatRep ls rs
primCode ls IndexByteArrayOp_Double rs = primCode_ReadByteArrayOp DoubleRep ls rs
primCode ls IndexByteArrayOp_StablePtr rs = primCode_ReadByteArrayOp StablePtrRep ls rs
primCode ls IndexByteArrayOp_Int64 rs = primCode_ReadByteArrayOp Int64Rep ls rs
primCode ls IndexByteArrayOp_Word64 rs = primCode_ReadByteArrayOp Word64Rep ls rs
primCode ls ReadByteArrayOp_Char rs = primCode_ReadByteArrayOp Int8Rep ls rs
primCode ls ReadByteArrayOp_Int rs = primCode_ReadByteArrayOp IntRep ls rs
primCode ls ReadByteArrayOp_Word rs = primCode_ReadByteArrayOp WordRep ls rs
primCode ls ReadByteArrayOp_Addr rs = primCode_ReadByteArrayOp AddrRep ls rs
primCode ls ReadByteArrayOp_Float rs = primCode_ReadByteArrayOp FloatRep ls rs
primCode ls ReadByteArrayOp_Double rs = primCode_ReadByteArrayOp DoubleRep ls rs
primCode ls ReadByteArrayOp_StablePtr rs = primCode_ReadByteArrayOp StablePtrRep ls rs
primCode ls ReadByteArrayOp_Int64 rs = primCode_ReadByteArrayOp Int64Rep ls rs
primCode ls ReadByteArrayOp_Word64 rs = primCode_ReadByteArrayOp Word64Rep ls rs
primCode ls ReadOffAddrOp_Char rs = primCode_IndexOffAddrOp Int8Rep ls rs
primCode ls ReadOffAddrOp_Int rs = primCode_IndexOffAddrOp IntRep ls rs
primCode ls ReadOffAddrOp_Word rs = primCode_IndexOffAddrOp WordRep ls rs
primCode ls ReadOffAddrOp_Addr rs = primCode_IndexOffAddrOp AddrRep ls rs
primCode ls ReadOffAddrOp_Float rs = primCode_IndexOffAddrOp FloatRep ls rs
primCode ls ReadOffAddrOp_Double rs = primCode_IndexOffAddrOp DoubleRep ls rs
primCode ls ReadOffAddrOp_StablePtr rs = primCode_IndexOffAddrOp StablePtrRep ls rs
primCode ls ReadOffAddrOp_Int64 rs = primCode_IndexOffAddrOp Int64Rep ls rs
primCode ls ReadOffAddrOp_Word64 rs = primCode_IndexOffAddrOp Word64Rep ls rs
primCode ls IndexOffAddrOp_Char rs = primCode_IndexOffAddrOp Int8Rep ls rs
primCode ls IndexOffAddrOp_Int rs = primCode_IndexOffAddrOp IntRep ls rs
primCode ls IndexOffAddrOp_Word rs = primCode_IndexOffAddrOp WordRep ls rs
primCode ls IndexOffAddrOp_Addr rs = primCode_IndexOffAddrOp AddrRep ls rs
primCode ls IndexOffAddrOp_Float rs = primCode_IndexOffAddrOp FloatRep ls rs
primCode ls IndexOffAddrOp_Double rs = primCode_IndexOffAddrOp DoubleRep ls rs
primCode ls IndexOffAddrOp_StablePtr rs = primCode_IndexOffAddrOp StablePtrRep ls rs
primCode ls IndexOffAddrOp_Int64 rs = primCode_IndexOffAddrOp Int64Rep ls rs
primCode ls IndexOffAddrOp_Word64 rs = primCode_IndexOffAddrOp Word64Rep ls rs
primCode ls IndexOffForeignObjOp_Char rs = primCode_IndexOffForeignObjOp Int8Rep ls rs
primCode ls IndexOffForeignObjOp_Int rs = primCode_IndexOffForeignObjOp IntRep ls rs
primCode ls IndexOffForeignObjOp_Word rs = primCode_IndexOffForeignObjOp WordRep ls rs
primCode ls IndexOffForeignObjOp_Addr rs = primCode_IndexOffForeignObjOp AddrRep ls rs
primCode ls IndexOffForeignObjOp_Float rs = primCode_IndexOffForeignObjOp FloatRep ls rs
primCode ls IndexOffForeignObjOp_Double rs = primCode_IndexOffForeignObjOp DoubleRep ls rs
primCode ls IndexOffForeignObjOp_StablePtr rs = primCode_IndexOffForeignObjOp StablePtrRep ls rs
primCode ls IndexOffForeignObjOp_Int64 rs = primCode_IndexOffForeignObjOp Int64Rep ls rs
primCode ls IndexOffForeignObjOp_Word64 rs = primCode_IndexOffForeignObjOp Word64Rep ls rs
primCode ls WriteOffAddrOp_Char rs = primCode_WriteOffAddrOp Int8Rep ls rs
primCode ls WriteOffAddrOp_Int rs = primCode_WriteOffAddrOp IntRep ls rs
primCode ls WriteOffAddrOp_Word rs = primCode_WriteOffAddrOp WordRep ls rs
primCode ls WriteOffAddrOp_Addr rs = primCode_WriteOffAddrOp AddrRep ls rs
primCode ls WriteOffAddrOp_Float rs = primCode_WriteOffAddrOp FloatRep ls rs
primCode ls WriteOffAddrOp_Double rs = primCode_WriteOffAddrOp DoubleRep ls rs
primCode ls WriteOffAddrOp_StablePtr rs = primCode_WriteOffAddrOp StablePtrRep ls rs
primCode ls WriteOffAddrOp_Int64 rs = primCode_WriteOffAddrOp Int64Rep ls rs
primCode ls WriteOffAddrOp_Word64 rs = primCode_WriteOffAddrOp Word64Rep ls rs
primCode ls WriteByteArrayOp_Char rs = primCode_WriteByteArrayOp Int8Rep ls rs
primCode ls WriteByteArrayOp_Int rs = primCode_WriteByteArrayOp IntRep ls rs
primCode ls WriteByteArrayOp_Word rs = primCode_WriteByteArrayOp WordRep ls rs
primCode ls WriteByteArrayOp_Addr rs = primCode_WriteByteArrayOp AddrRep ls rs
primCode ls WriteByteArrayOp_Float rs = primCode_WriteByteArrayOp FloatRep ls rs
primCode ls WriteByteArrayOp_Double rs = primCode_WriteByteArrayOp DoubleRep ls rs
primCode ls WriteByteArrayOp_StablePtr rs = primCode_WriteByteArrayOp StablePtrRep ls rs
primCode ls WriteByteArrayOp_Int64 rs = primCode_WriteByteArrayOp Int64Rep ls rs
primCode ls WriteByteArrayOp_Word64 rs = primCode_WriteByteArrayOp Word64Rep ls rs
\end{code}
ToDo: saving/restoring of volatile regs around ccalls.
JRS, 001113: always do the call of suspendThread and resumeThread as a ccall
rather than inheriting the calling convention of the thing which we're really
calling.
\begin{code}
primCode lhs (CCallOp (CCall (StaticTarget fn) is_asm may_gc cconv)) rhs
| is_asm = error "ERROR: Native code generator can't handle casm"
| not may_gc = returnUs (\xs -> ccall : xs)
| otherwise =
save_thread_state `thenUs` \ save ->
load_thread_state `thenUs` \ load ->
getUniqueUs `thenUs` \ uniq ->
let
id = StReg (StixTemp uniq IntRep)
suspend = StAssign IntRep id
(StCall SLIT("suspendThread") {-no:cconv-} cCallConv
IntRep [stgBaseReg])
resume = StCall SLIT("resumeThread") {-no:cconv-} cCallConv
VoidRep [id]
in
returnUs (\xs -> save (suspend : ccall : resume : load xs))
where
args = map amodeCodeForCCall rhs
amodeCodeForCCall x =
let base = amodeToStix' x
in
case getAmodeRep x of
ArrayRep -> StIndex PtrRep base arrPtrsHS
ByteArrayRep -> StIndex IntRep base arrWordsHS
ForeignObjRep -> StInd PtrRep (StIndex PtrRep base fixedHS)
_ -> base
ccall = case lhs of
[] -> StCall fn cconv VoidRep args
[lhs] ->
let lhs' = amodeToStix lhs
pk = case getAmodeRep lhs of
FloatRep -> FloatRep
DoubleRep -> DoubleRep
other -> IntRep
in
StAssign pk lhs' (StCall fn cconv pk args)
\end{code}
DataToTagOp won't work for 64-bit archs, as it is.
\begin{code}
primCode [lhs] DataToTagOp [arg]
= let lhs' = amodeToStix lhs
arg' = amodeToStix arg
infoptr = StInd PtrRep arg'
word_32 = StInd WordRep (StIndex PtrRep infoptr (StInt (-1)))
masked_le32 = StPrim SrlOp [word_32, StInt 16]
masked_be32 = StPrim AndOp [word_32, StInt 65535]
#ifdef WORDS_BIGENDIAN
masked = masked_be32
#else
masked = masked_le32
#endif
assign = StAssign IntRep lhs' masked
in
returnUs (\xs -> assign : xs)
\end{code}
MutVars are pretty simple.
#define writeMutVarzh(a,v) (P_)(((StgMutVar *)(a))->var)=(v)
\begin{code}
primCode [] WriteMutVarOp [aa,vv]
= let aa_s = amodeToStix aa
vv_s = amodeToStix vv
var_field = StIndex PtrRep aa_s fixedHS
assign = StAssign PtrRep (StInd PtrRep var_field) vv_s
in
returnUs (\xs -> assign : xs)
primCode [rr] ReadMutVarOp [aa]
= let aa_s = amodeToStix aa
rr_s = amodeToStix rr
var_field = StIndex PtrRep aa_s fixedHS
assign = StAssign PtrRep rr_s (StInd PtrRep var_field)
in
returnUs (\xs -> assign : xs)
\end{code}
ForeignObj# primops.
\begin{code}
primCode [rr] ForeignObjToAddrOp [fo]
= let code = StAssign AddrRep (amodeToStix rr)
(StInd AddrRep
(StIndex PtrRep (amodeToStix fo) fixedHS))
in
returnUs (\xs -> code : xs)
primCode [] TouchOp [_] = returnUs id
\end{code}
Now the more mundane operations.
\begin{code}
primCode lhs op rhs
= let
lhs' = map amodeToStix lhs
rhs' = map amodeToStix' rhs
pk = getAmodeRep (head lhs)
in
returnUs (\ xs -> simplePrim pk lhs' op rhs' : xs)
\end{code}
Helper fns for some array ops.
\begin{code}
primCode_ReadByteArrayOp pk [lhs] [obj, ix]
= let
lhs' = amodeToStix lhs
obj' = amodeToStix obj
ix' = amodeToStix ix
base = StIndex IntRep obj' arrWordsHS
assign = StAssign pk lhs' (StInd pk (StIndex pk base ix'))
in
returnUs (\xs -> assign : xs)
primCode_IndexOffAddrOp pk [lhs] [obj, ix]
= let
lhs' = amodeToStix lhs
obj' = amodeToStix obj
ix' = amodeToStix ix
assign = StAssign pk lhs' (StInd pk (StIndex pk obj' ix'))
in
returnUs (\xs -> assign : xs)
primCode_IndexOffForeignObjOp pk [lhs] [obj, ix]
= let
lhs' = amodeToStix lhs
obj' = amodeToStix obj
ix' = amodeToStix ix
obj'' = StIndex AddrRep obj' fixedHS
assign = StAssign pk lhs' (StInd pk (StIndex pk obj'' ix'))
in
returnUs (\xs -> assign : xs)
primCode_WriteOffAddrOp pk [] [obj, ix, v]
= let
obj' = amodeToStix obj
ix' = amodeToStix ix
v' = amodeToStix v
assign = StAssign pk (StInd pk (StIndex pk obj' ix')) v'
in
returnUs (\xs -> assign : xs)
primCode_WriteByteArrayOp pk [] [obj, ix, v]
= let
obj' = amodeToStix obj
ix' = amodeToStix ix
v' = amodeToStix v
base = StIndex IntRep obj' arrWordsHS
assign = StAssign pk (StInd pk (StIndex pk base ix')) v'
in
returnUs (\xs -> assign : xs)
\end{code}
\begin{code}
simpleCoercion
:: PrimRep
-> CAddrMode
-> CAddrMode
-> UniqSM StixTreeList
simpleCoercion pk lhs rhs
= returnUs (\xs -> StAssign pk (amodeToStix lhs) (amodeToStix rhs) : xs)
\end{code}
Here we try to rewrite primitives into a form the code generator can
understand. Any primitives not handled here must be handled at the
level of the specific code generator.
\begin{code}
simplePrim
:: PrimRep -- Rep of first destination
-> [StixTree] -- Destinations
-> PrimOp
-> [StixTree]
-> StixTree
\end{code}
Now look for something more conventional.
\begin{code}
simplePrim pk [lhs] op rest = StAssign pk lhs (StPrim op rest)
simplePrim pk as op bs = simplePrim_error op
simplePrim_error op
= error ("ERROR: primitive operation `"++show op++"'cannot be handled\nby the native-code generator. Workaround: use -fvia-C.\n(Perhaps you should report it as a GHC bug, also.)\n")
\end{code}
%---------------------------------------------------------------------
Here we generate the Stix code for CAddrModes.
When a character is fetched from a mixed type location, we have to do
an extra cast. This is reflected in amodeCode', which is for rhs
amodes that might possibly need the extra cast.
\begin{code}
amodeToStix, amodeToStix' :: CAddrMode -> StixTree
amodeToStix'{-'-} am@(CVal rr CharRep)
| mixedTypeLocn am = StPrim ChrOp [amodeToStix am]
| otherwise = amodeToStix am
amodeToStix' am = amodeToStix am
-----------
amodeToStix am@(CVal rr CharRep)
| mixedTypeLocn am
= StInd IntRep (amodeToStix (CAddr rr))
amodeToStix (CVal rr pk) = StInd pk (amodeToStix (CAddr rr))
amodeToStix (CAddr (SpRel off))
= StIndex PtrRep stgSp (StInt (toInteger (iBox off)))
amodeToStix (CAddr (HpRel off))
= StIndex IntRep stgHp (StInt (toInteger (- (iBox off))))
amodeToStix (CAddr (NodeRel off))
= StIndex IntRep stgNode (StInt (toInteger (iBox off)))
amodeToStix (CAddr (CIndex base off pk))
= StIndex pk (amodeToStix base) (amodeToStix off)
amodeToStix (CReg magic) = StReg (StixMagicId magic)
amodeToStix (CTemp uniq pk) = StReg (StixTemp uniq pk)
amodeToStix (CLbl lbl _) = StCLbl lbl
-- For CharLike and IntLike, we attempt some trivial constant-folding here.
amodeToStix (CCharLike (CLit (MachChar c)))
= StIndex Int8Rep cHARLIKE_closure (StInt (toInteger off))
where
off = charLikeSize * (c - mIN_CHARLIKE)
amodeToStix (CCharLike x)
= panic "CCharLike"
amodeToStix (CIntLike (CLit (MachInt i)))
= StIndex Int8Rep iNTLIKE_closure (StInt (toInteger off))
where
off = intLikeSize * (fromInteger (i - mIN_INTLIKE))
amodeToStix (CIntLike x)
= panic "CIntLike"
amodeToStix (CLit core)
= case core of
MachChar c -> StInt (toInteger c)
MachStr s -> StString s
MachAddr a -> StInt a
MachInt i -> StInt i
MachWord w -> case word2IntLit core of MachInt iw -> StInt iw
MachLitLit s _ -> litLitErr
MachLabel l -> StCLbl (mkForeignLabel l False{-ToDo: dynamic-})
MachFloat d -> StFloat d
MachDouble d -> StDouble d
_ -> panic "amodeToStix:core literal"
amodeToStix (CMacroExpr _ macro [arg])
= case macro of
ENTRY_CODE -> amodeToStix arg
ARG_TAG -> amodeToStix arg -- just an integer no. of words
GET_TAG ->
#ifdef WORDS_BIGENDIAN
StPrim AndOp
[StInd WordRep (StIndex PtrRep (amodeToStix arg)
(StInt (toInteger (-1)))),
StInt 65535]
#else
StPrim SrlOp
[StInd WordRep (StIndex PtrRep (amodeToStix arg)
(StInt (toInteger (-1)))),
StInt 16]
#endif
UPD_FRAME_UPDATEE
-> StInd PtrRep (StIndex PtrRep (amodeToStix arg)
(StInt (toInteger uF_UPDATEE)))
litLitErr =
panic "native code generator can't compile lit-lits, use -fvia-C"
\end{code}
Sizes of the CharLike and IntLike closures that are arranged as arrays
in the data segment. (These are in bytes.)
\begin{code}
-- The INTLIKE base pointer
iNTLIKE_closure :: StixTree
iNTLIKE_closure = StCLbl mkIntlikeClosureLabel
-- The CHARLIKE base
cHARLIKE_closure :: StixTree
cHARLIKE_closure = StCLbl mkCharlikeClosureLabel
mutArrPtrsFrozen_info = StCLbl mkMAP_FROZEN_infoLabel
-- these are the sizes of charLike and intLike closures, in _bytes_.
charLikeSize = (fixedHdrSize + 1) * (fromInteger (sizeOf PtrRep))
intLikeSize = (fixedHdrSize + 1) * (fromInteger (sizeOf PtrRep))
\end{code}
\begin{code}
save_thread_state
= getUniqueUs `thenUs` \tso_uq ->
let tso = StReg (StixTemp tso_uq ThreadIdRep) in
returnUs (\xs ->
StAssign ThreadIdRep tso stgCurrentTSO :
StAssign PtrRep
(StInd PtrRep (StPrim IntAddOp
[tso, StInt (toInteger (TSO_SP*BYTES_PER_WORD))]))
stgSp :
StAssign PtrRep
(StInd PtrRep (StPrim IntAddOp
[tso, StInt (toInteger (TSO_SU*BYTES_PER_WORD))]))
stgSu :
StAssign PtrRep
(StInd PtrRep (StPrim IntAddOp
[stgCurrentNursery,
StInt (toInteger (BDESCR_FREE * BYTES_PER_WORD))]))
(StPrim IntAddOp [stgHp, StInt (toInteger (1 * BYTES_PER_WORD))]) :
xs
)
load_thread_state
= getUniqueUs `thenUs` \tso_uq ->
let tso = StReg (StixTemp tso_uq ThreadIdRep) in
returnUs (\xs ->
StAssign ThreadIdRep tso stgCurrentTSO :
StAssign PtrRep stgSp
(StInd PtrRep (StPrim IntAddOp
[tso, StInt (toInteger (TSO_SP*BYTES_PER_WORD))])) :
StAssign PtrRep stgSu
(StInd PtrRep (StPrim IntAddOp
[tso, StInt (toInteger (TSO_SU*BYTES_PER_WORD))])) :
StAssign PtrRep stgSpLim
(StPrim IntAddOp [tso,
StInt (toInteger ((TSO_STACK + rESERVED_STACK_WORDS)
*BYTES_PER_WORD))]) :
StAssign PtrRep stgHp
(StPrim IntSubOp [
StInd PtrRep (StPrim IntAddOp
[stgCurrentNursery,
StInt (toInteger (BDESCR_FREE * BYTES_PER_WORD))]),
StInt (toInteger (1 * BYTES_PER_WORD))
]) :
StAssign PtrRep stgHpLim
(StPrim IntAddOp [
StInd PtrRep (StPrim IntAddOp
[stgCurrentNursery,
StInt (toInteger (BDESCR_START * BYTES_PER_WORD))]),
StInt (toInteger (bLOCK_SIZE - (1 * BYTES_PER_WORD)))
]) :
xs
)
\end{code}
|