1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1995
%
%********************************************************
%* *
\section[CgCase]{Converting @StgCase@ expressions}
%* *
%********************************************************
\begin{code}
#include "HsVersions.h"
module CgCase (
cgCase,
saveVolatileVarsAndRegs
-- and to make the interface self-sufficient...
) where
import StgSyn
import CgMonad
import AbsCSyn
import PrelInfo ( PrimOp(..), primOpCanTriggerGC
IF_ATTACK_PRAGMAS(COMMA tagOf_PrimOp)
IF_ATTACK_PRAGMAS(COMMA pprPrimOp)
)
import Type ( primRepFromType, getTyConDataCons,
getUniDataSpecTyCon, getUniDataSpecTyCon_maybe,
isEnumerationTyCon,
Type
)
import CgBindery -- all of it
import CgCon ( buildDynCon, bindConArgs )
import CgExpr ( cgExpr, getPrimOpArgAmodes )
import CgHeapery ( heapCheck )
import CgRetConv -- lots of stuff
import CgStackery -- plenty
import CgTailCall ( tailCallBusiness, performReturn )
import CgUsages -- and even more
import CLabel -- bunches of things...
import ClosureInfo {-( blackHoleClosureInfo, mkConLFInfo, mkLFArgument,
layOutDynCon
)-}
import CostCentre ( useCurrentCostCentre, CostCentre )
import Literal ( literalPrimRep )
import Id ( getDataConTag, getIdPrimRep, fIRST_TAG, isDataCon,
toplevelishId, getInstantiatedDataConSig,
ConTag(..), DataCon(..)
)
import Maybes ( catMaybes, Maybe(..) )
import PrimRep ( getPrimRepSize, isFollowableRep, retPrimRepSize, PrimRep(..) )
import UniqSet -- ( uniqSetToList, UniqSet(..) )
import Util
\end{code}
\begin{code}
data GCFlag
= GCMayHappen -- The scrutinee may involve GC, so everything must be
-- tidy before the code for the scrutinee.
| NoGC -- The scrutinee is a primitive value, or a call to a
-- primitive op which does no GC. Hence the case can
-- be done inline, without tidying up first.
\end{code}
It is quite interesting to decide whether to put a heap-check
at the start of each alternative. Of course we certainly have
to do so if the case forces an evaluation, or if there is a primitive
op which can trigger GC.
A more interesting situation is this:
\begin{verbatim}
!A!;
...A...
case x# of
0# -> !B!; ...B...
default -> !C!; ...C...
\end{verbatim}
where \tr{!x!} indicates a possible heap-check point. The heap checks
in the alternatives {\em can} be omitted, in which case the topmost
heapcheck will take their worst case into account.
In favour of omitting \tr{!B!}, \tr{!C!}:
\begin{itemize}
\item
{\em May} save a heap overflow test,
if ...A... allocates anything. The other advantage
of this is that we can use relative addressing
from a single Hp to get at all the closures so allocated.
\item
No need to save volatile vars etc across the case
\end{itemize}
Against:
\begin{itemize}
\item
May do more allocation than reqd. This sometimes bites us
badly. For example, nfib (ha!) allocates about 30\% more space if the
worst-casing is done, because many many calls to nfib are leaf calls
which don't need to allocate anything.
This never hurts us if there is only one alternative.
\end{itemize}
*** NOT YET DONE *** The difficulty is that \tr{!B!}, \tr{!C!} need
to take account of what is live, and that includes all live volatile
variables, even if they also have stable analogues. Furthermore, the
stack pointers must be lined up properly so that GC sees tidy stacks.
If these things are done, then the heap checks can be done at \tr{!B!} and
\tr{!C!} without a full save-volatile-vars sequence.
\begin{code}
cgCase :: StgExpr
-> StgLiveVars
-> StgLiveVars
-> Unique
-> StgCaseAlts
-> Code
\end{code}
Several special cases for primitive operations.
******* TO DO TO DO: fix what follows
Special case for
case (op x1 ... xn) of
y -> e
where the type of the case scrutinee is a multi-constuctor algebraic type.
Then we simply compile code for
let y = op x1 ... xn
in
e
In this case:
case (op x1 ... xn) of
C a b -> ...
y -> e
where the type of the case scrutinee is a multi-constuctor algebraic type.
we just bomb out at the moment. It never happens in practice.
**** END OF TO DO TO DO
\begin{code}
cgCase scrut@(StgPrim op args _) live_in_whole_case live_in_alts uniq
(StgAlgAlts _ alts (StgBindDefault id _ deflt_rhs))
= if not (null alts) then
panic "cgCase: case on PrimOp with default *and* alts\n"
-- For now, die if alts are non-empty
else
#if 0
pprTrace "cgCase:prim app returning alg data type: bad code!" (ppr PprDebug scrut) $
-- See above TO DO TO DO
#endif
cgExpr (StgLet (StgNonRec id scrut_rhs) deflt_rhs)
where
scrut_rhs = StgRhsClosure useCurrentCostCentre stgArgOcc{-safe-} scrut_free_vars
Updatable [] scrut
scrut_free_vars = [ fv | StgVarArg fv <- args, not (toplevelishId fv) ]
-- Hack, hack
\end{code}
\begin{code}
cgCase (StgPrim op args _) live_in_whole_case live_in_alts uniq alts
| not (primOpCanTriggerGC op)
=
-- Get amodes for the arguments and results
getPrimOpArgAmodes op args `thenFC` \ arg_amodes ->
let
result_amodes = getPrimAppResultAmodes uniq alts
liveness_mask = panic "cgCase: liveness of non-GC-ing primop touched\n"
in
-- Perform the operation
getVolatileRegs live_in_alts `thenFC` \ vol_regs ->
absC (COpStmt result_amodes op
arg_amodes -- note: no liveness arg
liveness_mask vol_regs) `thenC`
-- Scrutinise the result
cgInlineAlts NoGC uniq alts
| otherwise -- *Can* trigger GC
= getPrimOpArgAmodes op args `thenFC` \ arg_amodes ->
--NO: getIntSwitchChkrC `thenFC` \ isw_chkr ->
-- Get amodes for the arguments and results, and assign to regs
-- (Can-trigger-gc primops guarantee to have their (nonRobust)
-- args in regs)
let
op_result_regs = assignPrimOpResultRegs {-NO:isw_chkr-} op
op_result_amodes = map CReg op_result_regs
(op_arg_amodes, liveness_mask, arg_assts)
= makePrimOpArgsRobust {-NO:isw_chkr-} op arg_amodes
liveness_arg = mkIntCLit liveness_mask
in
-- Tidy up in case GC happens...
-- Nota Bene the use of live_in_whole_case in nukeDeadBindings.
-- Reason: the arg_assts computed above may refer to some stack slots
-- which are not live in the alts. So we mustn't use those slots
-- to save volatile vars in!
nukeDeadBindings live_in_whole_case `thenC`
saveVolatileVars live_in_alts `thenFC` \ volatile_var_save_assts ->
getEndOfBlockInfo `thenFC` \ eob_info ->
forkEval eob_info nopC
(getAbsC (cgInlineAlts GCMayHappen uniq alts) `thenFC` \ abs_c ->
absC (CRetUnVector vtbl_label (CLabelledCode return_label abs_c))
`thenC`
returnFC (CaseAlts (CUnVecLbl return_label vtbl_label)
Nothing{-no semi-tagging-}))
`thenFC` \ new_eob_info ->
-- Record the continuation info
setEndOfBlockInfo new_eob_info (
-- Now "return" to the inline alternatives; this will get
-- compiled to a fall-through.
let
simultaneous_assts = arg_assts `mkAbsCStmts` volatile_var_save_assts
-- do_op_and_continue will be passed an amode for the continuation
do_op_and_continue sequel
= absC (COpStmt op_result_amodes
op
(pin_liveness op liveness_arg op_arg_amodes)
liveness_mask
[{-no vol_regs-}])
`thenC`
sequelToAmode sequel `thenFC` \ dest_amode ->
absC (CReturn dest_amode DirectReturn)
-- Note: we CJump even for algebraic data types,
-- because cgInlineAlts always generates code, never a
-- vector.
in
performReturn simultaneous_assts do_op_and_continue live_in_alts
)
where
-- for all PrimOps except ccalls, we pin the liveness info
-- on as the first "argument"
-- ToDo: un-duplicate?
pin_liveness (CCallOp _ _ _ _ _) _ args = args
pin_liveness other_op liveness_arg args
= liveness_arg :args
vtbl_label = mkVecTblLabel uniq
return_label = mkReturnPtLabel uniq
\end{code}
Another special case: scrutinising a primitive-typed variable. No
evaluation required. We don't save volatile variables, nor do we do a
heap-check in the alternatives. Instead, the heap usage of the
alternatives is worst-cased and passed upstream. This can result in
allocating more heap than strictly necessary, but it will sometimes
eliminate a heap check altogether.
\begin{code}
cgCase (StgApp v [] _) live_in_whole_case live_in_alts uniq (StgPrimAlts ty alts deflt)
= getAtomAmode v `thenFC` \ amode ->
cgPrimAltsGivenScrutinee NoGC amode alts deflt
\end{code}
Special case: scrutinising a non-primitive variable.
This can be done a little better than the general case, because
we can reuse/trim the stack slot holding the variable (if it is in one).
\begin{code}
cgCase (StgApp (StgVarArg fun) args _ {-lvs must be same as live_in_alts-})
live_in_whole_case live_in_alts uniq alts@(StgAlgAlts _ _ _)
=
getCAddrModeAndInfo fun `thenFC` \ (fun_amode, lf_info) ->
getAtomAmodes args `thenFC` \ arg_amodes ->
-- Squish the environment
nukeDeadBindings live_in_alts `thenC`
saveVolatileVarsAndRegs live_in_alts
`thenFC` \ (save_assts, alts_eob_info, maybe_cc_slot) ->
forkEval alts_eob_info
nopC (cgEvalAlts maybe_cc_slot uniq alts) `thenFC` \ scrut_eob_info ->
setEndOfBlockInfo scrut_eob_info (
tailCallBusiness fun fun_amode lf_info arg_amodes live_in_alts save_assts
)
\end{code}
Finally, here is the general case.
\begin{code}
cgCase expr live_in_whole_case live_in_alts uniq alts
= -- Figure out what volatile variables to save
nukeDeadBindings live_in_whole_case `thenC`
saveVolatileVarsAndRegs live_in_alts
`thenFC` \ (save_assts, alts_eob_info, maybe_cc_slot) ->
-- Save those variables right now!
absC save_assts `thenC`
forkEval alts_eob_info
(nukeDeadBindings live_in_alts)
(cgEvalAlts maybe_cc_slot uniq alts) `thenFC` \ scrut_eob_info ->
setEndOfBlockInfo scrut_eob_info (cgExpr expr)
\end{code}
%************************************************************************
%* *
\subsection[CgCase-primops]{Primitive applications}
%* *
%************************************************************************
Get result amodes for a primitive operation, in the case wher GC can't happen.
The amodes are returned in canonical order, ready for the prim-op!
Alg case: temporaries named as in the alternatives,
plus (CTemp u) for the tag (if needed)
Prim case: (CTemp u)
This is all disgusting, because these amodes must be consistent with those
invented by CgAlgAlts.
\begin{code}
getPrimAppResultAmodes
:: Unique
-> StgCaseAlts
-> [CAddrMode]
\end{code}
\begin{code}
-- If there's an StgBindDefault which does use the bound
-- variable, then we can only handle it if the type involved is
-- an enumeration type. That's important in the case
-- of comparisions:
--
-- case x ># y of
-- r -> f r
--
-- The only reason for the restriction to *enumeration* types is our
-- inability to invent suitable temporaries to hold the results;
-- Elaborating the CTemp addr mode to have a second uniq field
-- (which would simply count from 1) would solve the problem.
-- Anyway, cgInlineAlts is now capable of handling all cases;
-- it's only this function which is being wimpish.
getPrimAppResultAmodes uniq (StgAlgAlts ty alts (StgBindDefault _ True {- used -} _))
| isEnumerationTyCon spec_tycon = [tag_amode]
| otherwise = panic "getPrimAppResultAmodes: non-enumeration algebraic alternatives with default"
where
-- A temporary variable to hold the tag; this is unaffected by GC because
-- the heap-checks in the branches occur after the switch
tag_amode = CTemp uniq IntRep
(spec_tycon, _, _) = getUniDataSpecTyCon ty
getPrimAppResultAmodes uniq (StgAlgAlts ty alts other_default)
-- Default is either StgNoDefault or StgBindDefault with unused binder
= case alts of
[_] -> arg_amodes -- No need for a tag
other -> tag_amode : arg_amodes
where
-- A temporary variable to hold the tag; this is unaffected by GC because
-- the heap-checks in the branches occur after the switch
tag_amode = CTemp uniq IntRep
-- Sort alternatives into canonical order; there must be a complete
-- set because there's no default case.
sorted_alts = sortLt lt alts
(con1,_,_,_) `lt` (con2,_,_,_) = getDataConTag con1 < getDataConTag con2
arg_amodes :: [CAddrMode]
-- Turn them into amodes
arg_amodes = concat (map mk_amodes sorted_alts)
mk_amodes (con, args, use_mask, rhs)
= [ CTemp (getItsUnique arg) (getIdPrimRep arg) | arg <- args ]
\end{code}
The situation is simpler for primitive
results, because there is only one!
\begin{code}
getPrimAppResultAmodes uniq (StgPrimAlts ty _ _)
= [CTemp uniq kind]
where
kind = primRepFromType ty
\end{code}
%************************************************************************
%* *
\subsection[CgCase-alts]{Alternatives}
%* *
%************************************************************************
@cgEvalAlts@ returns an addressing mode for a continuation for the
alternatives of a @case@, used in a context when there
is some evaluation to be done.
\begin{code}
cgEvalAlts :: Maybe VirtualSpBOffset -- Offset of cost-centre to be restored, if any
-> Unique
-> StgCaseAlts
-> FCode Sequel -- Any addr modes inside are guaranteed to be a label
-- so that we can duplicate it without risk of
-- duplicating code
cgEvalAlts cc_slot uniq (StgAlgAlts ty alts deflt)
= -- Generate the instruction to restore cost centre, if any
restoreCurrentCostCentre cc_slot `thenFC` \ cc_restore ->
getIntSwitchChkrC `thenFC` \ isw_chkr ->
-- Generate sequel info for use downstream
-- At the moment, we only do it if the type is vector-returnable.
-- Reason: if not, then it costs extra to label the
-- alternatives, because we'd get return code like:
--
-- switch TagReg { 0 : JMP(alt_1); 1 : JMP(alt_2) ..etc }
--
-- which is worse than having the alt code in the switch statement
let
(spec_tycon, _, _) = getUniDataSpecTyCon ty
use_labelled_alts
= case ctrlReturnConvAlg spec_tycon of
VectoredReturn _ -> True
_ -> False
semi_tagged_stuff
= if not use_labelled_alts then
Nothing -- no semi-tagging info
else
cgSemiTaggedAlts isw_chkr uniq alts deflt -- Just <something>
in
cgAlgAlts GCMayHappen uniq cc_restore use_labelled_alts ty alts deflt
`thenFC` \ (tagged_alt_absCs, deflt_absC) ->
mkReturnVector uniq ty tagged_alt_absCs deflt_absC `thenFC` \ return_vec ->
returnFC (CaseAlts return_vec semi_tagged_stuff)
cgEvalAlts cc_slot uniq (StgPrimAlts ty alts deflt)
= -- Generate the instruction to restore cost centre, if any
restoreCurrentCostCentre cc_slot `thenFC` \ cc_restore ->
-- Generate the switch
getAbsC (cgPrimAlts GCMayHappen uniq ty alts deflt) `thenFC` \ abs_c ->
-- Generate the labelled block, starting with restore-cost-centre
absC (CRetUnVector vtbl_label
(CLabelledCode return_label (cc_restore `mkAbsCStmts` abs_c)))
`thenC`
-- Return an amode for the block
returnFC (CaseAlts (CUnVecLbl return_label vtbl_label) Nothing{-no semi-tagging-})
where
vtbl_label = mkVecTblLabel uniq
return_label = mkReturnPtLabel uniq
\end{code}
\begin{code}
cgInlineAlts :: GCFlag -> Unique
-> StgCaseAlts
-> Code
\end{code}
First case: algebraic case, exactly one alternative, no default.
In this case the primitive op will not have set a temporary to the
tag, so we shouldn't generate a switch statment. Instead we just
do the right thing.
\begin{code}
cgInlineAlts gc_flag uniq (StgAlgAlts ty [alt@(con,args,use_mask,rhs)] StgNoDefault)
= cgAlgAltRhs gc_flag con args use_mask rhs
\end{code}
Second case: algebraic case, several alternatives.
Tag is held in a temporary.
\begin{code}
cgInlineAlts gc_flag uniq (StgAlgAlts ty alts deflt)
= cgAlgAlts gc_flag uniq AbsCNop{-restore_cc-} False{-no semi-tagging-}
ty alts deflt `thenFC` \ (tagged_alts, deflt_c) ->
-- Do the switch
absC (mkAlgAltsCSwitch tag_amode tagged_alts deflt_c)
where
-- A temporary variable to hold the tag; this is unaffected by GC because
-- the heap-checks in the branches occur after the switch
tag_amode = CTemp uniq IntRep
\end{code}
Third (real) case: primitive result type.
\begin{code}
cgInlineAlts gc_flag uniq (StgPrimAlts ty alts deflt)
= cgPrimAlts gc_flag uniq ty alts deflt
\end{code}
%************************************************************************
%* *
\subsection[CgCase-alg-alts]{Algebraic alternatives}
%* *
%************************************************************************
In @cgAlgAlts@, none of the binders in the alternatives are
assumed to be yet bound.
\begin{code}
cgAlgAlts :: GCFlag
-> Unique
-> AbstractC -- Restore-cost-centre instruction
-> Bool -- True <=> branches must be labelled
-> Type -- From the case statement
-> [(Id, [Id], [Bool], StgExpr)] -- The alternatives
-> StgCaseDefault -- The default
-> FCode ([(ConTag, AbstractC)], -- The branches
AbstractC -- The default case
)
\end{code}
The case with a default which has a binder is different. We need to
pick all the constructors which aren't handled explicitly by an
alternative, and which return their results in registers, allocate
them explicitly in the heap, and jump to a join point for the default
case.
OLD: All of this only works if a heap-check is required anyway, because
otherwise it isn't safe to allocate.
NEW (July 94): now false! It should work regardless of gc_flag,
because of the extra_branches argument now added to forkAlts.
We put a heap-check at the join point, for the benefit of constructors
which don't need to do allocation. This means that ones which do need
to allocate may end up doing two heap-checks; but that's just too bad.
(We'd need two join labels otherwise. ToDo.)
It's all pretty turgid anyway.
\begin{code}
cgAlgAlts gc_flag uniq restore_cc semi_tagging
ty alts deflt@(StgBindDefault binder True{-used-} _)
= getIntSwitchChkrC `thenFC` \ isw_chkr ->
let
extra_branches :: [FCode (ConTag, AbstractC)]
extra_branches = catMaybes (map (mk_extra_branch isw_chkr) default_cons)
must_label_default = semi_tagging || not (null extra_branches)
in
forkAlts (map (cgAlgAlt gc_flag uniq restore_cc semi_tagging) alts)
extra_branches
(cgAlgDefault gc_flag uniq restore_cc must_label_default deflt)
where
default_join_lbl = mkDefaultLabel uniq
jump_instruction = CJump (CLbl default_join_lbl CodePtrRep)
(spec_tycon, _, spec_cons)
= -- trace ("cgCase:tycon:"++(ppShow 80 (ppAboves [
-- ppr PprDebug uniq,
-- ppr PprDebug ty,
-- ppr PprShowAll binder
-- ]))) (
getUniDataSpecTyCon ty
-- )
alt_cons = [ con | (con,_,_,_) <- alts ]
default_cons = [ spec_con | spec_con <- spec_cons, -- In this type
spec_con `not_elem` alt_cons ] -- Not handled explicitly
where
not_elem = isn'tIn "cgAlgAlts"
-- (mk_extra_branch con) returns the a maybe for the extra branch for con.
-- The "maybe" is because con may return in heap, in which case there is
-- nothing to do. Otherwise, we have a special case for a nullary constructor,
-- but in the general case we do an allocation and heap-check.
mk_extra_branch :: IntSwitchChecker -> DataCon -> (Maybe (FCode (ConTag, AbstractC)))
mk_extra_branch isw_chkr con
= ASSERT(isDataCon con)
case dataReturnConvAlg isw_chkr con of
ReturnInHeap -> Nothing
ReturnInRegs rs -> Just (getAbsC (alloc_code rs) `thenFC` \ abs_c ->
returnFC (tag, abs_c)
)
where
lf_info = mkConLFInfo con
tag = getDataConTag con
closure_lbl = mkClosureLabel con
-- alloc_code generates code to allocate constructor con, whose args are
-- in the arguments to alloc_code, assigning the result to Node.
alloc_code :: [MagicId] -> Code
alloc_code regs
= possibleHeapCheck gc_flag regs False (
buildDynCon binder useCurrentCostCentre con
(map CReg regs) (all zero_size regs)
`thenFC` \ idinfo ->
idInfoToAmode PtrRep idinfo `thenFC` \ amode ->
absC (CAssign (CReg node) amode) `thenC`
absC jump_instruction
)
where
zero_size reg = getPrimRepSize (kindFromMagicId reg) == 0
\end{code}
Now comes the general case
\begin{code}
cgAlgAlts gc_flag uniq restore_cc must_label_branches ty alts deflt
{- The deflt is either StgNoDefault or a BindDefault which doesn't use the binder -}
= forkAlts (map (cgAlgAlt gc_flag uniq restore_cc must_label_branches) alts)
[{- No "extra branches" -}]
(cgAlgDefault gc_flag uniq restore_cc must_label_branches deflt)
\end{code}
\begin{code}
cgAlgDefault :: GCFlag
-> Unique -> AbstractC -> Bool -- turgid state...
-> StgCaseDefault -- input
-> FCode AbstractC -- output
cgAlgDefault gc_flag uniq restore_cc must_label_branch
StgNoDefault
= returnFC AbsCNop
cgAlgDefault gc_flag uniq restore_cc must_label_branch
(StgBindDefault _ False{-binder not used-} rhs)
= getAbsC (absC restore_cc `thenC`
possibleHeapCheck gc_flag [] False (cgExpr rhs)) `thenFC` \ abs_c ->
let
final_abs_c | must_label_branch = CJump (CLabelledCode lbl abs_c)
| otherwise = abs_c
in
returnFC final_abs_c
where
lbl = mkDefaultLabel uniq
cgAlgDefault gc_flag uniq restore_cc must_label_branch
(StgBindDefault binder True{-binder used-} rhs)
= -- We have arranged that Node points to the thing, even
-- even if we return in registers
bindNewToReg binder node mkLFArgument `thenC`
getAbsC (absC restore_cc `thenC`
possibleHeapCheck gc_flag [node] False (cgExpr rhs)
-- Node is live, but doesn't need to point at the thing itself;
-- it's ok for Node to point to an indirection or FETCH_ME
-- Hence no need to re-enter Node.
) `thenFC` \ abs_c ->
let
final_abs_c | must_label_branch = CJump (CLabelledCode lbl abs_c)
| otherwise = abs_c
in
returnFC final_abs_c
where
lbl = mkDefaultLabel uniq
cgAlgAlt :: GCFlag
-> Unique -> AbstractC -> Bool -- turgid state
-> (Id, [Id], [Bool], StgExpr)
-> FCode (ConTag, AbstractC)
cgAlgAlt gc_flag uniq restore_cc must_label_branch (con, args, use_mask, rhs)
= getAbsC (absC restore_cc `thenC`
cgAlgAltRhs gc_flag con args use_mask rhs) `thenFC` \ abs_c ->
let
final_abs_c | must_label_branch = CJump (CLabelledCode lbl abs_c)
| otherwise = abs_c
in
returnFC (tag, final_abs_c)
where
tag = getDataConTag con
lbl = mkAltLabel uniq tag
cgAlgAltRhs :: GCFlag -> Id -> [Id] -> [Bool] -> StgExpr -> Code
cgAlgAltRhs gc_flag con args use_mask rhs
= getIntSwitchChkrC `thenFC` \ isw_chkr ->
let
(live_regs, node_reqd)
= case (dataReturnConvAlg isw_chkr con) of
ReturnInHeap -> ([], True)
ReturnInRegs regs -> ([reg | (reg,True) <- regs `zipEqual` use_mask], False)
-- Pick the live registers using the use_mask
-- Doing so is IMPORTANT, because with semi-tagging
-- enabled only the live registers will have valid
-- pointers in them.
in
possibleHeapCheck gc_flag live_regs node_reqd (
(case gc_flag of
NoGC -> mapFCs bindNewToTemp args `thenFC` \ _ ->
nopC
GCMayHappen -> bindConArgs con args
) `thenC`
cgExpr rhs
)
\end{code}
%************************************************************************
%* *
\subsection[CgCase-semi-tagged-alts]{The code to deal with sem-tagging}
%* *
%************************************************************************
Turgid-but-non-monadic code to conjure up the required info from
algebraic case alternatives for semi-tagging.
\begin{code}
cgSemiTaggedAlts :: IntSwitchChecker
-> Unique
-> [(Id, [Id], [Bool], StgExpr)]
-> GenStgCaseDefault Id Id
-> SemiTaggingStuff
cgSemiTaggedAlts isw_chkr uniq alts deflt
= Just (map (st_alt isw_chkr) alts, st_deflt deflt)
where
st_deflt StgNoDefault = Nothing
st_deflt (StgBindDefault binder binder_used _)
= Just (if binder_used then Just binder else Nothing,
(CCallProfCtrMacro SLIT("RET_SEMI_BY_DEFAULT") [], -- ToDo: monadise?
mkDefaultLabel uniq)
)
st_alt isw_chkr (con, args, use_mask, _)
= case (dataReturnConvAlg isw_chkr con) of
ReturnInHeap ->
-- Ha! Nothing to do; Node already points to the thing
(con_tag,
(CCallProfCtrMacro SLIT("RET_SEMI_IN_HEAP") -- ToDo: monadise?
[mkIntCLit (length args)], -- how big the thing in the heap is
join_label)
)
ReturnInRegs regs ->
-- We have to load the live registers from the constructor
-- pointed to by Node.
let
(_, regs_w_offsets) = layOutDynCon con kindFromMagicId regs
used_regs = selectByMask use_mask regs
used_regs_w_offsets = [ ro | ro@(reg,offset) <- regs_w_offsets,
reg `is_elem` used_regs]
is_elem = isIn "cgSemiTaggedAlts"
in
(con_tag,
(mkAbstractCs [
CCallProfCtrMacro SLIT("RET_SEMI_IN_REGS") -- ToDo: macroise?
[mkIntCLit (length regs_w_offsets),
mkIntCLit (length used_regs_w_offsets)],
CSimultaneous (mkAbstractCs (map move_to_reg used_regs_w_offsets))],
join_label))
where
con_tag = getDataConTag con
join_label = mkAltLabel uniq con_tag
move_to_reg :: (MagicId, VirtualHeapOffset {-from Node-}) -> AbstractC
move_to_reg (reg, offset)
= CAssign (CReg reg) (CVal (NodeRel offset) (kindFromMagicId reg))
\end{code}
%************************************************************************
%* *
\subsection[CgCase-prim-alts]{Primitive alternatives}
%* *
%************************************************************************
@cgPrimAlts@ generates a suitable @CSwitch@ for dealing with the
alternatives of a primitive @case@, given an addressing mode for the
thing to scrutinise. It also keeps track of the maximum stack depth
encountered down any branch.
As usual, no binders in the alternatives are yet bound.
\begin{code}
cgPrimAlts :: GCFlag
-> Unique
-> Type
-> [(Literal, StgExpr)] -- Alternatives
-> StgCaseDefault -- Default
-> Code
cgPrimAlts gc_flag uniq ty alts deflt
= cgPrimAltsGivenScrutinee gc_flag scrutinee alts deflt
where
-- A temporary variable, or standard register, to hold the result
scrutinee = case gc_flag of
NoGC -> CTemp uniq kind
GCMayHappen -> CReg (dataReturnConvPrim kind)
kind = primRepFromType ty
cgPrimAltsGivenScrutinee gc_flag scrutinee alts deflt
= forkAlts (map (cgPrimAlt gc_flag) alts)
[{- No "extra branches" -}]
(cgPrimDefault gc_flag scrutinee deflt) `thenFC` \ (alt_absCs, deflt_absC) ->
absC (CSwitch scrutinee alt_absCs deflt_absC)
-- CSwitch does sensible things with one or zero alternatives
cgPrimAlt :: GCFlag
-> (Literal, StgExpr) -- The alternative
-> FCode (Literal, AbstractC) -- Its compiled form
cgPrimAlt gc_flag (lit, rhs)
= getAbsC rhs_code `thenFC` \ absC ->
returnFC (lit,absC)
where
rhs_code = possibleHeapCheck gc_flag [] False (cgExpr rhs )
cgPrimDefault :: GCFlag
-> CAddrMode -- Scrutinee
-> StgCaseDefault
-> FCode AbstractC
cgPrimDefault gc_flag scrutinee StgNoDefault
= panic "cgPrimDefault: No default in prim case"
cgPrimDefault gc_flag scrutinee (StgBindDefault _ False{-binder not used-} rhs)
= getAbsC (possibleHeapCheck gc_flag [] False (cgExpr rhs ))
cgPrimDefault gc_flag scrutinee (StgBindDefault binder True{-used-} rhs)
= getAbsC (possibleHeapCheck gc_flag regs False rhs_code)
where
regs = if isFollowableRep (getAmodeRep scrutinee) then
[node] else []
rhs_code = bindNewPrimToAmode binder scrutinee `thenC`
cgExpr rhs
\end{code}
%************************************************************************
%* *
\subsection[CgCase-tidy]{Code for tidying up prior to an eval}
%* *
%************************************************************************
\begin{code}
saveVolatileVarsAndRegs
:: StgLiveVars -- Vars which should be made safe
-> FCode (AbstractC, -- Assignments to do the saves
EndOfBlockInfo, -- New sequel, recording where the return
-- address now is
Maybe VirtualSpBOffset) -- Slot for current cost centre
saveVolatileVarsAndRegs vars
= saveVolatileVars vars `thenFC` \ var_saves ->
saveCurrentCostCentre `thenFC` \ (maybe_cc_slot, cc_save) ->
saveReturnAddress `thenFC` \ (new_eob_info, ret_save) ->
returnFC (mkAbstractCs [var_saves, cc_save, ret_save],
new_eob_info,
maybe_cc_slot)
saveVolatileVars :: StgLiveVars -- Vars which should be made safe
-> FCode AbstractC -- Assignments to to the saves
saveVolatileVars vars
= save_em (uniqSetToList vars)
where
save_em [] = returnFC AbsCNop
save_em (var:vars)
= getCAddrModeIfVolatile var `thenFC` \ v ->
case v of
Nothing -> save_em vars -- Non-volatile, so carry on
Just vol_amode -> -- Aha! It's volatile
save_var var vol_amode `thenFC` \ abs_c ->
save_em vars `thenFC` \ abs_cs ->
returnFC (abs_c `mkAbsCStmts` abs_cs)
save_var var vol_amode
| isFollowableRep kind
= allocAStack `thenFC` \ a_slot ->
rebindToAStack var a_slot `thenC`
getSpARelOffset a_slot `thenFC` \ spa_rel ->
returnFC (CAssign (CVal spa_rel kind) vol_amode)
| otherwise
= allocBStack (getPrimRepSize kind) `thenFC` \ b_slot ->
rebindToBStack var b_slot `thenC`
getSpBRelOffset b_slot `thenFC` \ spb_rel ->
returnFC (CAssign (CVal spb_rel kind) vol_amode)
where
kind = getAmodeRep vol_amode
saveReturnAddress :: FCode (EndOfBlockInfo, AbstractC)
saveReturnAddress
= getEndOfBlockInfo `thenFC` \ eob_info@(EndOfBlockInfo vA vB sequel) ->
-- See if it is volatile
case sequel of
InRetReg -> -- Yes, it's volatile
allocBStack retPrimRepSize `thenFC` \ b_slot ->
getSpBRelOffset b_slot `thenFC` \ spb_rel ->
returnFC (EndOfBlockInfo vA vB (OnStack b_slot),
CAssign (CVal spb_rel RetRep) (CReg RetReg))
UpdateCode _ -> -- It's non-volatile all right, but we still need
-- to allocate a B-stack slot for it, *solely* to make
-- sure that update frames for different values do not
-- appear adjacent on the B stack. This makes sure
-- that B-stack squeezing works ok.
-- See note below
allocBStack retPrimRepSize `thenFC` \ b_slot ->
returnFC (eob_info, AbsCNop)
other -> -- No, it's non-volatile, so do nothing
returnFC (eob_info, AbsCNop)
\end{code}
Note about B-stack squeezing. Consider the following:`
y = [...] \u [] -> ...
x = [y] \u [] -> case y of (a,b) -> a
The code for x will push an update frame, and then enter y. The code
for y will push another update frame. If the B-stack-squeezer then
wakes up, it will see two update frames right on top of each other,
and will combine them. This is WRONG, of course, because x's value is
not the same as y's.
The fix implemented above makes sure that we allocate an (unused)
B-stack slot before entering y. You can think of this as holding the
saved value of RetAddr, which (after pushing x's update frame will be
some update code ptr). The compiler is clever enough to load the
static update code ptr into RetAddr before entering ~a~, but the slot
is still there to separate the update frames.
When we save the current cost centre (which is done for lexical
scoping), we allocate a free B-stack location, and return (a)~the
virtual offset of the location, to pass on to the alternatives, and
(b)~the assignment to do the save (just as for @saveVolatileVars@).
\begin{code}
saveCurrentCostCentre ::
FCode (Maybe VirtualSpBOffset, -- Where we decide to store it
-- Nothing if not lexical CCs
AbstractC) -- Assignment to save it
-- AbsCNop if not lexical CCs
saveCurrentCostCentre
= isSwitchSetC SccProfilingOn `thenFC` \ doing_profiling ->
if not doing_profiling then
returnFC (Nothing, AbsCNop)
else
allocBStack (getPrimRepSize CostCentreRep) `thenFC` \ b_slot ->
getSpBRelOffset b_slot `thenFC` \ spb_rel ->
returnFC (Just b_slot,
CAssign (CVal spb_rel CostCentreRep) (CReg CurCostCentre))
restoreCurrentCostCentre :: Maybe VirtualSpBOffset -> FCode AbstractC
restoreCurrentCostCentre Nothing
= returnFC AbsCNop
restoreCurrentCostCentre (Just b_slot)
= getSpBRelOffset b_slot `thenFC` \ spb_rel ->
freeBStkSlot b_slot `thenC`
returnFC (CCallProfCCMacro SLIT("RESTORE_CCC") [CVal spb_rel CostCentreRep])
-- we use the RESTORE_CCC macro, rather than just
-- assigning into CurCostCentre, in case RESTORE_CCC
-- has some sanity-checking in it.
\end{code}
%************************************************************************
%* *
\subsection[CgCase-return-vec]{Building a return vector}
%* *
%************************************************************************
Build a return vector, and return a suitable label addressing
mode for it.
\begin{code}
mkReturnVector :: Unique
-> Type
-> [(ConTag, AbstractC)] -- Branch codes
-> AbstractC -- Default case
-> FCode CAddrMode
mkReturnVector uniq ty tagged_alt_absCs deflt_absC
= let
(return_vec_amode, vtbl_body) = case (ctrlReturnConvAlg spec_tycon) of {
UnvectoredReturn _ ->
(CUnVecLbl ret_label vtbl_label,
absC (CRetUnVector vtbl_label
(CLabelledCode ret_label
(mkAlgAltsCSwitch (CReg TagReg)
tagged_alt_absCs
deflt_absC))));
VectoredReturn table_size ->
(CLbl vtbl_label DataPtrRep,
absC (CRetVector vtbl_label
-- must restore cc before each alt, if required
(map mk_vector_entry [fIRST_TAG .. (table_size+fIRST_TAG-1)])
deflt_absC))
-- Leave nops and comments in for now; they are eliminated
-- lazily as it's printed.
-- (case (nonemptyAbsC deflt_absC) of
-- Nothing -> AbsCNop
-- Just def -> def)
} in
vtbl_body `thenC`
returnFC return_vec_amode
-- )
where
(spec_tycon,_,_) = case (getUniDataSpecTyCon_maybe ty) of -- *must* be a real "data" type constructor
Just xx -> xx
Nothing -> error ("ERROR: can't generate code for polymorphic case;\nprobably a mis-use of `seq' or `par';\nthe User's Guide has more details.\nOffending type: "++(ppShow 80 (ppr PprDebug ty)))
vtbl_label = mkVecTblLabel uniq
ret_label = mkReturnPtLabel uniq
mk_vector_entry :: ConTag -> Maybe CAddrMode
mk_vector_entry tag
= case [ absC | (t, absC) <- tagged_alt_absCs, t == tag ] of
[] -> Nothing
[absC] -> Just (CCode absC)
_ -> panic "mkReturnVector: too many"
\end{code}
%************************************************************************
%* *
\subsection[CgCase-utils]{Utilities for handling case expressions}
%* *
%************************************************************************
@possibleHeapCheck@ tests a flag passed in to decide whether to
do a heap check or not.
\begin{code}
possibleHeapCheck :: GCFlag -> [MagicId] -> Bool -> Code -> Code
possibleHeapCheck GCMayHappen regs node_reqd code = heapCheck regs node_reqd code
possibleHeapCheck NoGC _ _ code = code
\end{code}
Select a restricted set of registers based on a usage mask.
\begin{code}
selectByMask [] [] = []
selectByMask (True:ms) (x:xs) = x : selectByMask ms xs
selectByMask (False:ms) (x:xs) = selectByMask ms xs
\end{code}
|