summaryrefslogtreecommitdiff
path: root/docs/users_guide/glasgow_exts.xml
blob: beaaad616a393caf66fc20809d502363266087fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
<?xml version="1.0" encoding="iso-8859-1"?>
<para>
<indexterm><primary>language, GHC</primary></indexterm>
<indexterm><primary>extensions, GHC</primary></indexterm>
As with all known Haskell systems, GHC implements some extensions to
the language.  They are all enabled by options; by default GHC
understands only plain Haskell 98.
</para>

<para>
Some of the Glasgow extensions serve to give you access to the
underlying facilities with which we implement Haskell.  Thus, you can
get at the Raw Iron, if you are willing to write some non-portable
code at a more primitive level.  You need not be &ldquo;stuck&rdquo;
on performance because of the implementation costs of Haskell's
&ldquo;high-level&rdquo; features&mdash;you can always code
&ldquo;under&rdquo; them.  In an extreme case, you can write all your
time-critical code in C, and then just glue it together with Haskell!
</para>

<para>
Before you get too carried away working at the lowest level (e.g.,
sloshing <literal>MutableByteArray&num;</literal>s around your
program), you may wish to check if there are libraries that provide a
&ldquo;Haskellised veneer&rdquo; over the features you want.  The
separate <ulink url="../libraries/index.html">libraries
documentation</ulink> describes all the libraries that come with GHC.
</para>

<!-- LANGUAGE OPTIONS -->
  <sect1 id="options-language">
    <title>Language options</title>

    <indexterm><primary>language</primary><secondary>option</secondary>
    </indexterm>
    <indexterm><primary>options</primary><secondary>language</secondary>
    </indexterm>
    <indexterm><primary>extensions</primary><secondary>options controlling</secondary>
    </indexterm>

    <para>These flags control what variation of the language are
    permitted.  Leaving out all of them gives you standard Haskell
    98.</para>

    <para>NB. turning on an option that enables special syntax
    <emphasis>might</emphasis> cause working Haskell 98 code to fail
    to compile, perhaps because it uses a variable name which has
    become a reserved word.  So, together with each option below, we
    list the special syntax which is enabled by this option.  We use
    notation and nonterminal names from the Haskell 98 lexical syntax
    (see the Haskell 98 Report).  There are two classes of special
    syntax:</para>

    <itemizedlist>
      <listitem>
	<para>New reserved words and symbols: character sequences
        which are no longer available for use as identifiers in the
        program.</para>
      </listitem>
      <listitem>
	<para>Other special syntax: sequences of characters that have
	a different meaning when this particular option is turned
	on.</para>
      </listitem>
    </itemizedlist>

    <para>We are only listing syntax changes here that might affect
    existing working programs (i.e. "stolen" syntax).  Many of these
    extensions will also enable new context-free syntax, but in all
    cases programs written to use the new syntax would not be
    compilable without the option enabled.</para>

    <variablelist>

      <varlistentry>
	<term>
          <option>-fglasgow-exts</option>:
          <indexterm><primary><option>-fglasgow-exts</option></primary></indexterm>
        </term>
	<listitem>
	  <para>This simultaneously enables all of the extensions to
          Haskell 98 described in <xref
          linkend="ghc-language-features"/>, except where otherwise
          noted. </para>

	  <para>New reserved words: <literal>forall</literal> (only in
	  types), <literal>mdo</literal>.</para>

	  <para>Other syntax stolen:
	      <replaceable>varid</replaceable>{<literal>&num;</literal>},
	      <replaceable>char</replaceable><literal>&num;</literal>,	    
	      <replaceable>string</replaceable><literal>&num;</literal>,    
	      <replaceable>integer</replaceable><literal>&num;</literal>,    
	      <replaceable>float</replaceable><literal>&num;</literal>,    
	      <replaceable>float</replaceable><literal>&num;&num;</literal>,    
	      <literal>(&num;</literal>, <literal>&num;)</literal>,	    
	      <literal>|)</literal>, <literal>{|</literal>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>-ffi</option> and <option>-fffi</option>:
          <indexterm><primary><option>-ffi</option></primary></indexterm>
          <indexterm><primary><option>-fffi</option></primary></indexterm>
        </term>
	<listitem>
	  <para>This option enables the language extension defined in the
	  Haskell 98 Foreign Function Interface Addendum plus deprecated
	  syntax of previous versions of the FFI for backwards
	  compatibility.</para> 

	  <para>New reserved words: <literal>foreign</literal>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>-fno-monomorphism-restriction</option>:
          <indexterm><primary><option>-fno-monomorphism-restriction</option></primary></indexterm>
        </term>
	<listitem>
	  <para> Switch off the Haskell 98 monomorphism restriction.
          Independent of the <option>-fglasgow-exts</option>
          flag. </para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>-fallow-overlapping-instances</option>
          <indexterm><primary><option>-fallow-overlapping-instances</option></primary></indexterm>
        </term>
	<term>
          <option>-fallow-undecidable-instances</option>
          <indexterm><primary><option>-fallow-undecidable-instances</option></primary></indexterm>
        </term>
	<term>
          <option>-fallow-incoherent-instances</option>
          <indexterm><primary><option>-fallow-incoherent-instances</option></primary></indexterm>
        </term>
	<term>
          <option>-fcontext-stack</option>
          <indexterm><primary><option>-fcontext-stack</option></primary></indexterm>
        </term>
	<listitem>
	  <para> See <xref linkend="instance-decls"/>.  Only relevant
          if you also use <option>-fglasgow-exts</option>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>-finline-phase</option>
          <indexterm><primary><option>-finline-phase</option></primary></indexterm>
        </term>
	<listitem>
	  <para>See <xref linkend="rewrite-rules"/>.  Only relevant if
          you also use <option>-fglasgow-exts</option>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>-farrows</option>
          <indexterm><primary><option>-farrows</option></primary></indexterm>
        </term>
	<listitem>
	  <para>See <xref linkend="arrow-notation"/>.  Independent of
          <option>-fglasgow-exts</option>.</para>

	  <para>New reserved words/symbols: <literal>rec</literal>,
	  <literal>proc</literal>, <literal>-&lt;</literal>,
	  <literal>&gt;-</literal>, <literal>-&lt;&lt;</literal>,
	  <literal>&gt;&gt;-</literal>.</para>

	  <para>Other syntax stolen: <literal>(|</literal>,
	  <literal>|)</literal>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>-fgenerics</option>
          <indexterm><primary><option>-fgenerics</option></primary></indexterm>
        </term>
	<listitem>
	  <para>See <xref linkend="generic-classes"/>.  Independent of
          <option>-fglasgow-exts</option>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fno-implicit-prelude</option></term>
	<listitem>
	  <para><indexterm><primary>-fno-implicit-prelude
          option</primary></indexterm> GHC normally imports
          <filename>Prelude.hi</filename> files for you.  If you'd
          rather it didn't, then give it a
          <option>-fno-implicit-prelude</option> option.  The idea is
          that you can then import a Prelude of your own.  (But don't
          call it <literal>Prelude</literal>; the Haskell module
          namespace is flat, and you must not conflict with any
          Prelude module.)</para>

	  <para>Even though you have not imported the Prelude, most of
          the built-in syntax still refers to the built-in Haskell
          Prelude types and values, as specified by the Haskell
          Report.  For example, the type <literal>[Int]</literal>
          still means <literal>Prelude.[] Int</literal>; tuples
          continue to refer to the standard Prelude tuples; the
          translation for list comprehensions continues to use
          <literal>Prelude.map</literal> etc.</para>

	  <para>However, <option>-fno-implicit-prelude</option> does
	  change the handling of certain built-in syntax: see <xref
	  linkend="rebindable-syntax"/>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fimplicit-params</option></term>
	<listitem>
	  <para>Enables implicit parameters (see <xref
	  linkend="implicit-parameters"/>).  Currently also implied by 
	  <option>-fglasgow-exts</option>.</para>

	  <para>Syntax stolen:
	  <literal>?<replaceable>varid</replaceable></literal>,
	  <literal>%<replaceable>varid</replaceable></literal>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fscoped-type-variables</option></term>
	<listitem>
	  <para>Enables lexically-scoped type variables (see <xref
	  linkend="scoped-type-variables"/>).  Implied by
	  <option>-fglasgow-exts</option>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fth</option></term>
	<listitem>
	  <para>Enables Template Haskell (see <xref
	  linkend="template-haskell"/>).  Currently also implied by
	  <option>-fglasgow-exts</option>.</para>

	  <para>Syntax stolen: <literal>[|</literal>,
	  <literal>[e|</literal>, <literal>[p|</literal>,
	  <literal>[d|</literal>, <literal>[t|</literal>,
	  <literal>$(</literal>,
	  <literal>$<replaceable>varid</replaceable></literal>.</para>
	</listitem>
      </varlistentry>

    </variablelist>
  </sect1>

<!-- UNBOXED TYPES AND PRIMITIVE OPERATIONS -->
<!--    included from primitives.sgml  -->
<!-- &primitives; -->
<sect1 id="primitives">
  <title>Unboxed types and primitive operations</title>

<para>GHC is built on a raft of primitive data types and operations.
While you really can use this stuff to write fast code,
  we generally find it a lot less painful, and more satisfying in the
  long run, to use higher-level language features and libraries.  With
  any luck, the code you write will be optimised to the efficient
  unboxed version in any case.  And if it isn't, we'd like to know
  about it.</para>

<para>We do not currently have good, up-to-date documentation about the
primitives, perhaps because they are mainly intended for internal use.
There used to be a long section about them here in the User Guide, but it
became out of date, and wrong information is worse than none.</para>

<para>The Real Truth about what primitive types there are, and what operations
work over those types, is held in the file
<filename>fptools/ghc/compiler/prelude/primops.txt.pp</filename>.
This file is used directly to generate GHC's primitive-operation definitions, so
it is always correct!  It is also intended for processing into text.</para>

<para> Indeed,
the result of such processing is part of the description of the 
 <ulink
      url="http://haskell.cs.yale.edu/ghc/docs/papers/core.ps.gz">External
	 Core language</ulink>.
So that document is a good place to look for a type-set version.
We would be very happy if someone wanted to volunteer to produce an SGML
back end to the program that processes <filename>primops.txt</filename> so that
we could include the results here in the User Guide.</para>

<para>What follows here is a brief summary of some main points.</para>
  
<sect2 id="glasgow-unboxed">
<title>Unboxed types
</title>

<para>
<indexterm><primary>Unboxed types (Glasgow extension)</primary></indexterm>
</para>

<para>Most types in GHC are <firstterm>boxed</firstterm>, which means
that values of that type are represented by a pointer to a heap
object.  The representation of a Haskell <literal>Int</literal>, for
example, is a two-word heap object.  An <firstterm>unboxed</firstterm>
type, however, is represented by the value itself, no pointers or heap
allocation are involved.
</para>

<para>
Unboxed types correspond to the &ldquo;raw machine&rdquo; types you
would use in C: <literal>Int&num;</literal> (long int),
<literal>Double&num;</literal> (double), <literal>Addr&num;</literal>
(void *), etc.  The <emphasis>primitive operations</emphasis>
(PrimOps) on these types are what you might expect; e.g.,
<literal>(+&num;)</literal> is addition on
<literal>Int&num;</literal>s, and is the machine-addition that we all
know and love&mdash;usually one instruction.
</para>

<para>
Primitive (unboxed) types cannot be defined in Haskell, and are
therefore built into the language and compiler.  Primitive types are
always unlifted; that is, a value of a primitive type cannot be
bottom.  We use the convention that primitive types, values, and
operations have a <literal>&num;</literal> suffix.
</para>

<para>
Primitive values are often represented by a simple bit-pattern, such
as <literal>Int&num;</literal>, <literal>Float&num;</literal>,
<literal>Double&num;</literal>.  But this is not necessarily the case:
a primitive value might be represented by a pointer to a
heap-allocated object.  Examples include
<literal>Array&num;</literal>, the type of primitive arrays.  A
primitive array is heap-allocated because it is too big a value to fit
in a register, and would be too expensive to copy around; in a sense,
it is accidental that it is represented by a pointer.  If a pointer
represents a primitive value, then it really does point to that value:
no unevaluated thunks, no indirections&hellip;nothing can be at the
other end of the pointer than the primitive value.
A numerically-intensive program using unboxed types can
go a <emphasis>lot</emphasis> faster than its &ldquo;standard&rdquo;
counterpart&mdash;we saw a threefold speedup on one example.
</para>

<para>
There are some restrictions on the use of primitive types:
<itemizedlist>
<listitem><para>The main restriction
is that you can't pass a primitive value to a polymorphic
function or store one in a polymorphic data type.  This rules out
things like <literal>[Int&num;]</literal> (i.e. lists of primitive
integers).  The reason for this restriction is that polymorphic
arguments and constructor fields are assumed to be pointers: if an
unboxed integer is stored in one of these, the garbage collector would
attempt to follow it, leading to unpredictable space leaks.  Or a
<function>seq</function> operation on the polymorphic component may
attempt to dereference the pointer, with disastrous results.  Even
worse, the unboxed value might be larger than a pointer
(<literal>Double&num;</literal> for instance).
</para>
</listitem>
<listitem><para> You cannot bind a variable with an unboxed type
in a <emphasis>top-level</emphasis> binding.
</para></listitem>
<listitem><para> You cannot bind a variable with an unboxed type
in a <emphasis>recursive</emphasis> binding.
</para></listitem>
<listitem><para> You may bind unboxed variables in a (non-recursive,
non-top-level) pattern binding, but any such variable causes the entire
pattern-match
to become strict.  For example:
<programlisting>
  data Foo = Foo Int Int#

  f x = let (Foo a b, w) = ..rhs.. in ..body..
</programlisting>
Since <literal>b</literal> has type <literal>Int#</literal>, the entire pattern
match
is strict, and the program behaves as if you had written
<programlisting>
  data Foo = Foo Int Int#

  f x = case ..rhs.. of { (Foo a b, w) -> ..body.. }
</programlisting>
</para>
</listitem>
</itemizedlist>
</para>

</sect2>

<sect2 id="unboxed-tuples">
<title>Unboxed Tuples
</title>

<para>
Unboxed tuples aren't really exported by <literal>GHC.Exts</literal>,
they're available by default with <option>-fglasgow-exts</option>.  An
unboxed tuple looks like this:
</para>

<para>

<programlisting>
(# e_1, ..., e_n #)
</programlisting>

</para>

<para>
where <literal>e&lowbar;1..e&lowbar;n</literal> are expressions of any
type (primitive or non-primitive).  The type of an unboxed tuple looks
the same.
</para>

<para>
Unboxed tuples are used for functions that need to return multiple
values, but they avoid the heap allocation normally associated with
using fully-fledged tuples.  When an unboxed tuple is returned, the
components are put directly into registers or on the stack; the
unboxed tuple itself does not have a composite representation.  Many
of the primitive operations listed in <literal>primops.txt.pp</literal> return unboxed
tuples.
In particular, the <literal>IO</literal> and <literal>ST</literal> monads use unboxed
tuples to avoid unnecessary allocation during sequences of operations.
</para>

<para>
There are some pretty stringent restrictions on the use of unboxed tuples:
<itemizedlist>
<listitem>

<para>
Values of unboxed tuple types are subject to the same restrictions as
other unboxed types; i.e. they may not be stored in polymorphic data
structures or passed to polymorphic functions.

</para>
</listitem>
<listitem>

<para>
No variable can have an unboxed tuple type, nor may a constructor or function
argument have an unboxed tuple type.  The following are all illegal:


<programlisting>
  data Foo = Foo (# Int, Int #)

  f :: (# Int, Int #) -&#62; (# Int, Int #)
  f x = x

  g :: (# Int, Int #) -&#62; Int
  g (# a,b #) = a

  h x = let y = (# x,x #) in ...
</programlisting>
</para>
</listitem>
</itemizedlist>
</para>
<para>
The typical use of unboxed tuples is simply to return multiple values,
binding those multiple results with a <literal>case</literal> expression, thus:
<programlisting>
  f x y = (# x+1, y-1 #)
  g x = case f x x of { (# a, b #) -&#62; a + b }
</programlisting>
You can have an unboxed tuple in a pattern binding, thus
<programlisting>
  f x = let (# p,q #) = h x in ..body..
</programlisting>
If the types of <literal>p</literal> and <literal>q</literal> are not unboxed,
the resulting binding is lazy like any other Haskell pattern binding.  The 
above example desugars like this:
<programlisting>
  f x = let t = case h x o f{ (# p,q #) -> (p,q)
            p = fst t
            q = snd t
        in ..body..
</programlisting>
Indeed, the bindings can even be recursive.
</para>

</sect2>
</sect1>


<!-- ====================== SYNTACTIC EXTENSIONS =======================  -->

<sect1 id="syntax-extns">
<title>Syntactic extensions</title>
 
    <!-- ====================== HIERARCHICAL MODULES =======================  -->

    <sect2 id="hierarchical-modules">
      <title>Hierarchical Modules</title>

      <para>GHC supports a small extension to the syntax of module
      names: a module name is allowed to contain a dot
      <literal>&lsquo;.&rsquo;</literal>.  This is also known as the
      &ldquo;hierarchical module namespace&rdquo; extension, because
      it extends the normally flat Haskell module namespace into a
      more flexible hierarchy of modules.</para>

      <para>This extension has very little impact on the language
      itself; modules names are <emphasis>always</emphasis> fully
      qualified, so you can just think of the fully qualified module
      name as <quote>the module name</quote>.  In particular, this
      means that the full module name must be given after the
      <literal>module</literal> keyword at the beginning of the
      module; for example, the module <literal>A.B.C</literal> must
      begin</para>

<programlisting>module A.B.C</programlisting>


      <para>It is a common strategy to use the <literal>as</literal>
      keyword to save some typing when using qualified names with
      hierarchical modules.  For example:</para>

<programlisting>
import qualified Control.Monad.ST.Strict as ST
</programlisting>

      <para>For details on how GHC searches for source and interface
      files in the presence of hierarchical modules, see <xref
      linkend="search-path"/>.</para>

      <para>GHC comes with a large collection of libraries arranged
      hierarchically; see the accompanying library documentation.
      There is an ongoing project to create and maintain a stable set
      of <quote>core</quote> libraries used by several Haskell
      compilers, and the libraries that GHC comes with represent the
      current status of that project.  For more details, see <ulink
      url="http://www.haskell.org/~simonmar/libraries/libraries.html">Haskell
      Libraries</ulink>.</para>

    </sect2>

    <!-- ====================== PATTERN GUARDS =======================  -->

<sect2 id="pattern-guards">
<title>Pattern guards</title>

<para>
<indexterm><primary>Pattern guards (Glasgow extension)</primary></indexterm>
The discussion that follows is an abbreviated version of Simon Peyton Jones's original <ulink url="http://research.microsoft.com/~simonpj/Haskell/guards.html">proposal</ulink>. (Note that the proposal was written before pattern guards were implemented, so refers to them as unimplemented.)
</para>

<para>
Suppose we have an abstract data type of finite maps, with a
lookup operation:

<programlisting>
lookup :: FiniteMap -> Int -> Maybe Int
</programlisting>

The lookup returns <function>Nothing</function> if the supplied key is not in the domain of the mapping, and <function>(Just v)</function> otherwise,
where <varname>v</varname> is the value that the key maps to.  Now consider the following definition:
</para>

<programlisting>
clunky env var1 var2 | ok1 &amp;&amp; ok2 = val1 + val2
| otherwise  = var1 + var2
where
  m1 = lookup env var1
  m2 = lookup env var2
  ok1 = maybeToBool m1
  ok2 = maybeToBool m2
  val1 = expectJust m1
  val2 = expectJust m2
</programlisting>

<para>
The auxiliary functions are 
</para>

<programlisting>
maybeToBool :: Maybe a -&gt; Bool
maybeToBool (Just x) = True
maybeToBool Nothing  = False

expectJust :: Maybe a -&gt; a
expectJust (Just x) = x
expectJust Nothing  = error "Unexpected Nothing"
</programlisting>

<para>
What is <function>clunky</function> doing? The guard <literal>ok1 &amp;&amp;
ok2</literal> checks that both lookups succeed, using
<function>maybeToBool</function> to convert the <function>Maybe</function>
types to booleans. The (lazily evaluated) <function>expectJust</function>
calls extract the values from the results of the lookups, and binds the
returned values to <varname>val1</varname> and <varname>val2</varname>
respectively.  If either lookup fails, then clunky takes the
<literal>otherwise</literal> case and returns the sum of its arguments.
</para>

<para>
This is certainly legal Haskell, but it is a tremendously verbose and
un-obvious way to achieve the desired effect.  Arguably, a more direct way
to write clunky would be to use case expressions:
</para>

<programlisting>
clunky env var1 var1 = case lookup env var1 of
  Nothing -&gt; fail
  Just val1 -&gt; case lookup env var2 of
    Nothing -&gt; fail
    Just val2 -&gt; val1 + val2
where
  fail = val1 + val2
</programlisting>

<para>
This is a bit shorter, but hardly better.  Of course, we can rewrite any set
of pattern-matching, guarded equations as case expressions; that is
precisely what the compiler does when compiling equations! The reason that
Haskell provides guarded equations is because they allow us to write down
the cases we want to consider, one at a time, independently of each other. 
This structure is hidden in the case version.  Two of the right-hand sides
are really the same (<function>fail</function>), and the whole expression
tends to become more and more indented. 
</para>

<para>
Here is how I would write clunky:
</para>

<programlisting>
clunky env var1 var1
  | Just val1 &lt;- lookup env var1
  , Just val2 &lt;- lookup env var2
  = val1 + val2
...other equations for clunky...
</programlisting>

<para>
The semantics should be clear enough.  The qualifiers are matched in order. 
For a <literal>&lt;-</literal> qualifier, which I call a pattern guard, the
right hand side is evaluated and matched against the pattern on the left. 
If the match fails then the whole guard fails and the next equation is
tried.  If it succeeds, then the appropriate binding takes place, and the
next qualifier is matched, in the augmented environment.  Unlike list
comprehensions, however, the type of the expression to the right of the
<literal>&lt;-</literal> is the same as the type of the pattern to its
left.  The bindings introduced by pattern guards scope over all the
remaining guard qualifiers, and over the right hand side of the equation.
</para>

<para>
Just as with list comprehensions, boolean expressions can be freely mixed
with among the pattern guards.  For example:
</para>

<programlisting>
f x | [y] &lt;- x
    , y > 3
    , Just z &lt;- h y
    = ...
</programlisting>

<para>
Haskell's current guards therefore emerge as a special case, in which the
qualifier list has just one element, a boolean expression.
</para>
</sect2>

    <!-- ===================== Recursive do-notation ===================  -->

<sect2 id="mdo-notation">
<title>The recursive do-notation
</title>

<para> The recursive do-notation (also known as mdo-notation) is implemented as described in
"A recursive do for Haskell",
Levent Erkok, John Launchbury",
Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. 
</para>
<para>
The do-notation of Haskell does not allow <emphasis>recursive bindings</emphasis>,
that is, the variables bound in a do-expression are visible only in the textually following 
code block. Compare this to a let-expression, where bound variables are visible in the entire binding
group. It turns out that several applications can benefit from recursive bindings in
the do-notation, and this extension provides the necessary syntactic support.
</para>
<para>
Here is a simple (yet contrived) example:
</para>
<programlisting>
import Control.Monad.Fix

justOnes = mdo xs &lt;- Just (1:xs)
               return xs
</programlisting>
<para>
As you can guess <literal>justOnes</literal> will evaluate to <literal>Just [1,1,1,...</literal>.
</para>

<para>
The Control.Monad.Fix library introduces the <literal>MonadFix</literal> class. It's definition is:
</para>
<programlisting>
class Monad m => MonadFix m where
   mfix :: (a -> m a) -> m a
</programlisting>
<para>
The function <literal>mfix</literal>
dictates how the required recursion operation should be performed. If recursive bindings are required for a monad,
then that monad must be declared an instance of the <literal>MonadFix</literal> class.
For details, see the above mentioned reference.
</para>
<para>
The following instances of <literal>MonadFix</literal> are automatically provided: List, Maybe, IO. 
Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class 
for Haskell's internal state monad (strict and lazy, respectively).
</para>
<para>
There are three important points in using the recursive-do notation:
<itemizedlist>
<listitem><para>
The recursive version of the do-notation uses the keyword <literal>mdo</literal> (rather
than <literal>do</literal>).
</para></listitem>

<listitem><para>
You should <literal>import Control.Monad.Fix</literal>.
(Note: Strictly speaking, this import is required only when you need to refer to the name
<literal>MonadFix</literal> in your program, but the import is always safe, and the programmers
are encouraged to always import this module when using the mdo-notation.)
</para></listitem>

<listitem><para>
As with other extensions, ghc should be given the flag <literal>-fglasgow-exts</literal>
</para></listitem>
</itemizedlist>
</para>

<para>
The web page: <ulink url="http://www.cse.ogi.edu/PacSoft/projects/rmb">http://www.cse.ogi.edu/PacSoft/projects/rmb</ulink>
contains up to date information on recursive monadic bindings.
</para>

<para>
Historical note: The old implementation of the mdo-notation (and most
of the existing documents) used the name
<literal>MonadRec</literal> for the class and the corresponding library.
This name is not supported by GHC.
</para>

</sect2>


   <!-- ===================== PARALLEL LIST COMPREHENSIONS ===================  -->

  <sect2 id="parallel-list-comprehensions">
    <title>Parallel List Comprehensions</title>
    <indexterm><primary>list comprehensions</primary><secondary>parallel</secondary>
    </indexterm>
    <indexterm><primary>parallel list comprehensions</primary>
    </indexterm>

    <para>Parallel list comprehensions are a natural extension to list
    comprehensions.  List comprehensions can be thought of as a nice
    syntax for writing maps and filters.  Parallel comprehensions
    extend this to include the zipWith family.</para>

    <para>A parallel list comprehension has multiple independent
    branches of qualifier lists, each separated by a `|' symbol.  For
    example, the following zips together two lists:</para>

<programlisting>
   [ (x, y) | x &lt;- xs | y &lt;- ys ] 
</programlisting>

    <para>The behavior of parallel list comprehensions follows that of
    zip, in that the resulting list will have the same length as the
    shortest branch.</para>

    <para>We can define parallel list comprehensions by translation to
    regular comprehensions.  Here's the basic idea:</para>

    <para>Given a parallel comprehension of the form: </para>

<programlisting>
   [ e | p1 &lt;- e11, p2 &lt;- e12, ... 
       | q1 &lt;- e21, q2 &lt;- e22, ... 
       ... 
   ] 
</programlisting>

    <para>This will be translated to: </para>

<programlisting>
   [ e | ((p1,p2), (q1,q2), ...) &lt;- zipN [(p1,p2) | p1 &lt;- e11, p2 &lt;- e12, ...] 
                                         [(q1,q2) | q1 &lt;- e21, q2 &lt;- e22, ...] 
                                         ... 
   ] 
</programlisting>

    <para>where `zipN' is the appropriate zip for the given number of
    branches.</para>

  </sect2>

<sect2 id="rebindable-syntax">
<title>Rebindable syntax</title>


      <para>GHC allows most kinds of built-in syntax to be rebound by
      the user, to facilitate replacing the <literal>Prelude</literal>
      with a home-grown version, for example.</para>

            <para>You may want to define your own numeric class
            hierarchy.  It completely defeats that purpose if the
            literal "1" means "<literal>Prelude.fromInteger
            1</literal>", which is what the Haskell Report specifies.
            So the <option>-fno-implicit-prelude</option> flag causes
            the following pieces of built-in syntax to refer to
            <emphasis>whatever is in scope</emphasis>, not the Prelude
            versions:

	    <itemizedlist>
	      <listitem>
		<para>An integer literal <literal>368</literal> means
                "<literal>fromInteger (368::Integer)</literal>", rather than
                "<literal>Prelude.fromInteger (368::Integer)</literal>".
</para> </listitem>	    

      <listitem><para>Fractional literals are handed in just the same way,
	  except that the translation is 
	      <literal>fromRational (3.68::Rational)</literal>.
</para> </listitem>	    

	  <listitem><para>The equality test in an overloaded numeric pattern
	      uses whatever <literal>(==)</literal> is in scope.
</para> </listitem>	    

	  <listitem><para>The subtraction operation, and the
	  greater-than-or-equal test, in <literal>n+k</literal> patterns
	      use whatever <literal>(-)</literal> and <literal>(>=)</literal> are in scope.
	      </para></listitem>

	      <listitem>
		<para>Negation (e.g. "<literal>- (f x)</literal>")
		means "<literal>negate (f x)</literal>", both in numeric
		patterns, and expressions.
	      </para></listitem>

	      <listitem>
	  <para>"Do" notation is translated using whatever
	      functions <literal>(>>=)</literal>,
	      <literal>(>>)</literal>, and <literal>fail</literal>,
	      are in scope (not the Prelude
	      versions).  List comprehensions, mdo (<xref linkend="mdo-notation"/>), and parallel array
	      comprehensions, are unaffected.  </para></listitem>

	      <listitem>
		<para>Arrow
		notation (see <xref linkend="arrow-notation"/>)
		uses whatever <literal>arr</literal>,
		<literal>(>>>)</literal>, <literal>first</literal>,
		<literal>app</literal>, <literal>(|||)</literal> and
		<literal>loop</literal> functions are in scope. But unlike the
		other constructs, the types of these functions must match the
		Prelude types very closely.  Details are in flux; if you want
		to use this, ask!
	      </para></listitem>
	    </itemizedlist>
In all cases (apart from arrow notation), the static semantics should be that of the desugared form,
even if that is a little unexpected. For emample, the 
static semantics of the literal <literal>368</literal>
is exactly that of <literal>fromInteger (368::Integer)</literal>; it's fine for
<literal>fromInteger</literal> to have any of the types:
<programlisting>
fromInteger :: Integer -> Integer
fromInteger :: forall a. Foo a => Integer -> a
fromInteger :: Num a => a -> Integer
fromInteger :: Integer -> Bool -> Bool
</programlisting>
</para>
	        
	     <para>Be warned: this is an experimental facility, with
	     fewer checks than usual.  Use <literal>-dcore-lint</literal>
	     to typecheck the desugared program.  If Core Lint is happy
	     you should be all right.</para>

</sect2>
</sect1>


<!-- TYPE SYSTEM EXTENSIONS -->
<sect1 id="type-extensions">
<title>Type system extensions</title>


<sect2>
<title>Data types and type synonyms</title>

<sect3 id="nullary-types">
<title>Data types with no constructors</title>

<para>With the <option>-fglasgow-exts</option> flag, GHC lets you declare
a data type with no constructors.  For example:</para>

<programlisting>
  data S      -- S :: *
  data T a    -- T :: * -> *
</programlisting>

<para>Syntactically, the declaration lacks the "= constrs" part.  The 
type can be parameterised over types of any kind, but if the kind is
not <literal>*</literal> then an explicit kind annotation must be used
(see <xref linkend="sec-kinding"/>).</para>

<para>Such data types have only one value, namely bottom.
Nevertheless, they can be useful when defining "phantom types".</para>
</sect3>

<sect3 id="infix-tycons">
<title>Infix type constructors, classes, and type variables</title>

<para>
GHC allows type constructors, classes, and type variables to be operators, and
to be written infix, very much like expressions.  More specifically:
<itemizedlist>
<listitem><para>
  A type constructor or class can be an operator, beginning with a colon; e.g. <literal>:*:</literal>.
  The lexical syntax is the same as that for data constructors.
  </para></listitem>
<listitem><para>
  Data type and type-synonym declarations can be written infix, parenthesised
  if you want further arguments.  E.g.
<screen>
  data a :*: b = Foo a b
  type a :+: b = Either a b
  class a :=: b where ...

  data (a :**: b) x = Baz a b x
  type (a :++: b) y = Either (a,b) y
</screen>
  </para></listitem>
<listitem><para>
  Types, and class constraints, can be written infix.  For example
  <screen>
	x :: Int :*: Bool
        f :: (a :=: b) => a -> b
  </screen>
  </para></listitem>
<listitem><para>
  A type variable can be an (unqualified) operator e.g. <literal>+</literal>.
  The lexical syntax is the same as that for variable operators, excluding "(.)",
  "(!)", and "(*)".  In a binding position, the operator must be
  parenthesised.  For example:
<programlisting>
   type T (+) = Int + Int
   f :: T Either
   f = Left 3
 
   liftA2 :: Arrow (~>)
	  => (a -> b -> c) -> (e ~> a) -> (e ~> b) -> (e ~> c)
   liftA2 = ...
</programlisting>
  </para></listitem>
<listitem><para>
  Back-quotes work
  as for expressions, both for type constructors and type variables;  e.g. <literal>Int `Either` Bool</literal>, or
  <literal>Int `a` Bool</literal>.  Similarly, parentheses work the same; e.g.  <literal>(:*:) Int Bool</literal>.
  </para></listitem>
<listitem><para>
  Fixities may be declared for type constructors, or classes, just as for data constructors.  However,
  one cannot distinguish between the two in a fixity declaration; a fixity declaration
  sets the fixity for a data constructor and the corresponding type constructor.  For example:
<screen>
  infixl 7 T, :*:
</screen>
  sets the fixity for both type constructor <literal>T</literal> and data constructor <literal>T</literal>,
  and similarly for <literal>:*:</literal>.
  <literal>Int `a` Bool</literal>.
  </para></listitem>
<listitem><para>
  Function arrow is <literal>infixr</literal> with fixity 0.  (This might change; I'm not sure what it should be.)
  </para></listitem>

</itemizedlist>
</para>
</sect3>

<sect3 id="type-synonyms">
<title>Liberalised type synonyms</title>

<para>
Type synonyms are like macros at the type level, and
GHC does validity checking on types <emphasis>only after expanding type synonyms</emphasis>.
That means that GHC can be very much more liberal about type synonyms than Haskell 98:
<itemizedlist>
<listitem> <para>You can write a <literal>forall</literal> (including overloading)
in a type synonym, thus:
<programlisting>
  type Discard a = forall b. Show b => a -> b -> (a, String)

  f :: Discard a
  f x y = (x, show y)

  g :: Discard Int -> (Int,Bool)    -- A rank-2 type
  g f = f Int True
</programlisting>
</para>
</listitem>

<listitem><para>
You can write an unboxed tuple in a type synonym:
<programlisting>
  type Pr = (# Int, Int #)

  h :: Int -> Pr
  h x = (# x, x #)
</programlisting>
</para></listitem>

<listitem><para>
You can apply a type synonym to a forall type:
<programlisting>
  type Foo a = a -> a -> Bool
 
  f :: Foo (forall b. b->b)
</programlisting>
After expanding the synonym, <literal>f</literal> has the legal (in GHC) type:
<programlisting>
  f :: (forall b. b->b) -> (forall b. b->b) -> Bool
</programlisting>
</para></listitem>

<listitem><para>
You can apply a type synonym to a partially applied type synonym:
<programlisting>
  type Generic i o = forall x. i x -> o x
  type Id x = x
  
  foo :: Generic Id []
</programlisting>
After expanding the synonym, <literal>foo</literal> has the legal (in GHC) type:
<programlisting>
  foo :: forall x. x -> [x]
</programlisting>
</para></listitem>

</itemizedlist>
</para>

<para>
GHC currently does kind checking before expanding synonyms (though even that
could be changed.)
</para>
<para>
After expanding type synonyms, GHC does validity checking on types, looking for
the following mal-formedness which isn't detected simply by kind checking:
<itemizedlist>
<listitem><para>
Type constructor applied to a type involving for-alls.
</para></listitem>
<listitem><para>
Unboxed tuple on left of an arrow.
</para></listitem>
<listitem><para>
Partially-applied type synonym.
</para></listitem>
</itemizedlist>
So, for example,
this will be rejected:
<programlisting>
  type Pr = (# Int, Int #)

  h :: Pr -> Int
  h x = ...
</programlisting>
because GHC does not allow  unboxed tuples on the left of a function arrow.
</para>
</sect3>


<sect3 id="existential-quantification">
<title>Existentially quantified data constructors
</title>

<para>
The idea of using existential quantification in data type declarations
was suggested by Perry, and implemented in Hope+ (Nigel Perry, <emphasis>The Implementation
of Practical Functional Programming Languages</emphasis>, PhD Thesis, University of
London, 1991). It was later formalised by Laufer and Odersky
(<emphasis>Polymorphic type inference and abstract data types</emphasis>,
TOPLAS, 16(5), pp1411-1430, 1994).
It's been in Lennart
Augustsson's <command>hbc</command> Haskell compiler for several years, and
proved very useful.  Here's the idea.  Consider the declaration:
</para>

<para>

<programlisting>
  data Foo = forall a. MkFoo a (a -> Bool)
           | Nil
</programlisting>

</para>

<para>
The data type <literal>Foo</literal> has two constructors with types:
</para>

<para>

<programlisting>
  MkFoo :: forall a. a -> (a -> Bool) -> Foo
  Nil   :: Foo
</programlisting>

</para>

<para>
Notice that the type variable <literal>a</literal> in the type of <function>MkFoo</function>
does not appear in the data type itself, which is plain <literal>Foo</literal>.
For example, the following expression is fine:
</para>

<para>

<programlisting>
  [MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]
</programlisting>

</para>

<para>
Here, <literal>(MkFoo 3 even)</literal> packages an integer with a function
<function>even</function> that maps an integer to <literal>Bool</literal>; and <function>MkFoo 'c'
isUpper</function> packages a character with a compatible function.  These
two things are each of type <literal>Foo</literal> and can be put in a list.
</para>

<para>
What can we do with a value of type <literal>Foo</literal>?.  In particular,
what happens when we pattern-match on <function>MkFoo</function>?
</para>

<para>

<programlisting>
  f (MkFoo val fn) = ???
</programlisting>

</para>

<para>
Since all we know about <literal>val</literal> and <function>fn</function> is that they
are compatible, the only (useful) thing we can do with them is to
apply <function>fn</function> to <literal>val</literal> to get a boolean.  For example:
</para>

<para>

<programlisting>
  f :: Foo -> Bool
  f (MkFoo val fn) = fn val
</programlisting>

</para>

<para>
What this allows us to do is to package heterogenous values
together with a bunch of functions that manipulate them, and then treat
that collection of packages in a uniform manner.  You can express
quite a bit of object-oriented-like programming this way.
</para>

<sect4 id="existential">
<title>Why existential?
</title>

<para>
What has this to do with <emphasis>existential</emphasis> quantification?
Simply that <function>MkFoo</function> has the (nearly) isomorphic type
</para>

<para>

<programlisting>
  MkFoo :: (exists a . (a, a -> Bool)) -> Foo
</programlisting>

</para>

<para>
But Haskell programmers can safely think of the ordinary
<emphasis>universally</emphasis> quantified type given above, thereby avoiding
adding a new existential quantification construct.
</para>

</sect4>

<sect4>
<title>Type classes</title>

<para>
An easy extension is to allow
arbitrary contexts before the constructor.  For example:
</para>

<para>

<programlisting>
data Baz = forall a. Eq a => Baz1 a a
         | forall b. Show b => Baz2 b (b -> b)
</programlisting>

</para>

<para>
The two constructors have the types you'd expect:
</para>

<para>

<programlisting>
Baz1 :: forall a. Eq a => a -> a -> Baz
Baz2 :: forall b. Show b => b -> (b -> b) -> Baz
</programlisting>

</para>

<para>
But when pattern matching on <function>Baz1</function> the matched values can be compared
for equality, and when pattern matching on <function>Baz2</function> the first matched
value can be converted to a string (as well as applying the function to it).
So this program is legal:
</para>

<para>

<programlisting>
  f :: Baz -> String
  f (Baz1 p q) | p == q    = "Yes"
               | otherwise = "No"
  f (Baz2 v fn)            = show (fn v)
</programlisting>

</para>

<para>
Operationally, in a dictionary-passing implementation, the
constructors <function>Baz1</function> and <function>Baz2</function> must store the
dictionaries for <literal>Eq</literal> and <literal>Show</literal> respectively, and
extract it on pattern matching.
</para>

<para>
Notice the way that the syntax fits smoothly with that used for
universal quantification earlier.
</para>

</sect4>

<sect4>
<title>Record Constructors</title>

<para>
GHC allows existentials to be used with records syntax as well.  For example:

<programlisting>
data Counter a = forall self. NewCounter
    { _this    :: self
    , _inc     :: self -> self
    , _display :: self -> IO ()
    , tag      :: a
    }
</programlisting>
Here <literal>tag</literal> is a public field, with a well-typed selector
function <literal>tag :: Counter a -> a</literal>.  The <literal>self</literal>
type is hidden from the outside; any attempt to apply <literal>_this</literal>,
<literal>_inc</literal> or <literal>_output</literal> as functions will raise a
compile-time error.  In other words, <emphasis>GHC defines a record selector function
only for fields whose type does not mention the existentially-quantified variables</emphasis>.
(This example used an underscore in the fields for which record selectors
will not be defined, but that is only programming style; GHC ignores them.)
</para>

<para>
To make use of these hidden fields, we need to create some helper functions:

<programlisting>
inc :: Counter a -> Counter a
inc (NewCounter x i d t) = NewCounter
    { _this = i x, _inc = i, _display = d, tag = t } 

display :: Counter a -> IO ()
display NewCounter{ _this = x, _display = d } = d x
</programlisting>

Now we can define counters with different underlying implementations:

<programlisting>
counterA :: Counter String 
counterA = NewCounter
    { _this = 0, _inc = (1+), _display = print, tag = "A" }

counterB :: Counter String 
counterB = NewCounter
    { _this = "", _inc = ('#':), _display = putStrLn, tag = "B" }

main = do
    display (inc counterA)         -- prints "1"
    display (inc (inc counterB))   -- prints "##"
</programlisting>

In GADT declarations (see <xref linkend="gadt"/>), the explicit
<literal>forall</literal> may be omitted.  For example, we can express
the same <literal>Counter a</literal> using GADT:

<programlisting>
data Counter a where
    NewCounter { _this    :: self
               , _inc     :: self -> self
               , _display :: self -> IO ()
               , tag      :: a
               }
        :: Counter a
</programlisting>

At the moment, record update syntax is only supported for Haskell 98 data types,
so the following function does <emphasis>not</emphasis> work:

<programlisting>
-- This is invalid; use explicit NewCounter instead for now
setTag :: Counter a -> a -> Counter a
setTag obj t = obj{ tag = t }
</programlisting>

</para>

</sect4>


<sect4>
<title>Restrictions</title>

<para>
There are several restrictions on the ways in which existentially-quantified
constructors can be use.
</para>

<para>

<itemizedlist>
<listitem>

<para>
 When pattern matching, each pattern match introduces a new,
distinct, type for each existential type variable.  These types cannot
be unified with any other type, nor can they escape from the scope of
the pattern match.  For example, these fragments are incorrect:


<programlisting>
f1 (MkFoo a f) = a
</programlisting>


Here, the type bound by <function>MkFoo</function> "escapes", because <literal>a</literal>
is the result of <function>f1</function>.  One way to see why this is wrong is to
ask what type <function>f1</function> has:


<programlisting>
  f1 :: Foo -> a             -- Weird!
</programlisting>


What is this "<literal>a</literal>" in the result type? Clearly we don't mean
this:


<programlisting>
  f1 :: forall a. Foo -> a   -- Wrong!
</programlisting>


The original program is just plain wrong.  Here's another sort of error


<programlisting>
  f2 (Baz1 a b) (Baz1 p q) = a==q
</programlisting>


It's ok to say <literal>a==b</literal> or <literal>p==q</literal>, but
<literal>a==q</literal> is wrong because it equates the two distinct types arising
from the two <function>Baz1</function> constructors.


</para>
</listitem>
<listitem>

<para>
You can't pattern-match on an existentially quantified
constructor in a <literal>let</literal> or <literal>where</literal> group of
bindings. So this is illegal:


<programlisting>
  f3 x = a==b where { Baz1 a b = x }
</programlisting>

Instead, use a <literal>case</literal> expression:

<programlisting>
  f3 x = case x of Baz1 a b -> a==b
</programlisting>

In general, you can only pattern-match
on an existentially-quantified constructor in a <literal>case</literal> expression or
in the patterns of a function definition.

The reason for this restriction is really an implementation one.
Type-checking binding groups is already a nightmare without
existentials complicating the picture.  Also an existential pattern
binding at the top level of a module doesn't make sense, because it's
not clear how to prevent the existentially-quantified type "escaping".
So for now, there's a simple-to-state restriction.  We'll see how
annoying it is.

</para>
</listitem>
<listitem>

<para>
You can't use existential quantification for <literal>newtype</literal>
declarations.  So this is illegal:


<programlisting>
  newtype T = forall a. Ord a => MkT a
</programlisting>


Reason: a value of type <literal>T</literal> must be represented as a
pair of a dictionary for <literal>Ord t</literal> and a value of type
<literal>t</literal>.  That contradicts the idea that
<literal>newtype</literal> should have no concrete representation.
You can get just the same efficiency and effect by using
<literal>data</literal> instead of <literal>newtype</literal>.  If
there is no overloading involved, then there is more of a case for
allowing an existentially-quantified <literal>newtype</literal>,
because the <literal>data</literal> version does carry an
implementation cost, but single-field existentially quantified
constructors aren't much use.  So the simple restriction (no
existential stuff on <literal>newtype</literal>) stands, unless there
are convincing reasons to change it.


</para>
</listitem>
<listitem>

<para>
 You can't use <literal>deriving</literal> to define instances of a
data type with existentially quantified data constructors.

Reason: in most cases it would not make sense. For example:&num;

<programlisting>
data T = forall a. MkT [a] deriving( Eq )
</programlisting>

To derive <literal>Eq</literal> in the standard way we would need to have equality
between the single component of two <function>MkT</function> constructors:

<programlisting>
instance Eq T where
  (MkT a) == (MkT b) = ???
</programlisting>

But <varname>a</varname> and <varname>b</varname> have distinct types, and so can't be compared.
It's just about possible to imagine examples in which the derived instance
would make sense, but it seems altogether simpler simply to prohibit such
declarations.  Define your own instances!
</para>
</listitem>

</itemizedlist>

</para>

</sect4>
</sect3>

</sect2>



<sect2 id="multi-param-type-classes">
<title>Class declarations</title>

<para>
This section, and the next one, documents GHC's type-class extensions.
There's lots of background in the paper <ulink
url="http://research.microsoft.com/~simonpj/Papers/type-class-design-space" >Type
classes: exploring the design space</ulink > (Simon Peyton Jones, Mark
Jones, Erik Meijer).
</para>
<para>
All the extensions are enabled by the <option>-fglasgow-exts</option> flag.
</para>

<sect3>
<title>Multi-parameter type classes</title>
<para>
Multi-parameter type classes are permitted. For example:


<programlisting>
  class Collection c a where
    union :: c a -> c a -> c a
    ...etc.
</programlisting>

</para>
</sect3>

<sect3>
<title>The superclasses of a class declaration</title>

<para>
There are no restrictions on the context in a class declaration
(which introduces superclasses), except that the class hierarchy must
be acyclic.  So these class declarations are OK:


<programlisting>
  class Functor (m k) => FiniteMap m k where
    ...

  class (Monad m, Monad (t m)) => Transform t m where
    lift :: m a -> (t m) a
</programlisting>


</para>
<para>
As in Haskell 98, The class hierarchy must be acyclic.  However, the definition
of "acyclic" involves only the superclass relationships.  For example,
this is OK:


<programlisting>
  class C a where {
    op :: D b => a -> b -> b
  }

  class C a => D a where { ... }
</programlisting>


Here, <literal>C</literal> is a superclass of <literal>D</literal>, but it's OK for a
class operation <literal>op</literal> of <literal>C</literal> to mention <literal>D</literal>.  (It
would not be OK for <literal>D</literal> to be a superclass of <literal>C</literal>.)
</para>
</sect3>




<sect3 id="class-method-types">
<title>Class method types</title>

<para>
Haskell 98 prohibits class method types to mention constraints on the
class type variable, thus:
<programlisting>
  class Seq s a where
    fromList :: [a] -> s a
    elem     :: Eq a => a -> s a -> Bool
</programlisting>
The type of <literal>elem</literal> is illegal in Haskell 98, because it
contains the constraint <literal>Eq a</literal>, constrains only the 
class type variable (in this case <literal>a</literal>).
GHC lifts this restriction.
</para>


</sect3>
</sect2>

<sect2 id="functional-dependencies">
<title>Functional dependencies
</title>

<para> Functional dependencies are implemented as described by Mark Jones
in &ldquo;<ulink url="http://www.cse.ogi.edu/~mpj/pubs/fundeps.html">Type Classes with Functional Dependencies</ulink>&rdquo;, Mark P. Jones, 
In Proceedings of the 9th European Symposium on Programming, 
ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
.
</para>
<para>
Functional dependencies are introduced by a vertical bar in the syntax of a 
class declaration;  e.g. 
<programlisting>
  class (Monad m) => MonadState s m | m -> s where ...

  class Foo a b c | a b -> c where ...
</programlisting>
There should be more documentation, but there isn't (yet).  Yell if you need it.
</para>

<sect3><title>Rules for functional dependencies </title>
<para>
In a class declaration, all of the class type variables must be reachable (in the sense 
mentioned in <xref linkend="type-restrictions"/>)
from the free variables of each method type.
For example:

<programlisting>
  class Coll s a where
    empty  :: s
    insert :: s -> a -> s
</programlisting>

is not OK, because the type of <literal>empty</literal> doesn't mention
<literal>a</literal>.  Functional dependencies can make the type variable
reachable:
<programlisting>
  class Coll s a | s -> a where
    empty  :: s
    insert :: s -> a -> s
</programlisting>

Alternatively <literal>Coll</literal> might be rewritten

<programlisting>
  class Coll s a where
    empty  :: s a
    insert :: s a -> a -> s a
</programlisting>


which makes the connection between the type of a collection of
<literal>a</literal>'s (namely <literal>(s a)</literal>) and the element type <literal>a</literal>.
Occasionally this really doesn't work, in which case you can split the
class like this:


<programlisting>
  class CollE s where
    empty  :: s

  class CollE s => Coll s a where
    insert :: s -> a -> s
</programlisting>
</para>
</sect3>


<sect3>
<title>Background on functional dependencies</title>

<para>The following description of the motivation and use of functional dependencies is taken
from the Hugs user manual, reproduced here (with minor changes) by kind
permission of Mark Jones.
</para>
<para> 
Consider the following class, intended as part of a
library for collection types:
<programlisting>
   class Collects e ce where
       empty  :: ce
       insert :: e -> ce -> ce
       member :: e -> ce -> Bool
</programlisting>
The type variable e used here represents the element type, while ce is the type
of the container itself. Within this framework, we might want to define
instances of this class for lists or characteristic functions (both of which
can be used to represent collections of any equality type), bit sets (which can
be used to represent collections of characters), or hash tables (which can be
used to represent any collection whose elements have a hash function). Omitting
standard implementation details, this would lead to the following declarations: 
<programlisting>
   instance Eq e => Collects e [e] where ...
   instance Eq e => Collects e (e -> Bool) where ...
   instance Collects Char BitSet where ...
   instance (Hashable e, Collects a ce)
              => Collects e (Array Int ce) where ...
</programlisting>
All this looks quite promising; we have a class and a range of interesting
implementations. Unfortunately, there are some serious problems with the class
declaration. First, the empty function has an ambiguous type: 
<programlisting>
   empty :: Collects e ce => ce
</programlisting>
By "ambiguous" we mean that there is a type variable e that appears on the left
of the <literal>=&gt;</literal> symbol, but not on the right. The problem with
this is that, according to the theoretical foundations of Haskell overloading,
we cannot guarantee a well-defined semantics for any term with an ambiguous
type.
</para>
<para>
We can sidestep this specific problem by removing the empty member from the
class declaration. However, although the remaining members, insert and member,
do not have ambiguous types, we still run into problems when we try to use
them. For example, consider the following two functions: 
<programlisting>
   f x y = insert x . insert y
   g     = f True 'a'
</programlisting>
for which GHC infers the following types: 
<programlisting>
   f :: (Collects a c, Collects b c) => a -> b -> c -> c
   g :: (Collects Bool c, Collects Char c) => c -> c
</programlisting>
Notice that the type for f allows the two parameters x and y to be assigned
different types, even though it attempts to insert each of the two values, one
after the other, into the same collection. If we're trying to model collections
that contain only one type of value, then this is clearly an inaccurate
type. Worse still, the definition for g is accepted, without causing a type
error. As a result, the error in this code will not be flagged at the point
where it appears. Instead, it will show up only when we try to use g, which
might even be in a different module.
</para>

<sect4><title>An attempt to use constructor classes</title>

<para>
Faced with the problems described above, some Haskell programmers might be
tempted to use something like the following version of the class declaration: 
<programlisting>
   class Collects e c where
      empty  :: c e
      insert :: e -> c e -> c e
      member :: e -> c e -> Bool
</programlisting>
The key difference here is that we abstract over the type constructor c that is
used to form the collection type c e, and not over that collection type itself,
represented by ce in the original class declaration. This avoids the immediate
problems that we mentioned above: empty has type <literal>Collects e c => c
e</literal>, which is not ambiguous. 
</para>
<para>
The function f from the previous section has a more accurate type: 
<programlisting>
   f :: (Collects e c) => e -> e -> c e -> c e
</programlisting>
The function g from the previous section is now rejected with a type error as
we would hope because the type of f does not allow the two arguments to have
different types. 
This, then, is an example of a multiple parameter class that does actually work
quite well in practice, without ambiguity problems.
There is, however, a catch. This version of the Collects class is nowhere near
as general as the original class seemed to be: only one of the four instances
for <literal>Collects</literal>
given above can be used with this version of Collects because only one of
them---the instance for lists---has a collection type that can be written in
the form c e, for some type constructor c, and element type e.
</para>
</sect4>

<sect4><title>Adding functional dependencies</title>

<para>
To get a more useful version of the Collects class, Hugs provides a mechanism
that allows programmers to specify dependencies between the parameters of a
multiple parameter class (For readers with an interest in theoretical
foundations and previous work: The use of dependency information can be seen
both as a generalization of the proposal for `parametric type classes' that was
put forward by Chen, Hudak, and Odersky, or as a special case of Mark Jones's
later framework for "improvement" of qualified types. The
underlying ideas are also discussed in a more theoretical and abstract setting
in a manuscript [implparam], where they are identified as one point in a
general design space for systems of implicit parameterization.).

To start with an abstract example, consider a declaration such as: 
<programlisting>
   class C a b where ...
</programlisting>
which tells us simply that C can be thought of as a binary relation on types
(or type constructors, depending on the kinds of a and b). Extra clauses can be
included in the definition of classes to add information about dependencies
between parameters, as in the following examples: 
<programlisting>
   class D a b | a -> b where ...
   class E a b | a -> b, b -> a where ...
</programlisting>
The notation <literal>a -&gt; b</literal> used here between the | and where
symbols --- not to be
confused with a function type --- indicates that the a parameter uniquely
determines the b parameter, and might be read as "a determines b." Thus D is
not just a relation, but actually a (partial) function. Similarly, from the two
dependencies that are included in the definition of E, we can see that E
represents a (partial) one-one mapping between types.
</para>
<para>
More generally, dependencies take the form <literal>x1 ... xn -&gt; y1 ... ym</literal>,
where x1, ..., xn, and y1, ..., yn are type variables with n&gt;0 and
m&gt;=0, meaning that the y parameters are uniquely determined by the x
parameters. Spaces can be used as separators if more than one variable appears
on any single side of a dependency, as in <literal>t -&gt; a b</literal>. Note that a class may be
annotated with multiple dependencies using commas as separators, as in the
definition of E above. Some dependencies that we can write in this notation are
redundant, and will be rejected because they don't serve any useful
purpose, and may instead indicate an error in the program. Examples of
dependencies like this include  <literal>a -&gt; a </literal>,  
<literal>a -&gt; a a </literal>,  
<literal>a -&gt; </literal>, etc. There can also be
some redundancy if multiple dependencies are given, as in  
<literal>a-&gt;b</literal>, 
 <literal>b-&gt;c </literal>,  <literal>a-&gt;c </literal>, and
in which some subset implies the remaining dependencies. Examples like this are
not treated as errors. Note that dependencies appear only in class
declarations, and not in any other part of the language. In particular, the
syntax for instance declarations, class constraints, and types is completely
unchanged.
</para>
<para>
By including dependencies in a class declaration, we provide a mechanism for
the programmer to specify each multiple parameter class more precisely. The
compiler, on the other hand, is responsible for ensuring that the set of
instances that are in scope at any given point in the program is consistent
with any declared dependencies. For example, the following pair of instance
declarations cannot appear together in the same scope because they violate the
dependency for D, even though either one on its own would be acceptable: 
<programlisting>
   instance D Bool Int where ...
   instance D Bool Char where ...
</programlisting>
Note also that the following declaration is not allowed, even by itself: 
<programlisting>
   instance D [a] b where ...
</programlisting>
The problem here is that this instance would allow one particular choice of [a]
to be associated with more than one choice for b, which contradicts the
dependency specified in the definition of D. More generally, this means that,
in any instance of the form: 
<programlisting>
   instance D t s where ...
</programlisting>
for some particular types t and s, the only variables that can appear in s are
the ones that appear in t, and hence, if the type t is known, then s will be
uniquely determined.
</para>
<para>
The benefit of including dependency information is that it allows us to define
more general multiple parameter classes, without ambiguity problems, and with
the benefit of more accurate types. To illustrate this, we return to the
collection class example, and annotate the original definition of <literal>Collects</literal>
with a simple dependency: 
<programlisting>
   class Collects e ce | ce -> e where
      empty  :: ce
      insert :: e -> ce -> ce
      member :: e -> ce -> Bool
</programlisting>
The dependency <literal>ce -&gt; e</literal> here specifies that the type e of elements is uniquely
determined by the type of the collection ce. Note that both parameters of
Collects are of kind *; there are no constructor classes here. Note too that
all of the instances of Collects that we gave earlier can be used
together with this new definition.
</para>
<para>
What about the ambiguity problems that we encountered with the original
definition? The empty function still has type Collects e ce => ce, but it is no
longer necessary to regard that as an ambiguous type: Although the variable e
does not appear on the right of the => symbol, the dependency for class
Collects tells us that it is uniquely determined by ce, which does appear on
the right of the => symbol. Hence the context in which empty is used can still
give enough information to determine types for both ce and e, without
ambiguity. More generally, we need only regard a type as ambiguous if it
contains a variable on the left of the => that is not uniquely determined
(either directly or indirectly) by the variables on the right.
</para>
<para>
Dependencies also help to produce more accurate types for user defined
functions, and hence to provide earlier detection of errors, and less cluttered
types for programmers to work with. Recall the previous definition for a
function f: 
<programlisting>
   f x y = insert x y = insert x . insert y
</programlisting>
for which we originally obtained a type: 
<programlisting>
   f :: (Collects a c, Collects b c) => a -> b -> c -> c
</programlisting>
Given the dependency information that we have for Collects, however, we can
deduce that a and b must be equal because they both appear as the second
parameter in a Collects constraint with the same first parameter c. Hence we
can infer a shorter and more accurate type for f: 
<programlisting>
   f :: (Collects a c) => a -> a -> c -> c
</programlisting>
In a similar way, the earlier definition of g will now be flagged as a type error.
</para>
<para>
Although we have given only a few examples here, it should be clear that the
addition of dependency information can help to make multiple parameter classes
more useful in practice, avoiding ambiguity problems, and allowing more general
sets of instance declarations.
</para>
</sect4>
</sect3>
</sect2>

<sect2 id="instance-decls">
<title>Instance declarations</title>

<sect3 id="instance-rules">
<title>Relaxed rules for instance declarations</title>

<para>An instance declaration has the form
<screen>
  instance ( <replaceable>assertion</replaceable><subscript>1</subscript>, ..., <replaceable>assertion</replaceable><subscript>n</subscript>) =&gt; <replaceable>class</replaceable> <replaceable>type</replaceable><subscript>1</subscript> ... <replaceable>type</replaceable><subscript>m</subscript> where ...
</screen>
The part before the "<literal>=&gt;</literal>" is the
<emphasis>context</emphasis>, while the part after the
"<literal>=&gt;</literal>" is the <emphasis>head</emphasis> of the instance declaration.
</para>

<para>
In Haskell 98 the head of an instance declaration
must be of the form <literal>C (T a1 ... an)</literal>, where
<literal>C</literal> is the class, <literal>T</literal> is a type constructor,
and the <literal>a1 ... an</literal> are distinct type variables.
Furthermore, the assertions in the context of the instance declaration
must be of the form <literal>C a</literal> where <literal>a</literal>
is a type variable that occurs in the head.
</para>
<para>
The <option>-fglasgow-exts</option> flag loosens these restrictions
considerably.  Firstly, multi-parameter type classes are permitted.  Secondly,
the context and head of the instance declaration can each consist of arbitrary
(well-kinded) assertions <literal>(C t1 ... tn)</literal> subject only to the
following rules:
<orderedlist>
<listitem><para>
For each assertion in the context:
<orderedlist>
<listitem><para>No type variable has more occurrences in the assertion than in the head</para></listitem>
<listitem><para>The assertion has fewer constructors and variables (taken together
      and counting repetitions) than the head</para></listitem>
</orderedlist>
</para></listitem>

<listitem><para>The coverage condition.  For each functional dependency,
<replaceable>tvs</replaceable><subscript>left</subscript> <literal>-&gt;</literal>
<replaceable>tvs</replaceable><subscript>right</subscript>,  of the class,
every type variable in
S(<replaceable>tvs</replaceable><subscript>right</subscript>) must appear in 
S(<replaceable>tvs</replaceable><subscript>left</subscript>), where S is the
substitution mapping each type variable in the class declaration to the
corresponding type in the instance declaration.
</para></listitem>
</orderedlist>
These restrictions ensure that context reduction terminates: each reduction
step makes the problem smaller by at least one
constructor.  For example, the following would make the type checker
loop if it wasn't excluded:
<programlisting>
  instance C a => C a where ...
</programlisting>
For example, these are OK:
<programlisting>
  instance C Int [a]          -- Multiple parameters
  instance Eq (S [a])         -- Structured type in head

      -- Repeated type variable in head
  instance C4 a a => C4 [a] [a] 
  instance Stateful (ST s) (MutVar s)

      -- Head can consist of type variables only
  instance C a
  instance (Eq a, Show b) => C2 a b

      -- Non-type variables in context
  instance Show (s a) => Show (Sized s a)
  instance C2 Int a => C3 Bool [a]
  instance C2 Int a => C3 [a] b
</programlisting>
But these are not:
<programlisting>
      -- Context assertion no smaller than head
  instance C a => C a where ...
      -- (C b b) has more more occurrences of b than the head
  instance C b b => Foo [b] where ...
</programlisting>
</para>

<para>
The same restrictions apply to instances generated by
<literal>deriving</literal> clauses.  Thus the following is accepted:
<programlisting>
  data MinHeap h a = H a (h a)
    deriving (Show)
</programlisting>
because the derived instance
<programlisting>
  instance (Show a, Show (h a)) => Show (MinHeap h a)
</programlisting>
conforms to the above rules.
</para>

<para>
A useful idiom permitted by the above rules is as follows.
If one allows overlapping instance declarations then it's quite
convenient to have a "default instance" declaration that applies if
something more specific does not:
<programlisting>
  instance C a where
    op = ... -- Default
</programlisting>
</para>
</sect3>

<sect3 id="undecidable-instances">
<title>Undecidable instances</title>

<para>
Sometimes even the rules of <xref linkend="instance-rules"/> are too onerous.
For example, sometimes you might want to use the following to get the
effect of a "class synonym":
<programlisting>
  class (C1 a, C2 a, C3 a) => C a where { }

  instance (C1 a, C2 a, C3 a) => C a where { }
</programlisting>
This allows you to write shorter signatures:
<programlisting>
  f :: C a => ...
</programlisting>
instead of
<programlisting>
  f :: (C1 a, C2 a, C3 a) => ...
</programlisting>
The restrictions on functional dependencies (<xref
linkend="functional-dependencies"/>) are particularly troublesome.
It is tempting to introduce type variables in the context that do not appear in
the head, something that is excluded by the normal rules. For example:
<programlisting>
  class HasConverter a b | a -> b where
     convert :: a -> b
   
  data Foo a = MkFoo a

  instance (HasConverter a b,Show b) => Show (Foo a) where
     show (MkFoo value) = show (convert value)
</programlisting>
This is dangerous territory, however. Here, for example, is a program that would make the
typechecker loop:
<programlisting>
  class D a
  class F a b | a->b
  instance F [a] [[a]]
  instance (D c, F a c) => D [a]   -- 'c' is not mentioned in the head
</programlisting>  
Similarly, it can be tempting to lift the coverage condition:
<programlisting>
  class Mul a b c | a b -> c where
  	(.*.) :: a -> b -> c

  instance Mul Int Int Int where (.*.) = (*)
  instance Mul Int Float Float where x .*. y = fromIntegral x * y
  instance Mul a b c => Mul a [b] [c] where x .*. v = map (x.*.) v
</programlisting>
The third instance declaration does not obey the coverage condition;
and indeed the (somewhat strange) definition:
<programlisting>
  f = \ b x y -> if b then x .*. [y] else y
</programlisting>
makes instance inference go into a loop, because it requires the constraint
<literal>(Mul a [b] b)</literal>.
</para>
<para>
Nevertheless, GHC allows you to experiment with more liberal rules.  If you use
the experimental flag <option>-fallow-undecidable-instances</option>
<indexterm><primary>-fallow-undecidable-instances
option</primary></indexterm>, you can use arbitrary
types in both an instance context and instance head.  Termination is ensured by having a
fixed-depth recursion stack.  If you exceed the stack depth you get a
sort of backtrace, and the opportunity to increase the stack depth
with <option>-fcontext-stack</option><emphasis>N</emphasis>.
</para>

</sect3>


<sect3 id="instance-overlap">
<title>Overlapping instances</title>
<para>
In general, <emphasis>GHC requires that that it be unambiguous which instance
declaration
should be used to resolve a type-class constraint</emphasis>. This behaviour
can be modified by two flags: <option>-fallow-overlapping-instances</option>
<indexterm><primary>-fallow-overlapping-instances
</primary></indexterm> 
and <option>-fallow-incoherent-instances</option>
<indexterm><primary>-fallow-incoherent-instances
</primary></indexterm>, as this section discusses.</para>
<para>
When GHC tries to resolve, say, the constraint <literal>C Int Bool</literal>,
it tries to match every instance declaration against the
constraint,
by instantiating the head of the instance declaration.  For example, consider
these declarations:
<programlisting>
  instance context1 => C Int a     where ...  -- (A)
  instance context2 => C a   Bool  where ...  -- (B)
  instance context3 => C Int [a]   where ...  -- (C)
  instance context4 => C Int [Int] where ...  -- (D)
</programlisting>
The instances (A) and (B) match the constraint <literal>C Int Bool</literal>, 
but (C) and (D) do not.  When matching, GHC takes
no account of the context of the instance declaration
(<literal>context1</literal> etc).
GHC's default behaviour is that <emphasis>exactly one instance must match the
constraint it is trying to resolve</emphasis>.  
It is fine for there to be a <emphasis>potential</emphasis> of overlap (by
including both declarations (A) and (B), say); an error is only reported if a 
particular constraint matches more than one.
</para>

<para>
The <option>-fallow-overlapping-instances</option> flag instructs GHC to allow
more than one instance to match, provided there is a most specific one.  For
example, the constraint <literal>C Int [Int]</literal> matches instances (A),
(C) and (D), but the last is more specific, and hence is chosen.  If there is no
most-specific match, the program is rejected.
</para>
<para>
However, GHC is conservative about committing to an overlapping instance.  For example:
<programlisting>
  f :: [b] -> [b]
  f x = ...
</programlisting>
Suppose that from the RHS of <literal>f</literal> we get the constraint
<literal>C Int [b]</literal>.  But
GHC does not commit to instance (C), because in a particular
call of <literal>f</literal>, <literal>b</literal> might be instantiate 
to <literal>Int</literal>, in which case instance (D) would be more specific still.
So GHC rejects the program.  If you add the flag <option>-fallow-incoherent-instances</option>,
GHC will instead pick (C), without complaining about 
the problem of subsequent instantiations.
</para>
<para>
The willingness to be overlapped or incoherent is a property of 
the <emphasis>instance declaration</emphasis> itself, controlled by the
presence or otherwise of the <option>-fallow-overlapping-instances</option> 
and <option>-fallow-incoherent-instances</option> flags when that mdodule is
being defined.  Neither flag is required in a module that imports and uses the
instance declaration.  Specifically, during the lookup process:
<itemizedlist>
<listitem><para>
An instance declaration is ignored during the lookup process if (a) a more specific
match is found, and (b) the instance declaration was compiled with 
<option>-fallow-overlapping-instances</option>.  The flag setting for the
more-specific instance does not matter.
</para></listitem>
<listitem><para>
Suppose an instance declaration does not matche the constraint being looked up, but
does unify with it, so that it might match when the constraint is further 
instantiated.  Usually GHC will regard this as a reason for not committing to
some other constraint.  But if the instance declaration was compiled with
<option>-fallow-incoherent-instances</option>, GHC will skip the "does-it-unify?" 
check for that declaration.
</para></listitem>
</itemizedlist>
All this makes it possible for a library author to design a library that relies on 
overlapping instances without the library client having to know.
</para>
<para>The <option>-fallow-incoherent-instances</option> flag implies the
<option>-fallow-overlapping-instances</option> flag, but not vice versa.
</para>
</sect3>

<sect3>
<title>Type synonyms in the instance head</title>

<para>
<emphasis>Unlike Haskell 98, instance heads may use type
synonyms</emphasis>.  (The instance "head" is the bit after the "=>" in an instance decl.)
As always, using a type synonym is just shorthand for
writing the RHS of the type synonym definition.  For example:


<programlisting>
  type Point = (Int,Int)
  instance C Point   where ...
  instance C [Point] where ...
</programlisting>


is legal.  However, if you added


<programlisting>
  instance C (Int,Int) where ...
</programlisting>


as well, then the compiler will complain about the overlapping
(actually, identical) instance declarations.  As always, type synonyms
must be fully applied.  You cannot, for example, write:


<programlisting>
  type P a = [[a]]
  instance Monad P where ...
</programlisting>


This design decision is independent of all the others, and easily
reversed, but it makes sense to me.

</para>
</sect3>


</sect2>

<sect2 id="type-restrictions">
<title>Type signatures</title>

<sect3><title>The context of a type signature</title>
<para>
Unlike Haskell 98, constraints in types do <emphasis>not</emphasis> have to be of
the form <emphasis>(class type-variable)</emphasis> or
<emphasis>(class (type-variable type-variable ...))</emphasis>.  Thus,
these type signatures are perfectly OK
<programlisting>
  g :: Eq [a] => ...
  g :: Ord (T a ()) => ...
</programlisting>
</para>
<para>
GHC imposes the following restrictions on the constraints in a type signature.
Consider the type:

<programlisting>
  forall tv1..tvn (c1, ...,cn) => type
</programlisting>

(Here, we write the "foralls" explicitly, although the Haskell source
language omits them; in Haskell 98, all the free type variables of an
explicit source-language type signature are universally quantified,
except for the class type variables in a class declaration.  However,
in GHC, you can give the foralls if you want.  See <xref linkend="universal-quantification"/>).
</para>

<para>

<orderedlist>
<listitem>

<para>
 <emphasis>Each universally quantified type variable
<literal>tvi</literal> must be reachable from <literal>type</literal></emphasis>.

A type variable <literal>a</literal> is "reachable" if it it appears
in the same constraint as either a type variable free in in
<literal>type</literal>, or another reachable type variable.  
A value with a type that does not obey 
this reachability restriction cannot be used without introducing
ambiguity; that is why the type is rejected.
Here, for example, is an illegal type:


<programlisting>
  forall a. Eq a => Int
</programlisting>


When a value with this type was used, the constraint <literal>Eq tv</literal>
would be introduced where <literal>tv</literal> is a fresh type variable, and
(in the dictionary-translation implementation) the value would be
applied to a dictionary for <literal>Eq tv</literal>.  The difficulty is that we
can never know which instance of <literal>Eq</literal> to use because we never
get any more information about <literal>tv</literal>.
</para>
<para>
Note
that the reachability condition is weaker than saying that <literal>a</literal> is
functionally dependent on a type variable free in
<literal>type</literal> (see <xref
linkend="functional-dependencies"/>).  The reason for this is there
might be a "hidden" dependency, in a superclass perhaps.  So
"reachable" is a conservative approximation to "functionally dependent".
For example, consider:
<programlisting>
  class C a b | a -> b where ...
  class C a b => D a b where ...
  f :: forall a b. D a b => a -> a
</programlisting>
This is fine, because in fact <literal>a</literal> does functionally determine <literal>b</literal>
but that is not immediately apparent from <literal>f</literal>'s type.
</para>
</listitem>
<listitem>

<para>
 <emphasis>Every constraint <literal>ci</literal> must mention at least one of the
universally quantified type variables <literal>tvi</literal></emphasis>.

For example, this type is OK because <literal>C a b</literal> mentions the
universally quantified type variable <literal>b</literal>:


<programlisting>
  forall a. C a b => burble
</programlisting>


The next type is illegal because the constraint <literal>Eq b</literal> does not
mention <literal>a</literal>:


<programlisting>
  forall a. Eq b => burble
</programlisting>


The reason for this restriction is milder than the other one.  The
excluded types are never useful or necessary (because the offending
context doesn't need to be witnessed at this point; it can be floated
out).  Furthermore, floating them out increases sharing. Lastly,
excluding them is a conservative choice; it leaves a patch of
territory free in case we need it later.

</para>
</listitem>

</orderedlist>

</para>
</sect3>

<sect3 id="hoist">
<title>For-all hoisting</title>
<para>
It is often convenient to use generalised type synonyms (see <xref linkend="type-synonyms"/>) at the right hand
end of an arrow, thus:
<programlisting>
  type Discard a = forall b. a -> b -> a

  g :: Int -> Discard Int
  g x y z = x+y
</programlisting>
Simply expanding the type synonym would give
<programlisting>
  g :: Int -> (forall b. Int -> b -> Int)
</programlisting>
but GHC "hoists" the <literal>forall</literal> to give the isomorphic type
<programlisting>
  g :: forall b. Int -> Int -> b -> Int
</programlisting>
In general, the rule is this: <emphasis>to determine the type specified by any explicit
user-written type (e.g. in a type signature), GHC expands type synonyms and then repeatedly
performs the transformation:</emphasis>
<programlisting>
  <emphasis>type1</emphasis> -> forall a1..an. <emphasis>context2</emphasis> => <emphasis>type2</emphasis>
==>
  forall a1..an. <emphasis>context2</emphasis> => <emphasis>type1</emphasis> -> <emphasis>type2</emphasis>
</programlisting>
(In fact, GHC tries to retain as much synonym information as possible for use in
error messages, but that is a usability issue.)  This rule applies, of course, whether
or not the <literal>forall</literal> comes from a synonym. For example, here is another
valid way to write <literal>g</literal>'s type signature:
<programlisting>
  g :: Int -> Int -> forall b. b -> Int
</programlisting>
</para>
<para>
When doing this hoisting operation, GHC eliminates duplicate constraints.  For
example:
<programlisting>
  type Foo a = (?x::Int) => Bool -> a
  g :: Foo (Foo Int)
</programlisting>
means
<programlisting>
  g :: (?x::Int) => Bool -> Bool -> Int
</programlisting>
</para>
</sect3>


</sect2>

<sect2 id="implicit-parameters">
<title>Implicit parameters</title>

<para> Implicit parameters are implemented as described in 
"Implicit parameters: dynamic scoping with static types", 
J Lewis, MB Shields, E Meijer, J Launchbury,
27th ACM Symposium on Principles of Programming Languages (POPL'00),
Boston, Jan 2000.
</para>

<para>(Most of the following, stil rather incomplete, documentation is
due to Jeff Lewis.)</para>

<para>Implicit parameter support is enabled with the option
<option>-fimplicit-params</option>.</para>

<para>
A variable is called <emphasis>dynamically bound</emphasis> when it is bound by the calling
context of a function and <emphasis>statically bound</emphasis> when bound by the callee's
context. In Haskell, all variables are statically bound. Dynamic
binding of variables is a notion that goes back to Lisp, but was later
discarded in more modern incarnations, such as Scheme. Dynamic binding
can be very confusing in an untyped language, and unfortunately, typed
languages, in particular Hindley-Milner typed languages like Haskell,
only support static scoping of variables.
</para>
<para>
However, by a simple extension to the type class system of Haskell, we
can support dynamic binding. Basically, we express the use of a
dynamically bound variable as a constraint on the type. These
constraints lead to types of the form <literal>(?x::t') => t</literal>, which says "this
function uses a dynamically-bound variable <literal>?x</literal> 
of type <literal>t'</literal>". For
example, the following expresses the type of a sort function,
implicitly parameterized by a comparison function named <literal>cmp</literal>.
<programlisting>
  sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
</programlisting>
The dynamic binding constraints are just a new form of predicate in the type class system.
</para>
<para>
An implicit parameter occurs in an expression using the special form <literal>?x</literal>, 
where <literal>x</literal> is
any valid identifier (e.g. <literal>ord ?x</literal> is a valid expression). 
Use of this construct also introduces a new
dynamic-binding constraint in the type of the expression. 
For example, the following definition
shows how we can define an implicitly parameterized sort function in
terms of an explicitly parameterized <literal>sortBy</literal> function:
<programlisting>
  sortBy :: (a -> a -> Bool) -> [a] -> [a]

  sort   :: (?cmp :: a -> a -> Bool) => [a] -> [a]
  sort    = sortBy ?cmp
</programlisting>
</para>

<sect3>
<title>Implicit-parameter type constraints</title>
<para>
Dynamic binding constraints behave just like other type class
constraints in that they are automatically propagated. Thus, when a
function is used, its implicit parameters are inherited by the
function that called it. For example, our <literal>sort</literal> function might be used
to pick out the least value in a list:
<programlisting>
  least   :: (?cmp :: a -> a -> Bool) => [a] -> a
  least xs = fst (sort xs)
</programlisting>
Without lifting a finger, the <literal>?cmp</literal> parameter is
propagated to become a parameter of <literal>least</literal> as well. With explicit
parameters, the default is that parameters must always be explicit
propagated. With implicit parameters, the default is to always
propagate them.
</para>
<para>
An implicit-parameter type constraint differs from other type class constraints in the
following way: All uses of a particular implicit parameter must have
the same type. This means that the type of <literal>(?x, ?x)</literal> 
is <literal>(?x::a) => (a,a)</literal>, and not 
<literal>(?x::a, ?x::b) => (a, b)</literal>, as would be the case for type
class constraints.
</para>

<para> You can't have an implicit parameter in the context of a class or instance
declaration.  For example, both these declarations are illegal:
<programlisting>
  class (?x::Int) => C a where ...
  instance (?x::a) => Foo [a] where ...
</programlisting>
Reason: exactly which implicit parameter you pick up depends on exactly where
you invoke a function. But the ``invocation'' of instance declarations is done
behind the scenes by the compiler, so it's hard to figure out exactly where it is done.
Easiest thing is to outlaw the offending types.</para>
<para>
Implicit-parameter constraints do not cause ambiguity.  For example, consider:
<programlisting>
   f :: (?x :: [a]) => Int -> Int
   f n = n + length ?x

   g :: (Read a, Show a) => String -> String
   g s = show (read s)
</programlisting>
Here, <literal>g</literal> has an ambiguous type, and is rejected, but <literal>f</literal>
is fine.  The binding for <literal>?x</literal> at <literal>f</literal>'s call site is 
quite unambiguous, and fixes the type <literal>a</literal>.
</para>
</sect3>

<sect3>
<title>Implicit-parameter bindings</title>

<para>
An implicit parameter is <emphasis>bound</emphasis> using the standard
<literal>let</literal> or <literal>where</literal> binding forms.
For example, we define the <literal>min</literal> function by binding
<literal>cmp</literal>.
<programlisting>
  min :: [a] -> a
  min  = let ?cmp = (&lt;=) in least
</programlisting>
</para>
<para>
A group of implicit-parameter bindings may occur anywhere a normal group of Haskell
bindings can occur, except at top level.  That is, they can occur in a <literal>let</literal> 
(including in a list comprehension, or do-notation, or pattern guards), 
or a <literal>where</literal> clause.
Note the following points:
<itemizedlist>
<listitem><para>
An implicit-parameter binding group must be a
collection of simple bindings to implicit-style variables (no
function-style bindings, and no type signatures); these bindings are
neither polymorphic or recursive.  
</para></listitem>
<listitem><para>
You may not mix implicit-parameter bindings with ordinary bindings in a 
single <literal>let</literal>
expression; use two nested <literal>let</literal>s instead.
(In the case of <literal>where</literal> you are stuck, since you can't nest <literal>where</literal> clauses.)
</para></listitem>

<listitem><para>
You may put multiple implicit-parameter bindings in a
single binding group; but they are <emphasis>not</emphasis> treated
as a mutually recursive group (as ordinary <literal>let</literal> bindings are).
Instead they are treated as a non-recursive group, simultaneously binding all the implicit
parameter.  The bindings are not nested, and may be re-ordered without changing
the meaning of the program.
For example, consider:
<programlisting>
  f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y
</programlisting>
The use of <literal>?x</literal> in the binding for <literal>?y</literal> does not "see"
the binding for <literal>?x</literal>, so the type of <literal>f</literal> is
<programlisting>
  f :: (?x::Int) => Int -> Int
</programlisting>
</para></listitem>
</itemizedlist>
</para>

</sect3>

<sect3><title>Implicit parameters and polymorphic recursion</title>

<para>
Consider these two definitions:
<programlisting>
  len1 :: [a] -> Int
  len1 xs = let ?acc = 0 in len_acc1 xs

  len_acc1 [] = ?acc
  len_acc1 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc1 xs

  ------------

  len2 :: [a] -> Int
  len2 xs = let ?acc = 0 in len_acc2 xs

  len_acc2 :: (?acc :: Int) => [a] -> Int
  len_acc2 [] = ?acc
  len_acc2 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc2 xs
</programlisting>
The only difference between the two groups is that in the second group
<literal>len_acc</literal> is given a type signature.
In the former case, <literal>len_acc1</literal> is monomorphic in its own
right-hand side, so the implicit parameter <literal>?acc</literal> is not
passed to the recursive call.  In the latter case, because <literal>len_acc2</literal>
has a type signature, the recursive call is made to the
<emphasis>polymoprhic</emphasis> version, which takes <literal>?acc</literal>
as an implicit parameter.  So we get the following results in GHCi:
<programlisting>
  Prog> len1 "hello"
  0
  Prog> len2 "hello"
  5
</programlisting>
Adding a type signature dramatically changes the result!  This is a rather
counter-intuitive phenomenon, worth watching out for.
</para>
</sect3>

<sect3><title>Implicit parameters and monomorphism</title>

<para>GHC applies the dreaded Monomorphism Restriction (section 4.5.5 of the
Haskell Report) to implicit parameters.  For example, consider:
<programlisting>
 f :: Int -> Int
  f v = let ?x = 0     in
        let y = ?x + v in
        let ?x = 5     in
        y
</programlisting>
Since the binding for <literal>y</literal> falls under the Monomorphism
Restriction it is not generalised, so the type of <literal>y</literal> is
simply <literal>Int</literal>, not <literal>(?x::Int) => Int</literal>.
Hence, <literal>(f 9)</literal> returns result <literal>9</literal>.
If you add a type signature for <literal>y</literal>, then <literal>y</literal>
will get type <literal>(?x::Int) => Int</literal>, so the occurrence of
<literal>y</literal> in the body of the <literal>let</literal> will see the
inner binding of <literal>?x</literal>, so <literal>(f 9)</literal> will return
<literal>14</literal>.
</para>
</sect3>
</sect2>

<sect2 id="linear-implicit-parameters">
<title>Linear implicit parameters</title>
<para>
Linear implicit parameters are an idea developed by Koen Claessen,
Mark Shields, and Simon PJ.  They address the long-standing
problem that monads seem over-kill for certain sorts of problem, notably:
</para>
<itemizedlist>
<listitem> <para> distributing a supply of unique names </para> </listitem>
<listitem> <para> distributing a supply of random numbers </para> </listitem>
<listitem> <para> distributing an oracle (as in QuickCheck) </para> </listitem>
</itemizedlist>

<para>
Linear implicit parameters are just like ordinary implicit parameters,
except that they are "linear" -- that is, they cannot be copied, and
must be explicitly "split" instead.  Linear implicit parameters are
written '<literal>%x</literal>' instead of '<literal>?x</literal>'.  
(The '/' in the '%' suggests the split!)
</para>
<para>
For example:
<programlisting>
    import GHC.Exts( Splittable )

    data NameSupply = ...
    
    splitNS :: NameSupply -> (NameSupply, NameSupply)
    newName :: NameSupply -> Name

    instance Splittable NameSupply where
	split = splitNS


    f :: (%ns :: NameSupply) => Env -> Expr -> Expr
    f env (Lam x e) = Lam x' (f env e)
		    where
		      x'   = newName %ns
		      env' = extend env x x'
    ...more equations for f...
</programlisting>
Notice that the implicit parameter %ns is consumed 
<itemizedlist>
<listitem> <para> once by the call to <literal>newName</literal> </para> </listitem>
<listitem> <para> once by the recursive call to <literal>f</literal> </para></listitem>
</itemizedlist>
</para>
<para>
So the translation done by the type checker makes
the parameter explicit:
<programlisting>
    f :: NameSupply -> Env -> Expr -> Expr
    f ns env (Lam x e) = Lam x' (f ns1 env e)
		       where
	 		 (ns1,ns2) = splitNS ns
			 x' = newName ns2
			 env = extend env x x'
</programlisting>
Notice the call to 'split' introduced by the type checker.
How did it know to use 'splitNS'?  Because what it really did
was to introduce a call to the overloaded function 'split',
defined by the class <literal>Splittable</literal>:
<programlisting>
	class Splittable a where
	  split :: a -> (a,a)
</programlisting>
The instance for <literal>Splittable NameSupply</literal> tells GHC how to implement
split for name supplies.  But we can simply write
<programlisting>
	g x = (x, %ns, %ns)
</programlisting>
and GHC will infer
<programlisting>
	g :: (Splittable a, %ns :: a) => b -> (b,a,a)
</programlisting>
The <literal>Splittable</literal> class is built into GHC.  It's exported by module 
<literal>GHC.Exts</literal>.
</para>
<para>
Other points:
<itemizedlist>
<listitem> <para> '<literal>?x</literal>' and '<literal>%x</literal>' 
are entirely distinct implicit parameters: you 
  can use them together and they won't intefere with each other. </para>
</listitem>

<listitem> <para> You can bind linear implicit parameters in 'with' clauses. </para> </listitem>

<listitem> <para>You cannot have implicit parameters (whether linear or not)
  in the context of a class or instance declaration. </para></listitem>
</itemizedlist>
</para>

<sect3><title>Warnings</title>

<para>
The monomorphism restriction is even more important than usual.
Consider the example above:
<programlisting>
    f :: (%ns :: NameSupply) => Env -> Expr -> Expr
    f env (Lam x e) = Lam x' (f env e)
		    where
		      x'   = newName %ns
		      env' = extend env x x'
</programlisting>
If we replaced the two occurrences of x' by (newName %ns), which is
usually a harmless thing to do, we get:
<programlisting>
    f :: (%ns :: NameSupply) => Env -> Expr -> Expr
    f env (Lam x e) = Lam (newName %ns) (f env e)
		    where
		      env' = extend env x (newName %ns)
</programlisting>
But now the name supply is consumed in <emphasis>three</emphasis> places
(the two calls to newName,and the recursive call to f), so
the result is utterly different.  Urk!  We don't even have 
the beta rule.
</para>
<para>
Well, this is an experimental change.  With implicit
parameters we have already lost beta reduction anyway, and
(as John Launchbury puts it) we can't sensibly reason about
Haskell programs without knowing their typing.
</para>

</sect3>

<sect3><title>Recursive functions</title>
<para>Linear implicit parameters can be particularly tricky when you have a recursive function
Consider
<programlisting>
        foo :: %x::T => Int -> [Int]
        foo 0 = []
        foo n = %x : foo (n-1)
</programlisting>
where T is some type in class Splittable.</para>
<para>
Do you get a list of all the same T's or all different T's
(assuming that split gives two distinct T's back)?
</para><para>
If you supply the type signature, taking advantage of polymorphic
recursion, you get what you'd probably expect.  Here's the
translated term, where the implicit param is made explicit:
<programlisting>
        foo x 0 = []
        foo x n = let (x1,x2) = split x
                  in x1 : foo x2 (n-1)
</programlisting>
But if you don't supply a type signature, GHC uses the Hindley
Milner trick of using a single monomorphic instance of the function
for the recursive calls. That is what makes Hindley Milner type inference
work.  So the translation becomes
<programlisting>
        foo x = let
                  foom 0 = []
                  foom n = x : foom (n-1)
                in
                foom
</programlisting>
Result: 'x' is not split, and you get a list of identical T's.  So the
semantics of the program depends on whether or not foo has a type signature.
Yikes!
</para><para>
You may say that this is a good reason to dislike linear implicit parameters
and you'd be right.  That is why they are an experimental feature. 
</para>
</sect3>

</sect2>

<sect2 id="sec-kinding">
<title>Explicitly-kinded quantification</title>

<para>
Haskell infers the kind of each type variable.  Sometimes it is nice to be able
to give the kind explicitly as (machine-checked) documentation, 
just as it is nice to give a type signature for a function.  On some occasions,
it is essential to do so.  For example, in his paper "Restricted Data Types in Haskell" (Haskell Workshop 1999)
John Hughes had to define the data type:
<screen>
     data Set cxt a = Set [a]
                    | Unused (cxt a -> ())
</screen>
The only use for the <literal>Unused</literal> constructor was to force the correct
kind for the type variable <literal>cxt</literal>.
</para>
<para>
GHC now instead allows you to specify the kind of a type variable directly, wherever
a type variable is explicitly bound.  Namely:
<itemizedlist>
<listitem><para><literal>data</literal> declarations:
<screen>
  data Set (cxt :: * -> *) a = Set [a]
</screen></para></listitem>
<listitem><para><literal>type</literal> declarations:
<screen>
  type T (f :: * -> *) = f Int
</screen></para></listitem>
<listitem><para><literal>class</literal> declarations:
<screen>
  class (Eq a) => C (f :: * -> *) a where ...
</screen></para></listitem>
<listitem><para><literal>forall</literal>'s in type signatures:
<screen>
  f :: forall (cxt :: * -> *). Set cxt Int
</screen></para></listitem>
</itemizedlist>
</para>

<para>
The parentheses are required.  Some of the spaces are required too, to
separate the lexemes.  If you write <literal>(f::*->*)</literal> you
will get a parse error, because "<literal>::*->*</literal>" is a
single lexeme in Haskell.
</para>

<para>
As part of the same extension, you can put kind annotations in types
as well.  Thus:
<screen>
   f :: (Int :: *) -> Int
   g :: forall a. a -> (a :: *)
</screen>
The syntax is
<screen>
   atype ::= '(' ctype '::' kind ')
</screen>
The parentheses are required.
</para>
</sect2>


<sect2 id="universal-quantification">
<title>Arbitrary-rank polymorphism
</title>

<para>
Haskell type signatures are implicitly quantified.  The new keyword <literal>forall</literal>
allows us to say exactly what this means.  For example:
</para>
<para>
<programlisting>
        g :: b -> b
</programlisting>
means this:
<programlisting>
        g :: forall b. (b -> b)
</programlisting>
The two are treated identically.
</para>

<para>
However, GHC's type system supports <emphasis>arbitrary-rank</emphasis> 
explicit universal quantification in
types. 
For example, all the following types are legal:
<programlisting>
    f1 :: forall a b. a -> b -> a
    g1 :: forall a b. (Ord a, Eq  b) => a -> b -> a

    f2 :: (forall a. a->a) -> Int -> Int
    g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int

    f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool
</programlisting>
Here, <literal>f1</literal> and <literal>g1</literal> are rank-1 types, and
can be written in standard Haskell (e.g. <literal>f1 :: a->b->a</literal>).
The <literal>forall</literal> makes explicit the universal quantification that
is implicitly added by Haskell.
</para>
<para>
The functions <literal>f2</literal> and <literal>g2</literal> have rank-2 types;
the <literal>forall</literal> is on the left of a function arrow.  As <literal>g2</literal>
shows, the polymorphic type on the left of the function arrow can be overloaded.
</para>
<para>
The function <literal>f3</literal> has a rank-3 type;
it has rank-2 types on the left of a function arrow.
</para>
<para>
GHC allows types of arbitrary rank; you can nest <literal>forall</literal>s
arbitrarily deep in function arrows.   (GHC used to be restricted to rank 2, but
that restriction has now been lifted.)
In particular, a forall-type (also called a "type scheme"),
including an operational type class context, is legal:
<itemizedlist>
<listitem> <para> On the left of a function arrow </para> </listitem>
<listitem> <para> On the right of a function arrow (see <xref linkend="hoist"/>) </para> </listitem>
<listitem> <para> As the argument of a constructor, or type of a field, in a data type declaration. For
example, any of the <literal>f1,f2,f3,g1,g2</literal> above would be valid
field type signatures.</para> </listitem>
<listitem> <para> As the type of an implicit parameter </para> </listitem>
<listitem> <para> In a pattern type signature (see <xref linkend="scoped-type-variables"/>) </para> </listitem>
</itemizedlist>
There is one place you cannot put a <literal>forall</literal>:
you cannot instantiate a type variable with a forall-type.  So you cannot 
make a forall-type the argument of a type constructor.  So these types are illegal:
<programlisting>
    x1 :: [forall a. a->a]
    x2 :: (forall a. a->a, Int)
    x3 :: Maybe (forall a. a->a)
</programlisting>
Of course <literal>forall</literal> becomes a keyword; you can't use <literal>forall</literal> as
a type variable any more!
</para>


<sect3 id="univ">
<title>Examples
</title>

<para>
In a <literal>data</literal> or <literal>newtype</literal> declaration one can quantify
the types of the constructor arguments.  Here are several examples:
</para>

<para>

<programlisting>
data T a = T1 (forall b. b -> b -> b) a

data MonadT m = MkMonad { return :: forall a. a -> m a,
                          bind   :: forall a b. m a -> (a -> m b) -> m b
                        }

newtype Swizzle = MkSwizzle (Ord a => [a] -> [a])
</programlisting>

</para>

<para>
The constructors have rank-2 types:
</para>

<para>

<programlisting>
T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
MkMonad :: forall m. (forall a. a -> m a)
                  -> (forall a b. m a -> (a -> m b) -> m b)
                  -> MonadT m
MkSwizzle :: (Ord a => [a] -> [a]) -> Swizzle
</programlisting>

</para>

<para>
Notice that you don't need to use a <literal>forall</literal> if there's an
explicit context.  For example in the first argument of the
constructor <function>MkSwizzle</function>, an implicit "<literal>forall a.</literal>" is
prefixed to the argument type.  The implicit <literal>forall</literal>
quantifies all type variables that are not already in scope, and are
mentioned in the type quantified over.
</para>

<para>
As for type signatures, implicit quantification happens for non-overloaded
types too.  So if you write this:

<programlisting>
  data T a = MkT (Either a b) (b -> b)
</programlisting>

it's just as if you had written this:

<programlisting>
  data T a = MkT (forall b. Either a b) (forall b. b -> b)
</programlisting>

That is, since the type variable <literal>b</literal> isn't in scope, it's
implicitly universally quantified.  (Arguably, it would be better
to <emphasis>require</emphasis> explicit quantification on constructor arguments
where that is what is wanted.  Feedback welcomed.)
</para>

<para>
You construct values of types <literal>T1, MonadT, Swizzle</literal> by applying
the constructor to suitable values, just as usual.  For example,
</para>

<para>

<programlisting>
    a1 :: T Int
    a1 = T1 (\xy->x) 3
    
    a2, a3 :: Swizzle
    a2 = MkSwizzle sort
    a3 = MkSwizzle reverse
    
    a4 :: MonadT Maybe
    a4 = let r x = Just x
	     b m k = case m of
		       Just y -> k y
		       Nothing -> Nothing
         in
         MkMonad r b

    mkTs :: (forall b. b -> b -> b) -> a -> [T a]
    mkTs f x y = [T1 f x, T1 f y]
</programlisting>

</para>

<para>
The type of the argument can, as usual, be more general than the type
required, as <literal>(MkSwizzle reverse)</literal> shows.  (<function>reverse</function>
does not need the <literal>Ord</literal> constraint.)
</para>

<para>
When you use pattern matching, the bound variables may now have
polymorphic types.  For example:
</para>

<para>

<programlisting>
    f :: T a -> a -> (a, Char)
    f (T1 w k) x = (w k x, w 'c' 'd')

    g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
    g (MkSwizzle s) xs f = s (map f (s xs))

    h :: MonadT m -> [m a] -> m [a]
    h m [] = return m []
    h m (x:xs) = bind m x          $ \y ->
                 bind m (h m xs)   $ \ys ->
                 return m (y:ys)
</programlisting>

</para>

<para>
In the function <function>h</function> we use the record selectors <literal>return</literal>
and <literal>bind</literal> to extract the polymorphic bind and return functions
from the <literal>MonadT</literal> data structure, rather than using pattern
matching.
</para>
</sect3>

<sect3>
<title>Type inference</title>

<para>
In general, type inference for arbitrary-rank types is undecidable.
GHC uses an algorithm proposed by Odersky and Laufer ("Putting type annotations to work", POPL'96)
to get a decidable algorithm by requiring some help from the programmer.
We do not yet have a formal specification of "some help" but the rule is this:
</para>
<para>
<emphasis>For a lambda-bound or case-bound variable, x, either the programmer
provides an explicit polymorphic type for x, or GHC's type inference will assume
that x's type has no foralls in it</emphasis>.
</para>
<para>
What does it mean to "provide" an explicit type for x?  You can do that by 
giving a type signature for x directly, using a pattern type signature
(<xref linkend="scoped-type-variables"/>), thus:
<programlisting>
     \ f :: (forall a. a->a) -> (f True, f 'c')
</programlisting>
Alternatively, you can give a type signature to the enclosing
context, which GHC can "push down" to find the type for the variable:
<programlisting>
     (\ f -> (f True, f 'c')) :: (forall a. a->a) -> (Bool,Char)
</programlisting>
Here the type signature on the expression can be pushed inwards
to give a type signature for f.  Similarly, and more commonly,
one can give a type signature for the function itself:
<programlisting>
     h :: (forall a. a->a) -> (Bool,Char)
     h f = (f True, f 'c')
</programlisting>
You don't need to give a type signature if the lambda bound variable
is a constructor argument.  Here is an example we saw earlier:
<programlisting>
    f :: T a -> a -> (a, Char)
    f (T1 w k) x = (w k x, w 'c' 'd')
</programlisting>
Here we do not need to give a type signature to <literal>w</literal>, because
it is an argument of constructor <literal>T1</literal> and that tells GHC all
it needs to know.
</para>

</sect3>


<sect3 id="implicit-quant">
<title>Implicit quantification</title>

<para>
GHC performs implicit quantification as follows.  <emphasis>At the top level (only) of 
user-written types, if and only if there is no explicit <literal>forall</literal>,
GHC finds all the type variables mentioned in the type that are not already
in scope, and universally quantifies them.</emphasis>  For example, the following pairs are 
equivalent:
<programlisting>
  f :: a -> a
  f :: forall a. a -> a

  g (x::a) = let
                h :: a -> b -> b
                h x y = y
             in ...
  g (x::a) = let
                h :: forall b. a -> b -> b
                h x y = y
             in ...
</programlisting>
</para>
<para>
Notice that GHC does <emphasis>not</emphasis> find the innermost possible quantification
point.  For example:
<programlisting>
  f :: (a -> a) -> Int
           -- MEANS
  f :: forall a. (a -> a) -> Int
           -- NOT
  f :: (forall a. a -> a) -> Int


  g :: (Ord a => a -> a) -> Int
           -- MEANS the illegal type
  g :: forall a. (Ord a => a -> a) -> Int
           -- NOT
  g :: (forall a. Ord a => a -> a) -> Int
</programlisting>
The latter produces an illegal type, which you might think is silly,
but at least the rule is simple.  If you want the latter type, you
can write your for-alls explicitly.  Indeed, doing so is strongly advised
for rank-2 types.
</para>
</sect3>
</sect2>




<sect2 id="scoped-type-variables">
<title>Scoped type variables
</title>

<para>
A <emphasis>lexically scoped type variable</emphasis> can be bound by:
<itemizedlist>
<listitem><para>A declaration type signature (<xref linkend="decl-type-sigs"/>)</para></listitem>
<listitem><para>A pattern type signature (<xref linkend="pattern-type-sigs"/>)</para></listitem>
<listitem><para>A result type signature (<xref linkend="result-type-sigs"/>)</para></listitem>
</itemizedlist>
For example:
<programlisting>
f (xs::[a]) = ys ++ ys
           where
              ys :: [a]
              ys = reverse xs
</programlisting>
The pattern <literal>(xs::[a])</literal> includes a type signature for <varname>xs</varname>.
This brings the type variable <literal>a</literal> into scope; it scopes over
all the patterns and right hand sides for this equation for <function>f</function>.
In particular, it is in scope at the type signature for <varname>y</varname>.
</para>

<para>
At ordinary type signatures, such as that for <varname>ys</varname>, any type variables
mentioned in the type signature <emphasis>that are not in scope</emphasis> are
implicitly universally quantified.  (If there are no type variables in
scope, all type variables mentioned in the signature are universally
quantified, which is just as in Haskell 98.)  In this case, since <varname>a</varname>
is in scope, it is not universally quantified, so the type of <varname>ys</varname> is
the same as that of <varname>xs</varname>.  In Haskell 98 it is not possible to declare
a type for <varname>ys</varname>; a major benefit of scoped type variables is that
it becomes possible to do so.
</para>

<para>
Scoped type variables are implemented in both GHC and Hugs.  Where the
implementations differ from the specification below, those differences
are noted.
</para>

<para>
So much for the basic idea.  Here are the details.
</para>

<sect3>
<title>What a scoped type variable means</title>
<para>
A lexically-scoped type variable is simply
the name for a type.   The restriction it expresses is that all occurrences
of the same name mean the same type.  For example:
<programlisting>
  f :: [Int] -> Int -> Int
  f (xs::[a]) (y::a) = (head xs + y) :: a
</programlisting>
The pattern type signatures on the left hand side of
<literal>f</literal> express the fact that <literal>xs</literal>
must be a list of things of some type <literal>a</literal>; and that <literal>y</literal>
must have this same type.  The type signature on the expression <literal>(head xs)</literal>
specifies that this expression must have the same type <literal>a</literal>.
<emphasis>There is no requirement that the type named by "<literal>a</literal>" is
in fact a type variable</emphasis>.  Indeed, in this case, the type named by "<literal>a</literal>" is
<literal>Int</literal>.  (This is a slight liberalisation from the original rather complex
rules, which specified that a pattern-bound type variable should be universally quantified.)
For example, all of these are legal:</para>

<programlisting>
  t (x::a) (y::a) = x+y*2

  f (x::a) (y::b) = [x,y]       -- a unifies with b

  g (x::a) = x + 1::Int         -- a unifies with Int

  h x = let k (y::a) = [x,y]    -- a is free in the
        in k x                  -- environment

  k (x::a) True    = ...        -- a unifies with Int
  k (x::Int) False = ...

  w :: [b] -> [b]
  w (x::a) = x                  -- a unifies with [b]
</programlisting>

</sect3>

<sect3>
<title>Scope and implicit quantification</title>

<para>

<itemizedlist>
<listitem>

<para>
All the type variables mentioned in a pattern,
that are not already in scope,
are brought into scope by the pattern.  We describe this set as
the <emphasis>type variables bound by the pattern</emphasis>.
For example:
<programlisting>
  f (x::a) = let g (y::(a,b)) = fst y
             in
             g (x,True)
</programlisting>
The pattern <literal>(x::a)</literal> brings the type variable
<literal>a</literal> into scope, as well as the term 
variable <literal>x</literal>.  The pattern <literal>(y::(a,b))</literal>
contains an occurrence of the already-in-scope type variable <literal>a</literal>,
and brings into scope the type variable <literal>b</literal>.
</para>
</listitem>

<listitem>
<para>
The type variable(s) bound by the pattern have the same scope
as the term variable(s) bound by the pattern.  For example:
<programlisting>
  let
    f (x::a) = &lt;...rhs of f...>
    (p::b, q::b) = (1,2)
  in &lt;...body of let...>
</programlisting>
Here, the type variable <literal>a</literal> scopes over the right hand side of <literal>f</literal>,
just like <literal>x</literal> does; while the type variable <literal>b</literal> scopes over the
body of the <literal>let</literal>, and all the other definitions in the <literal>let</literal>,
just like <literal>p</literal> and <literal>q</literal> do.
Indeed, the newly bound type variables also scope over any ordinary, separate
type signatures in the <literal>let</literal> group.
</para>
</listitem>


<listitem>
<para>
The type variables bound by the pattern may be 
mentioned in ordinary type signatures or pattern 
type signatures anywhere within their scope.

</para>
</listitem>

<listitem>
<para>
 In ordinary type signatures, any type variable mentioned in the
signature that is in scope is <emphasis>not</emphasis> universally quantified.

</para>
</listitem>

<listitem>

<para>
 Ordinary type signatures do not bring any new type variables
into scope (except in the type signature itself!). So this is illegal:

<programlisting>
  f :: a -> a
  f x = x::a
</programlisting>

It's illegal because <varname>a</varname> is not in scope in the body of <function>f</function>,
so the ordinary signature <literal>x::a</literal> is equivalent to <literal>x::forall a.a</literal>;
and that is an incorrect typing.

</para>
</listitem>

<listitem>
<para>
The pattern type signature is a monotype:
</para>

<itemizedlist>
<listitem> <para> 
A pattern type signature cannot contain any explicit <literal>forall</literal> quantification.
</para> </listitem>

<listitem>  <para> 
The type variables bound by a pattern type signature can only be instantiated to monotypes,
not to type schemes.
</para> </listitem>

<listitem>  <para> 
There is no implicit universal quantification on pattern type signatures (in contrast to
ordinary type signatures).
</para> </listitem>

</itemizedlist>

</listitem>

<listitem>
<para>

The type variables in the head of a <literal>class</literal> or <literal>instance</literal> declaration
scope over the methods defined in the <literal>where</literal> part.  For example:


<programlisting>
  class C a where
    op :: [a] -> a

    op xs = let ys::[a]
                ys = reverse xs
            in
            head ys
</programlisting>


(Not implemented in Hugs yet, Dec 98).
</para>
</listitem>

</itemizedlist>

</para>

</sect3>

<sect3 id="decl-type-sigs">
<title>Declaration type signatures</title>
<para>A declaration type signature that has <emphasis>explicit</emphasis>
quantification (using <literal>forall</literal>) brings into scope the
explicitly-quantified
type variables, in the definition of the named function(s).  For example:
<programlisting>
  f :: forall a. [a] -> [a]
  f (x:xs) = xs ++ [ x :: a ]
</programlisting>
The "<literal>forall a</literal>" brings "<literal>a</literal>" into scope in
the definition of "<literal>f</literal>".
</para>
<para>This only happens if the quantification in <literal>f</literal>'s type
signature is explicit.  For example:
<programlisting>
  g :: [a] -> [a]
  g (x:xs) = xs ++ [ x :: a ]
</programlisting>
This program will be rejected, because "<literal>a</literal>" does not scope
over the definition of "<literal>f</literal>", so "<literal>x::a</literal>"
means "<literal>x::forall a. a</literal>" by Haskell's usual implicit
quantification rules.
</para>
</sect3>

<sect3 id="pattern-type-sigs">
<title>Where a pattern type signature can occur</title>

<para>
A pattern type signature can occur in any pattern.  For example:
<itemizedlist>

<listitem>
<para>
A pattern type signature can be on an arbitrary sub-pattern, not
just on a variable:


<programlisting>
  f ((x,y)::(a,b)) = (y,x) :: (b,a)
</programlisting>


</para>
</listitem>
<listitem>

<para>
 Pattern type signatures, including the result part, can be used
in lambda abstractions:

<programlisting>
  (\ (x::a, y) :: a -> x)
</programlisting>
</para>
</listitem>
<listitem>

<para>
 Pattern type signatures, including the result part, can be used
in <literal>case</literal> expressions:

<programlisting>
  case e of { ((x::a, y) :: (a,b)) -> x }
</programlisting>

Note that the <literal>-&gt;</literal> symbol in a case alternative
leads to difficulties when parsing a type signature in the pattern: in
the absence of the extra parentheses in the example above, the parser
would try to interpret the <literal>-&gt;</literal> as a function
arrow and give a parse error later.

</para>

</listitem>

<listitem>
<para>
To avoid ambiguity, the type after the &ldquo;<literal>::</literal>&rdquo; in a result
pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
token or a parenthesised type of some sort).  To see why,
consider how one would parse this:


<programlisting>
  \ x :: a -> b -> x
</programlisting>


</para>
</listitem>

<listitem>

<para>
 Pattern type signatures can bind existential type variables.
For example:


<programlisting>
  data T = forall a. MkT [a]

  f :: T -> T
  f (MkT [t::a]) = MkT t3
                 where
                   t3::[a] = [t,t,t]
</programlisting>


</para>
</listitem>


<listitem>

<para>
Pattern type signatures 
can be used in pattern bindings:

<programlisting>
  f x = let (y, z::a) = x in ...
  f1 x                = let (y, z::Int) = x in ...
  f2 (x::(Int,a))     = let (y, z::a)   = x in ...
  f3 :: (b->b)        = \x -> x
</programlisting>

In all such cases, the binding is not generalised over the pattern-bound
type variables.  Thus <literal>f3</literal> is monomorphic; <literal>f3</literal>
has type <literal>b -&gt; b</literal> for some type <literal>b</literal>, 
and <emphasis>not</emphasis> <literal>forall b. b -&gt; b</literal>.
In contrast, the binding
<programlisting>
  f4 :: b->b
  f4 = \x -> x
</programlisting>
makes a polymorphic function, but <literal>b</literal> is not in scope anywhere
in <literal>f4</literal>'s scope.

</para>
</listitem>
</itemizedlist>
</para>
<para>Pattern type signatures are completely orthogonal to ordinary, separate
type signatures.  The two can be used independently or together.</para>

</sect3>

<sect3 id="result-type-sigs">
<title>Result type signatures</title>

<para>
The result type of a function can be given a signature, thus:


<programlisting>
  f (x::a) :: [a] = [x,x,x]
</programlisting>


The final <literal>:: [a]</literal> after all the patterns gives a signature to the
result type.  Sometimes this is the only way of naming the type variable
you want:


<programlisting>
  f :: Int -> [a] -> [a]
  f n :: ([a] -> [a]) = let g (x::a, y::a) = (y,x)
                        in \xs -> map g (reverse xs `zip` xs)
</programlisting>

</para>
<para>
The type variables bound in a result type signature scope over the right hand side
of the definition. However, consider this corner-case:
<programlisting>
  rev1 :: [a] -> [a] = \xs -> reverse xs

  foo ys = rev (ys::[a])
</programlisting>
The signature on <literal>rev1</literal> is considered a pattern type signature, not a result
type signature, and the type variables it binds have the same scope as <literal>rev1</literal>
itself (i.e. the right-hand side of <literal>rev1</literal> and the rest of the module too).
In particular, the expression <literal>(ys::[a])</literal> is OK, because the type variable <literal>a</literal>
is in scope (otherwise it would mean <literal>(ys::forall a.[a])</literal>, which would be rejected).  
</para>
<para>
As mentioned above, <literal>rev1</literal> is made monomorphic by this scoping rule.
For example, the following program would be rejected, because it claims that <literal>rev1</literal>
is polymorphic:
<programlisting>
  rev1 :: [b] -> [b]
  rev1 :: [a] -> [a] = \xs -> reverse xs
</programlisting>
</para>

<para>
Result type signatures are not yet implemented in Hugs.
</para>

</sect3>

</sect2>

<sect2 id="deriving-typeable">
<title>Deriving clause for classes <literal>Typeable</literal> and <literal>Data</literal></title>

<para>
Haskell 98 allows the programmer to add "<literal>deriving( Eq, Ord )</literal>" to a data type 
declaration, to generate a standard instance declaration for classes specified in the <literal>deriving</literal> clause.  
In Haskell 98, the only classes that may appear in the <literal>deriving</literal> clause are the standard
classes <literal>Eq</literal>, <literal>Ord</literal>, 
<literal>Enum</literal>, <literal>Ix</literal>, <literal>Bounded</literal>, <literal>Read</literal>, and <literal>Show</literal>.
</para>
<para>
GHC extends this list with two more classes that may be automatically derived 
(provided the <option>-fglasgow-exts</option> flag is specified):
<literal>Typeable</literal>, and <literal>Data</literal>.  These classes are defined in the library
modules <literal>Data.Typeable</literal> and <literal>Data.Generics</literal> respectively, and the
appropriate class must be in scope before it can be mentioned in the <literal>deriving</literal> clause.
</para>
<para>An instance of <literal>Typeable</literal> can only be derived if the
data type has seven or fewer type parameters, all of kind <literal>*</literal>.
The reason for this is that the <literal>Typeable</literal> class is derived using the scheme
described in
<ulink url="http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps">
Scrap More Boilerplate: Reflection, Zips, and Generalised Casts
</ulink>.
(Section 7.4 of the paper describes the multiple <literal>Typeable</literal> classes that
are used, and only <literal>Typeable1</literal> up to
<literal>Typeable7</literal> are provided in the library.)
In other cases, there is nothing to stop the programmer writing a <literal>TypableX</literal>
class, whose kind suits that of the data type constructor, and
then writing the data type instance by hand.
</para>
</sect2>

<sect2 id="newtype-deriving">
<title>Generalised derived instances for newtypes</title>

<para>
When you define an abstract type using <literal>newtype</literal>, you may want
the new type to inherit some instances from its representation. In
Haskell 98, you can inherit instances of <literal>Eq</literal>, <literal>Ord</literal>,
<literal>Enum</literal> and <literal>Bounded</literal> by deriving them, but for any
other classes you have to write an explicit instance declaration. For
example, if you define

<programlisting> 
  newtype Dollars = Dollars Int 
</programlisting> 

and you want to use arithmetic on <literal>Dollars</literal>, you have to
explicitly define an instance of <literal>Num</literal>:

<programlisting> 
  instance Num Dollars where
    Dollars a + Dollars b = Dollars (a+b)
    ...
</programlisting>
All the instance does is apply and remove the <literal>newtype</literal>
constructor. It is particularly galling that, since the constructor
doesn't appear at run-time, this instance declaration defines a
dictionary which is <emphasis>wholly equivalent</emphasis> to the <literal>Int</literal>
dictionary, only slower!
</para>


<sect3> <title> Generalising the deriving clause </title>
<para>
GHC now permits such instances to be derived instead, so one can write 
<programlisting> 
  newtype Dollars = Dollars Int deriving (Eq,Show,Num)
</programlisting> 

and the implementation uses the <emphasis>same</emphasis> <literal>Num</literal> dictionary
for <literal>Dollars</literal> as for <literal>Int</literal>. Notionally, the compiler
derives an instance declaration of the form

<programlisting> 
  instance Num Int => Num Dollars
</programlisting> 

which just adds or removes the <literal>newtype</literal> constructor according to the type.
</para>
<para>

We can also derive instances of constructor classes in a similar
way. For example, suppose we have implemented state and failure monad
transformers, such that

<programlisting> 
  instance Monad m => Monad (State s m) 
  instance Monad m => Monad (Failure m)
</programlisting> 
In Haskell 98, we can define a parsing monad by 
<programlisting> 
  type Parser tok m a = State [tok] (Failure m) a
</programlisting> 

which is automatically a monad thanks to the instance declarations
above. With the extension, we can make the parser type abstract,
without needing to write an instance of class <literal>Monad</literal>, via

<programlisting> 
  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
                         deriving Monad
</programlisting>
In this case the derived instance declaration is of the form 
<programlisting> 
  instance Monad (State [tok] (Failure m)) => Monad (Parser tok m) 
</programlisting> 

Notice that, since <literal>Monad</literal> is a constructor class, the
instance is a <emphasis>partial application</emphasis> of the new type, not the
entire left hand side. We can imagine that the type declaration is
``eta-converted'' to generate the context of the instance
declaration.
</para>
<para>

We can even derive instances of multi-parameter classes, provided the
newtype is the last class parameter. In this case, a ``partial
application'' of the class appears in the <literal>deriving</literal>
clause. For example, given the class

<programlisting> 
  class StateMonad s m | m -> s where ... 
  instance Monad m => StateMonad s (State s m) where ... 
</programlisting> 
then we can derive an instance of <literal>StateMonad</literal> for <literal>Parser</literal>s by 
<programlisting> 
  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
                         deriving (Monad, StateMonad [tok])
</programlisting>

The derived instance is obtained by completing the application of the
class to the new type:

<programlisting> 
  instance StateMonad [tok] (State [tok] (Failure m)) =>
           StateMonad [tok] (Parser tok m)
</programlisting>
</para>
<para>

As a result of this extension, all derived instances in newtype
 declarations are treated uniformly (and implemented just by reusing
the dictionary for the representation type), <emphasis>except</emphasis>
<literal>Show</literal> and <literal>Read</literal>, which really behave differently for
the newtype and its representation.
</para>
</sect3>

<sect3> <title> A more precise specification </title>
<para>
Derived instance declarations are constructed as follows. Consider the
declaration (after expansion of any type synonyms)

<programlisting> 
  newtype T v1...vn = T' (S t1...tk vk+1...vn) deriving (c1...cm) 
</programlisting> 

where 
 <itemizedlist>
<listitem><para>
  <literal>S</literal> is a type constructor, 
</para></listitem>
<listitem><para>
  The <literal>t1...tk</literal> are types,
</para></listitem>
<listitem><para>
  The <literal>vk+1...vn</literal> are type variables which do not occur in any of
  the <literal>ti</literal>, and
</para></listitem>
<listitem><para>
  The <literal>ci</literal> are partial applications of
  classes of the form <literal>C t1'...tj'</literal>, where the arity of <literal>C</literal>
  is exactly <literal>j+1</literal>.  That is, <literal>C</literal> lacks exactly one type argument.
</para></listitem>
<listitem><para>
  None of the <literal>ci</literal> is <literal>Read</literal>, <literal>Show</literal>, 
		<literal>Typeable</literal>, or <literal>Data</literal>.  These classes
		should not "look through" the type or its constructor.  You can still
		derive these classes for a newtype, but it happens in the usual way, not 
		via this new mechanism.  
</para></listitem>
</itemizedlist>
Then, for each <literal>ci</literal>, the derived instance
declaration is:
<programlisting> 
  instance ci (S t1...tk vk+1...v) => ci (T v1...vp)
</programlisting>
where <literal>p</literal> is chosen so that <literal>T v1...vp</literal> is of the 
right <emphasis>kind</emphasis> for the last parameter of class <literal>Ci</literal>.
</para>
<para>

As an example which does <emphasis>not</emphasis> work, consider 
<programlisting> 
  newtype NonMonad m s = NonMonad (State s m s) deriving Monad 
</programlisting> 
Here we cannot derive the instance 
<programlisting> 
  instance Monad (State s m) => Monad (NonMonad m) 
</programlisting> 

because the type variable <literal>s</literal> occurs in <literal>State s m</literal>,
and so cannot be "eta-converted" away. It is a good thing that this
<literal>deriving</literal> clause is rejected, because <literal>NonMonad m</literal> is
not, in fact, a monad --- for the same reason. Try defining
<literal>>>=</literal> with the correct type: you won't be able to.
</para>
<para>

Notice also that the <emphasis>order</emphasis> of class parameters becomes
important, since we can only derive instances for the last one. If the
<literal>StateMonad</literal> class above were instead defined as

<programlisting> 
  class StateMonad m s | m -> s where ... 
</programlisting>

then we would not have been able to derive an instance for the
<literal>Parser</literal> type above. We hypothesise that multi-parameter
classes usually have one "main" parameter for which deriving new
instances is most interesting.
</para>
<para>Lastly, all of this applies only for classes other than
<literal>Read</literal>, <literal>Show</literal>, <literal>Typeable</literal>, 
and <literal>Data</literal>, for which the built-in derivation applies (section
4.3.3. of the Haskell Report).
(For the standard classes <literal>Eq</literal>, <literal>Ord</literal>,
<literal>Ix</literal>, and <literal>Bounded</literal> it is immaterial whether
the standard method is used or the one described here.)
</para>
</sect3>

</sect2>

<sect2 id="typing-binds">
<title>Generalised typing of mutually recursive bindings</title>

<para>
The Haskell Report specifies that a group of bindings (at top level, or in a
<literal>let</literal> or <literal>where</literal>) should be sorted into
strongly-connected components, and then type-checked in dependency order
(<ulink url="http://haskell.org/onlinereport/decls.html#sect4.5.1">Haskell
Report, Section 4.5.1</ulink>).  
As each group is type-checked, any binders of the group that
have
an explicit type signature are put in the type environment with the specified
polymorphic type,
and all others are monomorphic until the group is generalised 
(<ulink url="http://haskell.org/onlinereport/decls.html#sect4.5.2">Haskell Report, Section 4.5.2</ulink>).
</para>

<para>Following a suggestion of Mark Jones, in his paper
<ulink url="http://www.cse.ogi.edu/~mpj/thih/">Typing Haskell in
Haskell</ulink>,
GHC implements a more general scheme.  If <option>-fglasgow-exts</option> is
specified:
<emphasis>the dependency analysis ignores references to variables that have an explicit
type signature</emphasis>.
As a result of this refined dependency analysis, the dependency groups are smaller, and more bindings will
typecheck.  For example, consider:
<programlisting>
  f :: Eq a =&gt; a -> Bool
  f x = (x == x) || g True || g "Yes"
  
  g y = (y &lt;= y) || f True
</programlisting>
This is rejected by Haskell 98, but under Jones's scheme the definition for
<literal>g</literal> is typechecked first, separately from that for
<literal>f</literal>,
because the reference to <literal>f</literal> in <literal>g</literal>'s right
hand side is ingored by the dependency analysis.  Then <literal>g</literal>'s
type is generalised, to get
<programlisting>
  g :: Ord a =&gt; a -> Bool
</programlisting>
Now, the defintion for <literal>f</literal> is typechecked, with this type for
<literal>g</literal> in the type environment.
</para>

<para>
The same refined dependency analysis also allows the type signatures of 
mutually-recursive functions to have different contexts, something that is illegal in
Haskell 98 (Section 4.5.2, last sentence).  With
<option>-fglasgow-exts</option>
GHC only insists that the type signatures of a <emphasis>refined</emphasis> group have identical
type signatures; in practice this means that only variables bound by the same
pattern binding must have the same context.  For example, this is fine:
<programlisting>
  f :: Eq a =&gt; a -> Bool
  f x = (x == x) || g True
  
  g :: Ord a =&gt; a -> Bool
  g y = (y &lt;= y) || f True
</programlisting>
</para>
</sect2>

</sect1>
<!-- ==================== End of type system extensions =================  -->
  
<!-- ====================== Generalised algebraic data types =======================  -->

<sect1 id="gadt">
<title>Generalised Algebraic Data Types</title>

<para>Generalised Algebraic Data Types (GADTs) generalise ordinary algebraic data types by allowing you
to give the type signatures of constructors explicitly.  For example:
<programlisting>
  data Term a where
      Lit    :: Int -> Term Int
      Succ   :: Term Int -> Term Int
      IsZero :: Term Int -> Term Bool	
      If     :: Term Bool -> Term a -> Term a -> Term a
      Pair   :: Term a -> Term b -> Term (a,b)
</programlisting>
Notice that the return type of the constructors is not always <literal>Term a</literal>, as is the
case with ordinary vanilla data types.  Now we can write a well-typed <literal>eval</literal> function
for these <literal>Terms</literal>:
<programlisting>
  eval :: Term a -> a
  eval (Lit i) 	    = i
  eval (Succ t)     = 1 + eval t
  eval (IsZero t)   = eval t == 0
  eval (If b e1 e2) = if eval b then eval e1 else eval e2
  eval (Pair e1 e2) = (eval e1, eval e2)
</programlisting>
These and many other examples are given in papers by Hongwei Xi, and Tim Sheard.
</para>
<para> The extensions to GHC are these:
<itemizedlist>
<listitem><para>
  Data type declarations have a 'where' form, as exemplified above.  The type signature of
each constructor is independent, and is implicitly universally quantified as usual. Unlike a normal
Haskell data type declaration, the type variable(s) in the "<literal>data Term a where</literal>" header 
have no scope.  Indeed, one can write a kind signature instead:
<programlisting>
  data Term :: * -> * where ...
</programlisting>
or even a mixture of the two:
<programlisting>
  data Foo a :: (* -> *) -> * where ...
</programlisting>
The type variables (if given) may be explicitly kinded, so we could also write the header for <literal>Foo</literal>
like this:
<programlisting>
  data Foo a (b :: * -> *) where ...
</programlisting>
</para></listitem>

<listitem><para>
There are no restrictions on the type of the data constructor, except that the result
type must begin with the type constructor being defined.  For example, in the <literal>Term</literal> data
type above, the type of each constructor must end with <literal> ... -> Term ...</literal>.
</para></listitem>

<listitem><para>
You can use record syntax on a GADT-style data type declaration:

<programlisting>
  data Term a where
      Lit    { val  :: Int }      :: Term Int
      Succ   { num  :: Term Int } :: Term Int
      Pred   { num  :: Term Int } :: Term Int
      IsZero { arg  :: Term Int } :: Term Bool	
      Pair   { arg1 :: Term a
             , arg2 :: Term b
             }                    :: Term (a,b)
      If     { cnd  :: Term Bool
             , tru  :: Term a
             , fls  :: Term a
             }                    :: Term a
</programlisting>
For every constructor that has a field <literal>f</literal>, (a) the type of
field <literal>f</literal> must be the same; and (b) the
result type of the constructor must be the same; both modulo alpha conversion.
Hence, in our example, we cannot merge the <literal>num</literal> and <literal>arg</literal>
fields above into a 
single name.  Although their field types are both <literal>Term Int</literal>,
their selector functions actually have different types:

<programlisting>
  num :: Term Int -> Term Int
  arg :: Term Bool -> Term Int
</programlisting>

At the moment, record updates are not yet possible with GADT, so support is 
limited to record construction, selection and pattern matching:

<programlisting>
  someTerm :: Term Bool
  someTerm = IsZero { arg = Succ { num = Lit { val = 0 } } }

  eval :: Term a -> a
  eval Lit    { val = i } = i
  eval Succ   { num = t } = eval t + 1
  eval Pred   { num = t } = eval t - 1
  eval IsZero { arg = t } = eval t == 0
  eval Pair   { arg1 = t1, arg2 = t2 } = (eval t1, eval t2)
  eval t@If{} = if eval (cnd t) then eval (tru t) else eval (fls t)
</programlisting>

</para></listitem>

<listitem><para>
You can use strictness annotations, in the obvious places
in the constructor type:
<programlisting>
  data Term a where
      Lit    :: !Int -> Term Int
      If     :: Term Bool -> !(Term a) -> !(Term a) -> Term a
      Pair   :: Term a -> Term b -> Term (a,b)
</programlisting>
</para></listitem>

<listitem><para>
You can use a <literal>deriving</literal> clause on a GADT-style data type
declaration, but only if the data type could also have been declared in
Haskell-98 syntax.   For example, these two declarations are equivalent
<programlisting>
  data Maybe1 a where {
      Nothing1 :: Maybe a ;
      Just1    :: a -> Maybe a
    } deriving( Eq, Ord )

  data Maybe2 a = Nothing2 | Just2 a 
       deriving( Eq, Ord )
</programlisting>
This simply allows you to declare a vanilla Haskell-98 data type using the
<literal>where</literal> form without losing the <literal>deriving</literal> clause.
</para></listitem>

<listitem><para>
Pattern matching causes type refinement.  For example, in the right hand side of the equation
<programlisting>
  eval :: Term a -> a
  eval (Lit i) =  ...
</programlisting>
the type <literal>a</literal> is refined to <literal>Int</literal>.  (That's the whole point!)
A precise specification of the type rules is beyond what this user manual aspires to, but there is a paper
about the ideas: "Wobbly types: practical type inference for generalised algebraic data types", on Simon PJ's home page.</para>

<para> The general principle is this: <emphasis>type refinement is only carried out based on user-supplied type annotations</emphasis>.
So if no type signature is supplied for <literal>eval</literal>, no type refinement happens, and lots of obscure error messages will
occur.  However, the refinement is quite general.  For example, if we had:
<programlisting>
  eval :: Term a -> a -> a
  eval (Lit i) j =  i+j
</programlisting>
the pattern match causes the type <literal>a</literal> to be refined to <literal>Int</literal> (because of the type
of the constructor <literal>Lit</literal>, and that refinement also applies to the type of <literal>j</literal>, and
the result type of the <literal>case</literal> expression.  Hence the addition <literal>i+j</literal> is legal.
</para>
</listitem>
</itemizedlist>
</para>

<para>Notice that GADTs generalise existential types.  For example, these two declarations are equivalent:
<programlisting>
  data T a = forall b. MkT b (b->a)
  data T' a where { MKT :: b -> (b->a) -> T' a }
</programlisting>
</para>
</sect1>

<!-- ====================== End of Generalised algebraic data types =======================  -->

<!-- ====================== TEMPLATE HASKELL =======================  -->

<sect1 id="template-haskell">
<title>Template Haskell</title>

<para>Template Haskell allows you to do compile-time meta-programming in Haskell.  There is a "home page" for
Template Haskell at <ulink url="http://www.haskell.org/th/">
http://www.haskell.org/th/</ulink>, while
the background to
the main technical innovations is discussed in "<ulink
url="http://research.microsoft.com/~simonpj/papers/meta-haskell">
Template Meta-programming for Haskell</ulink>" (Proc Haskell Workshop 2002).
The details of the Template Haskell design are still in flux.  Make sure you
consult the <ulink url="http://www.haskell.org/ghc/docs/latest/html/libraries/index.html">online library reference material</ulink> 
(search for the type ExpQ).
[Temporary: many changes to the original design are described in 
      <ulink url="http://research.microsoft.com/~simonpj/tmp/notes2.ps">"http://research.microsoft.com/~simonpj/tmp/notes2.ps"</ulink>.
Not all of these changes are in GHC 6.2.]
</para>

<para> The first example from that paper is set out below as a worked example to help get you started. 
</para>

<para>
The documentation here describes the realisation in GHC.  (It's rather sketchy just now;
Tim Sheard is going to expand it.)
</para>

    <sect2>
      <title>Syntax</title>

      <para> Template Haskell has the following new syntactic
      constructions.  You need to use the flag
      <option>-fth</option><indexterm><primary><option>-fth</option></primary>
      </indexterm>to switch these syntactic extensions on
      (<option>-fth</option> is currently implied by
      <option>-fglasgow-exts</option>, but you are encouraged to
      specify it explicitly).</para>

	<itemizedlist>
	      <listitem><para>
		  A splice is written <literal>$x</literal>, where <literal>x</literal> is an
		  identifier, or <literal>$(...)</literal>, where the "..." is an arbitrary expression.
		  There must be no space between the "$" and the identifier or parenthesis.  This use
		  of "$" overrides its meaning as an infix operator, just as "M.x" overrides the meaning
		  of "." as an infix operator.  If you want the infix operator, put spaces around it.
		  </para>
	      <para> A splice can occur in place of 
		  <itemizedlist>
		    <listitem><para> an expression; the spliced expression must
		    have type <literal>Q Exp</literal></para></listitem>
		    <listitem><para> a list of top-level declarations; ; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
		    <listitem><para> [Planned, but not implemented yet.] a
		    type; the spliced expression must have type <literal>Q Typ</literal>.</para></listitem>
		    </itemizedlist>
	   (Note that the syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>" as in
	the paper. Also the type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>
	as in the paper.)
		</para></listitem>


	      <listitem><para>
		  A expression quotation is written in Oxford brackets, thus:
		  <itemizedlist>
		    <listitem><para> <literal>[| ... |]</literal>, where the "..." is an expression; 
                             the quotation has type <literal>Expr</literal>.</para></listitem>
		    <listitem><para> <literal>[d| ... |]</literal>, where the "..." is a list of top-level declarations;
                             the quotation has type <literal>Q [Dec]</literal>.</para></listitem>
		    <listitem><para>  [Planned, but not implemented yet.]  <literal>[t| ... |]</literal>, where the "..." is a type; 
                             the quotation has type <literal>Type</literal>.</para></listitem>
		  </itemizedlist></para></listitem>

	      <listitem><para>
		  Reification is written thus:
		  <itemizedlist>
		    <listitem><para> <literal>reifyDecl T</literal>, where <literal>T</literal> is a type constructor; this expression
		      has type <literal>Dec</literal>. </para></listitem>
		    <listitem><para> <literal>reifyDecl C</literal>, where <literal>C</literal> is a class; has type <literal>Dec</literal>.</para></listitem>
		    <listitem><para> <literal>reifyType f</literal>, where <literal>f</literal> is an identifier; has type <literal>Typ</literal>.</para></listitem>
		    <listitem><para> Still to come: fixities </para></listitem>
		    
		  </itemizedlist></para>
		</listitem>

		  
	</itemizedlist>
</sect2>

<sect2>  <title> Using Template Haskell </title>
<para>
<itemizedlist>
    <listitem><para>
    The data types and monadic constructor functions for Template Haskell are in the library
    <literal>Language.Haskell.THSyntax</literal>.
    </para></listitem>

    <listitem><para>
    You can only run a function at compile time if it is imported from another module.  That is,
	    you can't define a function in a module, and call it from within a splice in the same module.
	    (It would make sense to do so, but it's hard to implement.)
   </para></listitem>

    <listitem><para>
	    The flag <literal>-ddump-splices</literal> shows the expansion of all top-level splices as they happen.
   </para></listitem>
    <listitem><para>
	    If you are building GHC from source, you need at least a stage-2 bootstrap compiler to
	      run Template Haskell.  A stage-1 compiler will reject the TH constructs.  Reason: TH
	      compiles and runs a program, and then looks at the result.  So it's important that
	      the program it compiles produces results whose representations are identical to
	      those of the compiler itself.
   </para></listitem>
</itemizedlist>
</para>
<para> Template Haskell works in any mode (<literal>--make</literal>, <literal>--interactive</literal>,
	or file-at-a-time).  There used to be a restriction to the former two, but that restriction 
	has been lifted.
</para>
</sect2>
 
<sect2>  <title> A Template Haskell Worked Example </title>
<para>To help you get over the confidence barrier, try out this skeletal worked example.
  First cut and paste the two modules below into "Main.hs" and "Printf.hs":</para>

<programlisting>

{- Main.hs -}
module Main where

-- Import our template "pr"
import Printf ( pr )

-- The splice operator $ takes the Haskell source code
-- generated at compile time by "pr" and splices it into
-- the argument of "putStrLn".
main = putStrLn ( $(pr "Hello") )


{- Printf.hs -}
module Printf where

-- Skeletal printf from the paper.
-- It needs to be in a separate module to the one where
-- you intend to use it.

-- Import some Template Haskell syntax
import Language.Haskell.TH

-- Describe a format string
data Format = D | S | L String

-- Parse a format string.  This is left largely to you
-- as we are here interested in building our first ever
-- Template Haskell program and not in building printf.
parse :: String -> [Format]
parse s   = [ L s ]

-- Generate Haskell source code from a parsed representation
-- of the format string.  This code will be spliced into
-- the module which calls "pr", at compile time.
gen :: [Format] -> ExpQ
gen [D]   = [| \n -> show n |]
gen [S]   = [| \s -> s |]
gen [L s] = stringE s

-- Here we generate the Haskell code for the splice
-- from an input format string.
pr :: String -> ExpQ
pr s      = gen (parse s)
</programlisting>

<para>Now run the compiler (here we are a Cygwin prompt on Windows):
</para>
<programlisting>
$ ghc --make -fth main.hs -o main.exe
</programlisting>

<para>Run "main.exe" and here is your output:</para>

<programlisting>
$ ./main
Hello
</programlisting>

</sect2>
 
</sect1>

<!-- ===================== Arrow notation ===================  -->

<sect1 id="arrow-notation">
<title>Arrow notation
</title>

<para>Arrows are a generalization of monads introduced by John Hughes.
For more details, see
<itemizedlist>

<listitem>
<para>
&ldquo;Generalising Monads to Arrows&rdquo;,
John Hughes, in <citetitle>Science of Computer Programming</citetitle> 37,
pp67&ndash;111, May 2000.
</para>
</listitem>

<listitem>
<para>
&ldquo;<ulink url="http://www.soi.city.ac.uk/~ross/papers/notation.html">A New Notation for Arrows</ulink>&rdquo;,
Ross Paterson, in <citetitle>ICFP</citetitle>, Sep 2001.
</para>
</listitem>

<listitem>
<para>
&ldquo;<ulink url="http://www.soi.city.ac.uk/~ross/papers/fop.html">Arrows and Computation</ulink>&rdquo;,
Ross Paterson, in <citetitle>The Fun of Programming</citetitle>,
Palgrave, 2003.
</para>
</listitem>

</itemizedlist>
and the arrows web page at
<ulink url="http://www.haskell.org/arrows/"><literal>http://www.haskell.org/arrows/</literal></ulink>.
With the <option>-farrows</option> flag, GHC supports the arrow
notation described in the second of these papers.
What follows is a brief introduction to the notation;
it won't make much sense unless you've read Hughes's paper.
This notation is translated to ordinary Haskell,
using combinators from the
<ulink url="../libraries/base/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>
module.
</para>

<para>The extension adds a new kind of expression for defining arrows:
<screen>
<replaceable>exp</replaceable><superscript>10</superscript> ::= ...
       |  proc <replaceable>apat</replaceable> -> <replaceable>cmd</replaceable>
</screen>
where <literal>proc</literal> is a new keyword.
The variables of the pattern are bound in the body of the 
<literal>proc</literal>-expression,
which is a new sort of thing called a <firstterm>command</firstterm>.
The syntax of commands is as follows:
<screen>
<replaceable>cmd</replaceable>   ::= <replaceable>exp</replaceable><superscript>10</superscript> -&lt;  <replaceable>exp</replaceable>
       |  <replaceable>exp</replaceable><superscript>10</superscript> -&lt;&lt; <replaceable>exp</replaceable>
       |  <replaceable>cmd</replaceable><superscript>0</superscript>
</screen>
with <replaceable>cmd</replaceable><superscript>0</superscript> up to
<replaceable>cmd</replaceable><superscript>9</superscript> defined using
infix operators as for expressions, and
<screen>
<replaceable>cmd</replaceable><superscript>10</superscript> ::= \ <replaceable>apat</replaceable> ... <replaceable>apat</replaceable> -> <replaceable>cmd</replaceable>
       |  let <replaceable>decls</replaceable> in <replaceable>cmd</replaceable>
       |  if <replaceable>exp</replaceable> then <replaceable>cmd</replaceable> else <replaceable>cmd</replaceable>
       |  case <replaceable>exp</replaceable> of { <replaceable>calts</replaceable> }
       |  do { <replaceable>cstmt</replaceable> ; ... <replaceable>cstmt</replaceable> ; <replaceable>cmd</replaceable> }
       |  <replaceable>fcmd</replaceable>

<replaceable>fcmd</replaceable>  ::= <replaceable>fcmd</replaceable> <replaceable>aexp</replaceable>
       |  ( <replaceable>cmd</replaceable> )
       |  (| <replaceable>aexp</replaceable> <replaceable>cmd</replaceable> ... <replaceable>cmd</replaceable> |)

<replaceable>cstmt</replaceable> ::= let <replaceable>decls</replaceable>
       |  <replaceable>pat</replaceable> &lt;- <replaceable>cmd</replaceable>
       |  rec { <replaceable>cstmt</replaceable> ; ... <replaceable>cstmt</replaceable> [;] }
       |  <replaceable>cmd</replaceable>
</screen>
where <replaceable>calts</replaceable> are like <replaceable>alts</replaceable>
except that the bodies are commands instead of expressions.
</para>

<para>
Commands produce values, but (like monadic computations)
may yield more than one value,
or none, and may do other things as well.
For the most part, familiarity with monadic notation is a good guide to
using commands.
However the values of expressions, even monadic ones,
are determined by the values of the variables they contain;
this is not necessarily the case for commands.
</para>

<para>
A simple example of the new notation is the expression
<screen>
proc x -> f -&lt; x+1
</screen>
We call this a <firstterm>procedure</firstterm> or
<firstterm>arrow abstraction</firstterm>.
As with a lambda expression, the variable <literal>x</literal>
is a new variable bound within the <literal>proc</literal>-expression.
It refers to the input to the arrow.
In the above example, <literal>-&lt;</literal> is not an identifier but an
new reserved symbol used for building commands from an expression of arrow
type and an expression to be fed as input to that arrow.
(The weird look will make more sense later.)
It may be read as analogue of application for arrows.
The above example is equivalent to the Haskell expression
<screen>
arr (\ x -> x+1) >>> f
</screen>
That would make no sense if the expression to the left of
<literal>-&lt;</literal> involves the bound variable <literal>x</literal>.
More generally, the expression to the left of <literal>-&lt;</literal>
may not involve any <firstterm>local variable</firstterm>,
i.e. a variable bound in the current arrow abstraction.
For such a situation there is a variant <literal>-&lt;&lt;</literal>, as in
<screen>
proc x -> f x -&lt;&lt; x+1
</screen>
which is equivalent to
<screen>
arr (\ x -> (f x, x+1)) >>> app
</screen>
so in this case the arrow must belong to the <literal>ArrowApply</literal>
class.
Such an arrow is equivalent to a monad, so if you're using this form
you may find a monadic formulation more convenient.
</para>

<sect2>
<title>do-notation for commands</title>

<para>
Another form of command is a form of <literal>do</literal>-notation.
For example, you can write
<screen>
proc x -> do
        y &lt;- f -&lt; x+1
        g -&lt; 2*y
        let z = x+y
        t &lt;- h -&lt; x*z
        returnA -&lt; t+z
</screen>
You can read this much like ordinary <literal>do</literal>-notation,
but with commands in place of monadic expressions.
The first line sends the value of <literal>x+1</literal> as an input to
the arrow <literal>f</literal>, and matches its output against
<literal>y</literal>.
In the next line, the output is discarded.
The arrow <function>returnA</function> is defined in the
<ulink url="../libraries/base/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>
module as <literal>arr id</literal>.
The above example is treated as an abbreviation for
<screen>
arr (\ x -> (x, x)) >>>
        first (arr (\ x -> x+1) >>> f) >>>
        arr (\ (y, x) -> (y, (x, y))) >>>
        first (arr (\ y -> 2*y) >>> g) >>>
        arr snd >>>
        arr (\ (x, y) -> let z = x+y in ((x, z), z)) >>>
        first (arr (\ (x, z) -> x*z) >>> h) >>>
        arr (\ (t, z) -> t+z) >>>
        returnA
</screen>
Note that variables not used later in the composition are projected out.
After simplification using rewrite rules (see <xref linkend="rewrite-rules"/>)
defined in the
<ulink url="../libraries/base/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>
module, this reduces to
<screen>
arr (\ x -> (x+1, x)) >>>
        first f >>>
        arr (\ (y, x) -> (2*y, (x, y))) >>>
        first g >>>
        arr (\ (_, (x, y)) -> let z = x+y in (x*z, z)) >>>
        first h >>>
        arr (\ (t, z) -> t+z)
</screen>
which is what you might have written by hand.
With arrow notation, GHC keeps track of all those tuples of variables for you.
</para>

<para>
Note that although the above translation suggests that
<literal>let</literal>-bound variables like <literal>z</literal> must be
monomorphic, the actual translation produces Core,
so polymorphic variables are allowed.
</para>

<para>
It's also possible to have mutually recursive bindings,
using the new <literal>rec</literal> keyword, as in the following example:
<programlisting>
counter :: ArrowCircuit a => a Bool Int
counter = proc reset -> do
        rec     output &lt;- returnA -&lt; if reset then 0 else next
                next &lt;- delay 0 -&lt; output+1
        returnA -&lt; output
</programlisting>
The translation of such forms uses the <function>loop</function> combinator,
so the arrow concerned must belong to the <literal>ArrowLoop</literal> class.
</para>

</sect2>

<sect2>
<title>Conditional commands</title>

<para>
In the previous example, we used a conditional expression to construct the
input for an arrow.
Sometimes we want to conditionally execute different commands, as in
<screen>
proc (x,y) ->
        if f x y
        then g -&lt; x+1
        else h -&lt; y+2
</screen>
which is translated to
<screen>
arr (\ (x,y) -> if f x y then Left x else Right y) >>>
        (arr (\x -> x+1) >>> f) ||| (arr (\y -> y+2) >>> g)
</screen>
Since the translation uses <function>|||</function>,
the arrow concerned must belong to the <literal>ArrowChoice</literal> class.
</para>

<para>
There are also <literal>case</literal> commands, like
<screen>
case input of
    [] -> f -&lt; ()
    [x] -> g -&lt; x+1
    x1:x2:xs -> do
        y &lt;- h -&lt; (x1, x2)
        ys &lt;- k -&lt; xs
        returnA -&lt; y:ys
</screen>
The syntax is the same as for <literal>case</literal> expressions,
except that the bodies of the alternatives are commands rather than expressions.
The translation is similar to that of <literal>if</literal> commands.
</para>

</sect2>

<sect2>
<title>Defining your own control structures</title>

<para>
As we're seen, arrow notation provides constructs,
modelled on those for expressions,
for sequencing, value recursion and conditionals.
But suitable combinators,
which you can define in ordinary Haskell,
may also be used to build new commands out of existing ones.
The basic idea is that a command defines an arrow from environments to values.
These environments assign values to the free local variables of the command.
Thus combinators that produce arrows from arrows
may also be used to build commands from commands.
For example, the <literal>ArrowChoice</literal> class includes a combinator
<programlisting>
ArrowChoice a => (&lt;+>) :: a e c -> a e c -> a e c
</programlisting>
so we can use it to build commands:
<programlisting>
expr' = proc x -> do
                returnA -&lt; x
        &lt;+> do
                symbol Plus -&lt; ()
                y &lt;- term -&lt; ()
                expr' -&lt; x + y
        &lt;+> do
                symbol Minus -&lt; ()
                y &lt;- term -&lt; ()
                expr' -&lt; x - y
</programlisting>
(The <literal>do</literal> on the first line is needed to prevent the first
<literal>&lt;+> ...</literal> from being interpreted as part of the
expression on the previous line.)
This is equivalent to
<programlisting>
expr' = (proc x -> returnA -&lt; x)
        &lt;+> (proc x -> do
                symbol Plus -&lt; ()
                y &lt;- term -&lt; ()
                expr' -&lt; x + y)
        &lt;+> (proc x -> do
                symbol Minus -&lt; ()
                y &lt;- term -&lt; ()
                expr' -&lt; x - y)
</programlisting>
It is essential that this operator be polymorphic in <literal>e</literal>
(representing the environment input to the command
and thence to its subcommands)
and satisfy the corresponding naturality property
<screen>
arr k >>> (f &lt;+> g) = (arr k >>> f) &lt;+> (arr k >>> g)
</screen>
at least for strict <literal>k</literal>.
(This should be automatic if you're not using <function>seq</function>.)
This ensures that environments seen by the subcommands are environments
of the whole command,
and also allows the translation to safely trim these environments.
The operator must also not use any variable defined within the current
arrow abstraction.
</para>

<para>
We could define our own operator
<programlisting>
untilA :: ArrowChoice a => a e () -> a e Bool -> a e ()
untilA body cond = proc x ->
        if cond x then returnA -&lt; ()
        else do
                body -&lt; x
                untilA body cond -&lt; x
</programlisting>
and use it in the same way.
Of course this infix syntax only makes sense for binary operators;
there is also a more general syntax involving special brackets:
<screen>
proc x -> do
        y &lt;- f -&lt; x+1
        (|untilA (increment -&lt; x+y) (within 0.5 -&lt; x)|)
</screen>
</para>

</sect2>

<sect2>
<title>Primitive constructs</title>

<para>
Some operators will need to pass additional inputs to their subcommands.
For example, in an arrow type supporting exceptions,
the operator that attaches an exception handler will wish to pass the
exception that occurred to the handler.
Such an operator might have a type
<screen>
handleA :: ... => a e c -> a (e,Ex) c -> a e c
</screen>
where <literal>Ex</literal> is the type of exceptions handled.
You could then use this with arrow notation by writing a command
<screen>
body `handleA` \ ex -> handler
</screen>
so that if an exception is raised in the command <literal>body</literal>,
the variable <literal>ex</literal> is bound to the value of the exception
and the command <literal>handler</literal>,
which typically refers to <literal>ex</literal>, is entered.
Though the syntax here looks like a functional lambda,
we are talking about commands, and something different is going on.
The input to the arrow represented by a command consists of values for
the free local variables in the command, plus a stack of anonymous values.
In all the prior examples, this stack was empty.
In the second argument to <function>handleA</function>,
this stack consists of one value, the value of the exception.
The command form of lambda merely gives this value a name.
</para>

<para>
More concretely,
the values on the stack are paired to the right of the environment.
So operators like <function>handleA</function> that pass
extra inputs to their subcommands can be designed for use with the notation
by pairing the values with the environment in this way.
More precisely, the type of each argument of the operator (and its result)
should have the form
<screen>
a (...(e,t1), ... tn) t
</screen>
where <replaceable>e</replaceable> is a polymorphic variable
(representing the environment)
and <replaceable>ti</replaceable> are the types of the values on the stack,
with <replaceable>t1</replaceable> being the <quote>top</quote>.
The polymorphic variable <replaceable>e</replaceable> must not occur in
<replaceable>a</replaceable>, <replaceable>ti</replaceable> or
<replaceable>t</replaceable>.
However the arrows involved need not be the same.
Here are some more examples of suitable operators:
<screen>
bracketA :: ... => a e b -> a (e,b) c -> a (e,c) d -> a e d
runReader :: ... => a e c -> a' (e,State) c
runState :: ... => a e c -> a' (e,State) (c,State)
</screen>
We can supply the extra input required by commands built with the last two
by applying them to ordinary expressions, as in
<screen>
proc x -> do
        s &lt;- ...
        (|runReader (do { ... })|) s
</screen>
which adds <literal>s</literal> to the stack of inputs to the command
built using <function>runReader</function>.
</para>

<para>
The command versions of lambda abstraction and application are analogous to
the expression versions.
In particular, the beta and eta rules describe equivalences of commands.
These three features (operators, lambda abstraction and application)
are the core of the notation; everything else can be built using them,
though the results would be somewhat clumsy.
For example, we could simulate <literal>do</literal>-notation by defining
<programlisting>
bind :: Arrow a => a e b -> a (e,b) c -> a e c
u `bind` f = returnA &amp;&amp;&amp; u >>> f

bind_ :: Arrow a => a e b -> a e c -> a e c
u `bind_` f = u `bind` (arr fst >>> f)
</programlisting>
We could simulate <literal>if</literal> by defining
<programlisting>
cond :: ArrowChoice a => a e b -> a e b -> a (e,Bool) b
cond f g = arr (\ (e,b) -> if b then Left e else Right e) >>> f ||| g
</programlisting>
</para>

</sect2>

<sect2>
<title>Differences with the paper</title>

<itemizedlist>

<listitem>
<para>Instead of a single form of arrow application (arrow tail) with two
translations, the implementation provides two forms
<quote><literal>-&lt;</literal></quote> (first-order)
and <quote><literal>-&lt;&lt;</literal></quote> (higher-order).
</para>
</listitem>

<listitem>
<para>User-defined operators are flagged with banana brackets instead of
a new <literal>form</literal> keyword.
</para>
</listitem>

</itemizedlist>

</sect2>

<sect2>
<title>Portability</title>

<para>
Although only GHC implements arrow notation directly,
there is also a preprocessor
(available from the 
<ulink url="http://www.haskell.org/arrows/">arrows web page</ulink>)
that translates arrow notation into Haskell 98
for use with other Haskell systems.
You would still want to check arrow programs with GHC;
tracing type errors in the preprocessor output is not easy.
Modules intended for both GHC and the preprocessor must observe some
additional restrictions:
<itemizedlist>

<listitem>
<para>
The module must import
<ulink url="../libraries/base/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>.
</para>
</listitem>

<listitem>
<para>
The preprocessor cannot cope with other Haskell extensions.
These would have to go in separate modules.
</para>
</listitem>

<listitem>
<para>
Because the preprocessor targets Haskell (rather than Core),
<literal>let</literal>-bound variables are monomorphic.
</para>
</listitem>

</itemizedlist>
</para>

</sect2>

</sect1>

<!-- ==================== ASSERTIONS =================  -->

<sect1 id="sec-assertions">
<title>Assertions
<indexterm><primary>Assertions</primary></indexterm>
</title>

<para>
If you want to make use of assertions in your standard Haskell code, you
could define a function like the following:
</para>

<para>

<programlisting>
assert :: Bool -> a -> a
assert False x = error "assertion failed!"
assert _     x = x
</programlisting>

</para>

<para>
which works, but gives you back a less than useful error message --
an assertion failed, but which and where?
</para>

<para>
One way out is to define an extended <function>assert</function> function which also
takes a descriptive string to include in the error message and
perhaps combine this with the use of a pre-processor which inserts
the source location where <function>assert</function> was used.
</para>

<para>
Ghc offers a helping hand here, doing all of this for you. For every
use of <function>assert</function> in the user's source:
</para>

<para>

<programlisting>
kelvinToC :: Double -> Double
kelvinToC k = assert (k &gt;= 0.0) (k+273.15)
</programlisting>

</para>

<para>
Ghc will rewrite this to also include the source location where the
assertion was made,
</para>

<para>

<programlisting>
assert pred val ==> assertError "Main.hs|15" pred val
</programlisting>

</para>

<para>
The rewrite is only performed by the compiler when it spots
applications of <function>Control.Exception.assert</function>, so you
can still define and use your own versions of
<function>assert</function>, should you so wish. If not, import
<literal>Control.Exception</literal> to make use
<function>assert</function> in your code.
</para>

<para>
GHC ignores assertions when optimisation is turned on with the
      <option>-O</option><indexterm><primary><option>-O</option></primary></indexterm> flag.  That is, expressions of the form
<literal>assert pred e</literal> will be rewritten to
<literal>e</literal>.  You can also disable assertions using the
      <option>-fignore-asserts</option>
      option<indexterm><primary><option>-fignore-asserts</option></primary>
      </indexterm>.</para>

<para>
Assertion failures can be caught, see the documentation for the
<literal>Control.Exception</literal> library for the details.
</para>

</sect1>


<!-- =============================== PRAGMAS ===========================  -->

  <sect1 id="pragmas">
    <title>Pragmas</title>

    <indexterm><primary>pragma</primary></indexterm>

    <para>GHC supports several pragmas, or instructions to the
    compiler placed in the source code.  Pragmas don't normally affect
    the meaning of the program, but they might affect the efficiency
    of the generated code.</para>

    <para>Pragmas all take the form

<literal>{-# <replaceable>word</replaceable> ... #-}</literal>  

    where <replaceable>word</replaceable> indicates the type of
    pragma, and is followed optionally by information specific to that
    type of pragma.  Case is ignored in
    <replaceable>word</replaceable>.  The various values for
    <replaceable>word</replaceable> that GHC understands are described
    in the following sections; any pragma encountered with an
    unrecognised <replaceable>word</replaceable> is (silently)
    ignored.</para>

    <sect2 id="deprecated-pragma">
      <title>DEPRECATED pragma</title>
      <indexterm><primary>DEPRECATED</primary>
      </indexterm>

      <para>The DEPRECATED pragma lets you specify that a particular
      function, class, or type, is deprecated.  There are two
      forms.

      <itemizedlist>
	<listitem>
	  <para>You can deprecate an entire module thus:</para>
<programlisting>
   module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
     ...
</programlisting>
	  <para>When you compile any module that import
          <literal>Wibble</literal>, GHC will print the specified
          message.</para>
	</listitem>

	<listitem>
	  <para>You can deprecate a function, class, type, or data constructor, with the
	  following top-level declaration:</para>
<programlisting>
   {-# DEPRECATED f, C, T "Don't use these" #-}
</programlisting>
	  <para>When you compile any module that imports and uses any
          of the specified entities, GHC will print the specified
          message.</para>
	  <para> You can only depecate entities declared at top level in the module
	  being compiled, and you can only use unqualified names in the list of
	  entities being deprecated.  A capitalised name, such as <literal>T</literal>
	  refers to <emphasis>either</emphasis> the type constructor <literal>T</literal>
	  <emphasis>or</emphasis> the data constructor <literal>T</literal>, or both if
	  both are in scope.  If both are in scope, there is currently no way to deprecate 
	  one without the other (c.f. fixities <xref linkend="infix-tycons"/>).</para>
	</listitem>
      </itemizedlist>
      Any use of the deprecated item, or of anything from a deprecated
      module, will be flagged with an appropriate message.  However,
      deprecations are not reported for
      (a) uses of a deprecated function within its defining module, and
      (b) uses of a deprecated function in an export list.
      The latter reduces spurious complaints within a library
      in which one module gathers together and re-exports 
      the exports of several others.
      </para>
      <para>You can suppress the warnings with the flag
      <option>-fno-warn-deprecations</option>.</para>
    </sect2>

    <sect2 id="include-pragma">
      <title>INCLUDE pragma</title>

      <para>The <literal>INCLUDE</literal> pragma is for specifying the names
	of C header files that should be <literal>#include</literal>'d into
	the C source code generated by the compiler for the current module (if
	compiling via C).  For example:</para>

<programlisting>
{-# INCLUDE "foo.h" #-}
{-# INCLUDE &lt;stdio.h&gt; #-}</programlisting>

      <para>The <literal>INCLUDE</literal> pragma(s) must appear at the top of
	your source file with any <literal>OPTIONS_GHC</literal>
	pragma(s).</para>

      <para>An <literal>INCLUDE</literal> pragma is  the preferred alternative
	to the <option>-#include</option> option (<xref
	  linkend="options-C-compiler" />), because the
	<literal>INCLUDE</literal> pragma is understood by other
	compilers.  Yet another alternative is to add the include file to each
	<literal>foreign import</literal> declaration in your code, but we
	don't recommend using this approach with GHC.</para>
    </sect2>

    <sect2 id="inline-noinline-pragma">
      <title>INLINE and NOINLINE pragmas</title>

      <para>These pragmas control the inlining of function
      definitions.</para>

      <sect3 id="inline-pragma">
	<title>INLINE pragma</title>
	<indexterm><primary>INLINE</primary></indexterm>

	<para>GHC (with <option>-O</option>, as always) tries to
        inline (or &ldquo;unfold&rdquo;) functions/values that are
        &ldquo;small enough,&rdquo; thus avoiding the call overhead
        and possibly exposing other more-wonderful optimisations.
        Normally, if GHC decides a function is &ldquo;too
        expensive&rdquo; to inline, it will not do so, nor will it
        export that unfolding for other modules to use.</para>

        <para>The sledgehammer you can bring to bear is the
        <literal>INLINE</literal><indexterm><primary>INLINE
        pragma</primary></indexterm> pragma, used thusly:</para>

<programlisting>
key_function :: Int -> String -> (Bool, Double)

#ifdef __GLASGOW_HASKELL__
{-# INLINE key_function #-}
#endif
</programlisting>

	<para>(You don't need to do the C pre-processor carry-on
        unless you're going to stick the code through HBC&mdash;it
        doesn't like <literal>INLINE</literal> pragmas.)</para>

        <para>The major effect of an <literal>INLINE</literal> pragma
        is to declare a function's &ldquo;cost&rdquo; to be very low.
        The normal unfolding machinery will then be very keen to
        inline it.</para>

	<para>Syntactically, an <literal>INLINE</literal> pragma for a
        function can be put anywhere its type signature could be
        put.</para>

	<para><literal>INLINE</literal> pragmas are a particularly
        good idea for the
        <literal>then</literal>/<literal>return</literal> (or
        <literal>bind</literal>/<literal>unit</literal>) functions in
        a monad.  For example, in GHC's own
        <literal>UniqueSupply</literal> monad code, we have:</para>

<programlisting>
#ifdef __GLASGOW_HASKELL__
{-# INLINE thenUs #-}
{-# INLINE returnUs #-}
#endif
</programlisting>

	<para>See also the <literal>NOINLINE</literal> pragma (<xref
        linkend="noinline-pragma"/>).</para>
      </sect3>

      <sect3 id="noinline-pragma">
	<title>NOINLINE pragma</title>
	
	<indexterm><primary>NOINLINE</primary></indexterm>
	<indexterm><primary>NOTINLINE</primary></indexterm>

	<para>The <literal>NOINLINE</literal> pragma does exactly what
        you'd expect: it stops the named function from being inlined
        by the compiler.  You shouldn't ever need to do this, unless
        you're very cautious about code size.</para>

	<para><literal>NOTINLINE</literal> is a synonym for
        <literal>NOINLINE</literal> (<literal>NOINLINE</literal> is
        specified by Haskell 98 as the standard way to disable
        inlining, so it should be used if you want your code to be
        portable).</para>
      </sect3>

      <sect3 id="phase-control">
	<title>Phase control</title>

	<para> Sometimes you want to control exactly when in GHC's
        pipeline the INLINE pragma is switched on.  Inlining happens
        only during runs of the <emphasis>simplifier</emphasis>.  Each
        run of the simplifier has a different <emphasis>phase
        number</emphasis>; the phase number decreases towards zero.
        If you use <option>-dverbose-core2core</option> you'll see the
        sequence of phase numbers for successive runs of the
        simplifier.  In an INLINE pragma you can optionally specify a
        phase number, thus:</para>

	<itemizedlist>
	  <listitem>
	    <para>You can say "inline <literal>f</literal> in Phase 2
            and all subsequent phases":
<programlisting>
  {-# INLINE [2] f #-}
</programlisting>
            </para>
	  </listitem>

	  <listitem>
	    <para>You can say "inline <literal>g</literal> in all
            phases up to, but not including, Phase 3":
<programlisting>
  {-# INLINE [~3] g #-}
</programlisting>
            </para>
	  </listitem>

	  <listitem>
	    <para>If you omit the phase indicator, you mean "inline in
            all phases".</para>
	  </listitem>
	</itemizedlist>

	<para>You can use a phase number on a NOINLINE pragma too:</para>

	<itemizedlist>
	  <listitem>
	    <para>You can say "do not inline <literal>f</literal>
            until Phase 2; in Phase 2 and subsequently behave as if
            there was no pragma at all":
<programlisting>
  {-# NOINLINE [2] f #-}
</programlisting>
            </para>
	  </listitem>

	  <listitem>
	    <para>You can say "do not inline <literal>g</literal> in
            Phase 3 or any subsequent phase; before that, behave as if
            there was no pragma":
<programlisting>
  {-# NOINLINE [~3] g #-}
</programlisting>
            </para>
	  </listitem>

	  <listitem>
	    <para>If you omit the phase indicator, you mean "never
            inline this function".</para>
	  </listitem>
	</itemizedlist>

	<para>The same phase-numbering control is available for RULES
	(<xref linkend="rewrite-rules"/>).</para>
      </sect3>
    </sect2>

    <sect2 id="language-pragma">
      <title>LANGUAGE pragma</title>

      <indexterm><primary>LANGUAGE</primary><secondary>pragma</secondary></indexterm>
      <indexterm><primary>pragma</primary><secondary>LANGUAGE</secondary></indexterm>

      <para>This allows language extensions to be enabled in a portable way.
	It is the intention that all Haskell compilers support the
	<literal>LANGUAGE</literal> pragma with the same syntax, although not
	all extensions are supported by all compilers, of
	course.  The <literal>LANGUAGE</literal> pragma should be used instead
	of <literal>OPTIONS_GHC</literal>, if possible.</para>

      <para>For example, to enable the FFI and preprocessing with CPP:</para>

<programlisting>{-# LANGUAGE ForeignFunctionInterface, CPP #-}</programlisting>

      <para>Any extension from the <literal>Extension</literal> type defined in
	<ulink
	  url="../libraries/Cabal/Language-Haskell-Extension.html"><literal>Language.Haskell.Extension</literal></ulink> may be used.  GHC will report an error if any of the requested extensions are not supported.</para>
    </sect2>


    <sect2 id="line-pragma">
      <title>LINE pragma</title>

      <indexterm><primary>LINE</primary><secondary>pragma</secondary></indexterm>
      <indexterm><primary>pragma</primary><secondary>LINE</secondary></indexterm>
      <para>This pragma is similar to C's <literal>&num;line</literal>
      pragma, and is mainly for use in automatically generated Haskell
      code.  It lets you specify the line number and filename of the
      original code; for example</para>

<programlisting>{-# LINE 42 "Foo.vhs" #-}</programlisting>

      <para>if you'd generated the current file from something called
      <filename>Foo.vhs</filename> and this line corresponds to line
      42 in the original.  GHC will adjust its error messages to refer
      to the line/file named in the <literal>LINE</literal>
      pragma.</para>
    </sect2>

    <sect2 id="options-pragma">
      <title>OPTIONS_GHC pragma</title>
      <indexterm><primary>OPTIONS_GHC</primary>
      </indexterm>
      <indexterm><primary>pragma</primary><secondary>OPTIONS_GHC</secondary>
      </indexterm>

      <para>The <literal>OPTIONS_GHC</literal> pragma is used to specify
      additional options that are given to the compiler when compiling
      this source file.  See <xref linkend="source-file-options"/> for
      details.</para>

      <para>Previous versions of GHC accepted <literal>OPTIONS</literal> rather
	than <literal>OPTIONS_GHC</literal>, but that is now deprecated.</para>
    </sect2>

    <sect2 id="rules">
      <title>RULES pragma</title>

      <para>The RULES pragma lets you specify rewrite rules.  It is
      described in <xref linkend="rewrite-rules"/>.</para>
    </sect2>

    <sect2 id="specialize-pragma">
      <title>SPECIALIZE pragma</title>

      <indexterm><primary>SPECIALIZE pragma</primary></indexterm>
      <indexterm><primary>pragma, SPECIALIZE</primary></indexterm>
      <indexterm><primary>overloading, death to</primary></indexterm>

      <para>(UK spelling also accepted.)  For key overloaded
      functions, you can create extra versions (NB: more code space)
      specialised to particular types.  Thus, if you have an
      overloaded function:</para>

<programlisting>
  hammeredLookup :: Ord key => [(key, value)] -> key -> value
</programlisting>

      <para>If it is heavily used on lists with
      <literal>Widget</literal> keys, you could specialise it as
      follows:</para>

<programlisting>
  {-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}
</programlisting>

      <para>A <literal>SPECIALIZE</literal> pragma for a function can
      be put anywhere its type signature could be put.</para>

      <para>A <literal>SPECIALIZE</literal> has the effect of generating
      (a) a specialised version of the function and (b) a rewrite rule
      (see <xref linkend="rewrite-rules"/>) that rewrites a call to the
      un-specialised function into a call to the specialised one.</para>

      <para>The type in a SPECIALIZE pragma can be any type that is less
	polymorphic than the type of the original function.  In concrete terms,
	if the original function is <literal>f</literal> then the pragma
<programlisting>
  {-# SPECIALIZE f :: &lt;type&gt; #-}
</programlisting>
      is valid if and only if the defintion
<programlisting>
  f_spec :: &lt;type&gt;
  f_spec = f
</programlisting>
      is valid.  Here are some examples (where we only give the type signature
      for the original function, not its code):
<programlisting>
  f :: Eq a => a -> b -> b
  {-# SPECIALISE f :: Int -> b -> b #-}

  g :: (Eq a, Ix b) => a -> b -> b
  {-# SPECIALISE g :: (Eq a) => a -> Int -> Int #-}

  h :: Eq a => a -> a -> a
  {-# SPECIALISE h :: (Eq a) => [a] -> [a] -> [a] #-}
</programlisting>  
The last of these examples will generate a 
RULE with a somewhat-complex left-hand side (try it yourself), so it might not fire very
well.  If you use this kind of specialisation, let us know how well it works.
</para>

<para>A <literal>SPECIALIZE</literal> pragma can optionally be followed with a
<literal>INLINE</literal> or <literal>NOINLINE</literal> pragma, optionally 
followed by a phase, as described in <xref linkend="inline-noinline-pragma"/>.
The <literal>INLINE</literal> pragma affects the specialised verison of the
function (only), and applies even if the function is recursive.  The motivating
example is this:
<programlisting>
-- A GADT for arrays with type-indexed representation
data Arr e where
  ArrInt :: !Int -> ByteArray# -> Arr Int
  ArrPair :: !Int -> Arr e1 -> Arr e2 -> Arr (e1, e2)

(!:) :: Arr e -> Int -> e
{-# SPECIALISE INLINE (!:) :: Arr Int -> Int -> Int #-}
{-# SPECIALISE INLINE (!:) :: Arr (a, b) -> Int -> (a, b) #-}
(ArrInt _ ba)     !: (I# i) = I# (indexIntArray# ba i)
(ArrPair _ a1 a2) !: i      = (a1 !: i, a2 !: i)
</programlisting>
Here, <literal>(!:)</literal> is a recursive function that indexes arrays
of type <literal>Arr e</literal>.  Consider a call to  <literal>(!:)</literal>
at type <literal>(Int,Int)</literal>.  The second specialisation will fire, and
the specialised function will be inlined.  It has two calls to
<literal>(!:)</literal>,
both at type <literal>Int</literal>.  Both these calls fire the first
specialisation, whose body is also inlined.  The result is a type-based
unrolling of the indexing function.</para>
<para>Warning: you can make GHC diverge by using <literal>SPECIALISE INLINE</literal>
on an ordinarily-recursive function.</para>

      <para>Note: In earlier versions of GHC, it was possible to provide your own
      specialised function for a given type:

<programlisting>
{-# SPECIALIZE hammeredLookup :: [(Int, value)] -> Int -> value = intLookup #-}
</programlisting>

      This feature has been removed, as it is now subsumed by the
      <literal>RULES</literal> pragma (see <xref linkend="rule-spec"/>).</para>

    </sect2>

<sect2 id="specialize-instance-pragma">
<title>SPECIALIZE instance pragma
</title>

<para>
<indexterm><primary>SPECIALIZE pragma</primary></indexterm>
<indexterm><primary>overloading, death to</primary></indexterm>
Same idea, except for instance declarations.  For example:

<programlisting>
instance (Eq a) => Eq (Foo a) where { 
   {-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
   ... usual stuff ...
 }
</programlisting>
The pragma must occur inside the <literal>where</literal> part
of the instance declaration.
</para>
<para>
Compatible with HBC, by the way, except perhaps in the placement
of the pragma.
</para>

</sect2>

    <sect2 id="unpack-pragma">
      <title>UNPACK pragma</title>

      <indexterm><primary>UNPACK</primary></indexterm>
      
      <para>The <literal>UNPACK</literal> indicates to the compiler
      that it should unpack the contents of a constructor field into
      the constructor itself, removing a level of indirection.  For
      example:</para>

<programlisting>
data T = T {-# UNPACK #-} !Float
           {-# UNPACK #-} !Float
</programlisting>

      <para>will create a constructor <literal>T</literal> containing
      two unboxed floats.  This may not always be an optimisation: if
      the <function>T</function> constructor is scrutinised and the
      floats passed to a non-strict function for example, they will
      have to be reboxed (this is done automatically by the
      compiler).</para>

      <para>Unpacking constructor fields should only be used in
      conjunction with <option>-O</option>, in order to expose
      unfoldings to the compiler so the reboxing can be removed as
      often as possible.  For example:</para>

<programlisting>
f :: T -&#62; Float
f (T f1 f2) = f1 + f2
</programlisting>

      <para>The compiler will avoid reboxing <function>f1</function>
      and <function>f2</function> by inlining <function>+</function>
      on floats, but only when <option>-O</option> is on.</para>

      <para>Any single-constructor data is eligible for unpacking; for
      example</para>

<programlisting>
data T = T {-# UNPACK #-} !(Int,Int)
</programlisting>

      <para>will store the two <literal>Int</literal>s directly in the
      <function>T</function> constructor, by flattening the pair.
      Multi-level unpacking is also supported:</para>

<programlisting>
data T = T {-# UNPACK #-} !S
data S = S {-# UNPACK #-} !Int {-# UNPACK #-} !Int
</programlisting>

      <para>will store two unboxed <literal>Int&num;</literal>s
      directly in the <function>T</function> constructor.  The
      unpacker can see through newtypes, too.</para>

      <para>If a field cannot be unpacked, you will not get a warning,
      so it might be an idea to check the generated code with
      <option>-ddump-simpl</option>.</para>

      <para>See also the <option>-funbox-strict-fields</option> flag,
      which essentially has the effect of adding
      <literal>{-#&nbsp;UNPACK&nbsp;#-}</literal> to every strict
      constructor field.</para>
    </sect2>

</sect1>

<!--  ======================= REWRITE RULES ======================== -->

<sect1 id="rewrite-rules">
<title>Rewrite rules

<indexterm><primary>RULES pragma</primary></indexterm>
<indexterm><primary>pragma, RULES</primary></indexterm>
<indexterm><primary>rewrite rules</primary></indexterm></title>

<para>
The programmer can specify rewrite rules as part of the source program
(in a pragma).  GHC applies these rewrite rules wherever it can, provided (a) 
the <option>-O</option> flag (<xref linkend="options-optimise"/>) is on, 
and (b) the <option>-frules-off</option> flag
(<xref linkend="options-f"/>) is not specified.
</para>

<para>
Here is an example:

<programlisting>
  {-# RULES
        "map/map"       forall f g xs. map f (map g xs) = map (f.g) xs
  #-}
</programlisting>

</para>

<sect2>
<title>Syntax</title>

<para>
From a syntactic point of view:

<itemizedlist>
<listitem>

<para>
 There may be zero or more rules in a <literal>RULES</literal> pragma.
</para>
</listitem>

<listitem>

<para>
 Each rule has a name, enclosed in double quotes.  The name itself has
no significance at all.  It is only used when reporting how many times the rule fired.
</para>
</listitem>

<listitem>
<para>
A rule may optionally have a phase-control number (see <xref linkend="phase-control"/>),
immediately after the name of the rule.  Thus:
<programlisting>
  {-# RULES
        "map/map" [2]  forall f g xs. map f (map g xs) = map (f.g) xs
  #-}
</programlisting>
The "[2]" means that the rule is active in Phase 2 and subsequent phases.  The inverse
notation "[~2]" is also accepted, meaning that the rule is active up to, but not including,
Phase 2.
</para>
</listitem>


<listitem>

<para>
 Layout applies in a <literal>RULES</literal> pragma.  Currently no new indentation level
is set, so you must lay out your rules starting in the same column as the
enclosing definitions.
</para>
</listitem>

<listitem>

<para>
 Each variable mentioned in a rule must either be in scope (e.g. <function>map</function>),
or bound by the <literal>forall</literal> (e.g. <function>f</function>, <function>g</function>, <function>xs</function>).  The variables bound by
the <literal>forall</literal> are called the <emphasis>pattern</emphasis> variables.  They are separated
by spaces, just like in a type <literal>forall</literal>.
</para>
</listitem>
<listitem>

<para>
 A pattern variable may optionally have a type signature.
If the type of the pattern variable is polymorphic, it <emphasis>must</emphasis> have a type signature.
For example, here is the <literal>foldr/build</literal> rule:

<programlisting>
"fold/build"  forall k z (g::forall b. (a->b->b) -> b -> b) .
              foldr k z (build g) = g k z
</programlisting>

Since <function>g</function> has a polymorphic type, it must have a type signature.

</para>
</listitem>
<listitem>

<para>
The left hand side of a rule must consist of a top-level variable applied
to arbitrary expressions.  For example, this is <emphasis>not</emphasis> OK:

<programlisting>
"wrong1"   forall e1 e2.  case True of { True -> e1; False -> e2 } = e1
"wrong2"   forall f.      f True = True
</programlisting>

In <literal>"wrong1"</literal>, the LHS is not an application; in <literal>"wrong2"</literal>, the LHS has a pattern variable
in the head.
</para>
</listitem>
<listitem>

<para>
 A rule does not need to be in the same module as (any of) the
variables it mentions, though of course they need to be in scope.
</para>
</listitem>
<listitem>

<para>
 Rules are automatically exported from a module, just as instance declarations are.
</para>
</listitem>

</itemizedlist>

</para>

</sect2>

<sect2>
<title>Semantics</title>

<para>
From a semantic point of view:

<itemizedlist>
<listitem>

<para>
Rules are only applied if you use the <option>-O</option> flag.
</para>
</listitem>

<listitem>
<para>
 Rules are regarded as left-to-right rewrite rules.
When GHC finds an expression that is a substitution instance of the LHS
of a rule, it replaces the expression by the (appropriately-substituted) RHS.
By "a substitution instance" we mean that the LHS can be made equal to the
expression by substituting for the pattern variables.

</para>
</listitem>
<listitem>

<para>
 The LHS and RHS of a rule are typechecked, and must have the
same type.

</para>
</listitem>
<listitem>

<para>
 GHC makes absolutely no attempt to verify that the LHS and RHS
of a rule have the same meaning.  That is undecidable in general, and
infeasible in most interesting cases.  The responsibility is entirely the programmer's!

</para>
</listitem>
<listitem>

<para>
 GHC makes no attempt to make sure that the rules are confluent or
terminating.  For example:

<programlisting>
  "loop"        forall x,y.  f x y = f y x
</programlisting>

This rule will cause the compiler to go into an infinite loop.

</para>
</listitem>
<listitem>

<para>
 If more than one rule matches a call, GHC will choose one arbitrarily to apply.

</para>
</listitem>
<listitem>
<para>
 GHC currently uses a very simple, syntactic, matching algorithm
for matching a rule LHS with an expression.  It seeks a substitution
which makes the LHS and expression syntactically equal modulo alpha
conversion.  The pattern (rule), but not the expression, is eta-expanded if
necessary.  (Eta-expanding the expression can lead to laziness bugs.)
But not beta conversion (that's called higher-order matching).
</para>

<para>
Matching is carried out on GHC's intermediate language, which includes
type abstractions and applications.  So a rule only matches if the
types match too.  See <xref linkend="rule-spec"/> below.
</para>
</listitem>
<listitem>

<para>
 GHC keeps trying to apply the rules as it optimises the program.
For example, consider:

<programlisting>
  let s = map f
      t = map g
  in
  s (t xs)
</programlisting>

The expression <literal>s (t xs)</literal> does not match the rule <literal>"map/map"</literal>, but GHC
will substitute for <varname>s</varname> and <varname>t</varname>, giving an expression which does match.
If <varname>s</varname> or <varname>t</varname> was (a) used more than once, and (b) large or a redex, then it would
not be substituted, and the rule would not fire.

</para>
</listitem>
<listitem>

<para>
 In the earlier phases of compilation, GHC inlines <emphasis>nothing
that appears on the LHS of a rule</emphasis>, because once you have substituted
for something you can't match against it (given the simple minded
matching).  So if you write the rule

<programlisting>
        "map/map"       forall f,g.  map f . map g = map (f.g)
</programlisting>

this <emphasis>won't</emphasis> match the expression <literal>map f (map g xs)</literal>.
It will only match something written with explicit use of ".".
Well, not quite.  It <emphasis>will</emphasis> match the expression

<programlisting>
wibble f g xs
</programlisting>

where <function>wibble</function> is defined:

<programlisting>
wibble f g = map f . map g
</programlisting>

because <function>wibble</function> will be inlined (it's small).

Later on in compilation, GHC starts inlining even things on the
LHS of rules, but still leaves the rules enabled.  This inlining
policy is controlled by the per-simplification-pass flag <option>-finline-phase</option><emphasis>n</emphasis>.

</para>
</listitem>
<listitem>

<para>
 All rules are implicitly exported from the module, and are therefore
in force in any module that imports the module that defined the rule, directly
or indirectly.  (That is, if A imports B, which imports C, then C's rules are
in force when compiling A.)  The situation is very similar to that for instance
declarations.
</para>
</listitem>

</itemizedlist>

</para>

</sect2>

<sect2>
<title>List fusion</title>

<para>
The RULES mechanism is used to implement fusion (deforestation) of common list functions.
If a "good consumer" consumes an intermediate list constructed by a "good producer", the
intermediate list should be eliminated entirely.
</para>

<para>
The following are good producers:

<itemizedlist>
<listitem>

<para>
 List comprehensions
</para>
</listitem>
<listitem>

<para>
 Enumerations of <literal>Int</literal> and <literal>Char</literal> (e.g. <literal>['a'..'z']</literal>).
</para>
</listitem>
<listitem>

<para>
 Explicit lists (e.g. <literal>[True, False]</literal>)
</para>
</listitem>
<listitem>

<para>
 The cons constructor (e.g <literal>3:4:[]</literal>)
</para>
</listitem>
<listitem>

<para>
 <function>++</function>
</para>
</listitem>

<listitem>
<para>
 <function>map</function>
</para>
</listitem>

<listitem>
<para>
 <function>filter</function>
</para>
</listitem>
<listitem>

<para>
 <function>iterate</function>, <function>repeat</function>
</para>
</listitem>
<listitem>

<para>
 <function>zip</function>, <function>zipWith</function>
</para>
</listitem>

</itemizedlist>

</para>

<para>
The following are good consumers:

<itemizedlist>
<listitem>

<para>
 List comprehensions
</para>
</listitem>
<listitem>

<para>
 <function>array</function> (on its second argument)
</para>
</listitem>
<listitem>

<para>
 <function>length</function>
</para>
</listitem>
<listitem>

<para>
 <function>++</function> (on its first argument)
</para>
</listitem>

<listitem>
<para>
 <function>foldr</function>
</para>
</listitem>

<listitem>
<para>
 <function>map</function>
</para>
</listitem>
<listitem>

<para>
 <function>filter</function>
</para>
</listitem>
<listitem>

<para>
 <function>concat</function>
</para>
</listitem>
<listitem>

<para>
 <function>unzip</function>, <function>unzip2</function>, <function>unzip3</function>, <function>unzip4</function>
</para>
</listitem>
<listitem>

<para>
 <function>zip</function>, <function>zipWith</function> (but on one argument only; if both are good producers, <function>zip</function>
will fuse with one but not the other)
</para>
</listitem>
<listitem>

<para>
 <function>partition</function>
</para>
</listitem>
<listitem>

<para>
 <function>head</function>
</para>
</listitem>
<listitem>

<para>
 <function>and</function>, <function>or</function>, <function>any</function>, <function>all</function>
</para>
</listitem>
<listitem>

<para>
 <function>sequence&lowbar;</function>
</para>
</listitem>
<listitem>

<para>
 <function>msum</function>
</para>
</listitem>
<listitem>

<para>
 <function>sortBy</function>
</para>
</listitem>

</itemizedlist>

</para>

 <para>
So, for example, the following should generate no intermediate lists:

<programlisting>
array (1,10) [(i,i*i) | i &#60;- map (+ 1) [0..9]]
</programlisting>

</para>

<para>
This list could readily be extended; if there are Prelude functions that you use
a lot which are not included, please tell us.
</para>

<para>
If you want to write your own good consumers or producers, look at the
Prelude definitions of the above functions to see how to do so.
</para>

</sect2>

<sect2 id="rule-spec">
<title>Specialisation
</title>

<para>
Rewrite rules can be used to get the same effect as a feature
present in earlier versions of GHC.
For example, suppose that:

<programlisting>
genericLookup :: Ord a => Table a b   -> a   -> b
intLookup     ::          Table Int b -> Int -> b
</programlisting>

where <function>intLookup</function> is an implementation of
<function>genericLookup</function> that works very fast for
keys of type <literal>Int</literal>.  You might wish
to tell GHC to use <function>intLookup</function> instead of
<function>genericLookup</function> whenever the latter was called with
type <literal>Table Int b -&gt; Int -&gt; b</literal>.
It used to be possible to write

<programlisting>
{-# SPECIALIZE genericLookup :: Table Int b -> Int -> b = intLookup #-}
</programlisting>

This feature is no longer in GHC, but rewrite rules let you do the same thing:

<programlisting>
{-# RULES "genericLookup/Int" genericLookup = intLookup #-}
</programlisting>

This slightly odd-looking rule instructs GHC to replace
<function>genericLookup</function> by <function>intLookup</function>
<emphasis>whenever the types match</emphasis>.
What is more, this rule does not need to be in the same
file as <function>genericLookup</function>, unlike the
<literal>SPECIALIZE</literal> pragmas which currently do (so that they
have an original definition available to specialise).
</para>

<para>It is <emphasis>Your Responsibility</emphasis> to make sure that
<function>intLookup</function> really behaves as a specialised version
of <function>genericLookup</function>!!!</para>

<para>An example in which using <literal>RULES</literal> for
specialisation will Win Big:

<programlisting>
toDouble :: Real a => a -> Double
toDouble = fromRational . toRational

{-# RULES "toDouble/Int" toDouble = i2d #-}
i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly
</programlisting>

The <function>i2d</function> function is virtually one machine
instruction; the default conversion&mdash;via an intermediate
<literal>Rational</literal>&mdash;is obscenely expensive by
comparison.
</para>

</sect2>

<sect2>
<title>Controlling what's going on</title>

<para>

<itemizedlist>
<listitem>

<para>
 Use <option>-ddump-rules</option> to see what transformation rules GHC is using.
</para>
</listitem>
<listitem>

<para>
 Use <option>-ddump-simpl-stats</option> to see what rules are being fired.
If you add <option>-dppr-debug</option> you get a more detailed listing.
</para>
</listitem>
<listitem>

<para>
 The definition of (say) <function>build</function> in <filename>GHC/Base.lhs</filename> looks llike this:

<programlisting>
        build   :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
        {-# INLINE build #-}
        build g = g (:) []
</programlisting>

Notice the <literal>INLINE</literal>!  That prevents <literal>(:)</literal> from being inlined when compiling
<literal>PrelBase</literal>, so that an importing module will &ldquo;see&rdquo; the <literal>(:)</literal>, and can
match it on the LHS of a rule.  <literal>INLINE</literal> prevents any inlining happening
in the RHS of the <literal>INLINE</literal> thing.  I regret the delicacy of this.

</para>
</listitem>
<listitem>

<para>
 In <filename>libraries/base/GHC/Base.lhs</filename> look at the rules for <function>map</function> to
see how to write rules that will do fusion and yet give an efficient
program even if fusion doesn't happen.  More rules in <filename>GHC/List.lhs</filename>.
</para>
</listitem>

</itemizedlist>

</para>

</sect2>

<sect2 id="core-pragma">
  <title>CORE pragma</title>

  <indexterm><primary>CORE pragma</primary></indexterm>
  <indexterm><primary>pragma, CORE</primary></indexterm>
  <indexterm><primary>core, annotation</primary></indexterm>

<para>
  The external core format supports <quote>Note</quote> annotations;
  the <literal>CORE</literal> pragma gives a way to specify what these
  should be in your Haskell source code.  Syntactically, core
  annotations are attached to expressions and take a Haskell string
  literal as an argument.  The following function definition shows an
  example:

<programlisting>
f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #-} x)
</programlisting>

  Semantically, this is equivalent to:

<programlisting>
g x = show x
</programlisting>
</para>

<para>
  However, when external for is generated (via
  <option>-fext-core</option>), there will be Notes attached to the
  expressions <function>show</function> and <varname>x</varname>.
  The core function declaration for <function>f</function> is:
</para>

<programlisting>
  f :: %forall a . GHCziShow.ZCTShow a ->
                   a -> GHCziBase.ZMZN GHCziBase.Char =
    \ @ a (zddShow::GHCziShow.ZCTShow a) (eta::a) ->
        (%note "foo"
         %case zddShow %of (tpl::GHCziShow.ZCTShow a)
           {GHCziShow.ZCDShow
            (tpl1::GHCziBase.Int ->
                   a ->
                   GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
r)
            (tpl2::a -> GHCziBase.ZMZN GHCziBase.Char)
            (tpl3::GHCziBase.ZMZN a ->
                   GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
r) ->
              tpl2})
        (%note "foo"
         eta);
</programlisting>

<para>
  Here, we can see that the function <function>show</function> (which
  has been expanded out to a case expression over the Show dictionary)
  has a <literal>%note</literal> attached to it, as does the
  expression <varname>eta</varname> (which used to be called
  <varname>x</varname>).
</para>

</sect2>

</sect1>

<sect1 id="generic-classes">
<title>Generic classes</title>

    <para>(Note: support for generic classes is currently broken in
    GHC 5.02).</para>

<para>
The ideas behind this extension are described in detail in "Derivable type classes",
Ralf Hinze and Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105.
An example will give the idea:
</para>

<programlisting>
  import Generics

  class Bin a where
    toBin   :: a -> [Int]
    fromBin :: [Int] -> (a, [Int])
  
    toBin {| Unit |}    Unit	  = []
    toBin {| a :+: b |} (Inl x)   = 0 : toBin x
    toBin {| a :+: b |} (Inr y)   = 1 : toBin y
    toBin {| a :*: b |} (x :*: y) = toBin x ++ toBin y
  
    fromBin {| Unit |}    bs      = (Unit, bs)
    fromBin {| a :+: b |} (0:bs)  = (Inl x, bs')    where (x,bs') = fromBin bs
    fromBin {| a :+: b |} (1:bs)  = (Inr y, bs')    where (y,bs') = fromBin bs
    fromBin {| a :*: b |} bs	  = (x :*: y, bs'') where (x,bs' ) = fromBin bs
							  (y,bs'') = fromBin bs'
</programlisting>
<para>
This class declaration explains how <literal>toBin</literal> and <literal>fromBin</literal>
work for arbitrary data types.  They do so by giving cases for unit, product, and sum,
which are defined thus in the library module <literal>Generics</literal>:
</para>
<programlisting>
  data Unit    = Unit
  data a :+: b = Inl a | Inr b
  data a :*: b = a :*: b
</programlisting>
<para>
Now you can make a data type into an instance of Bin like this:
<programlisting>
  instance (Bin a, Bin b) => Bin (a,b)
  instance Bin a => Bin [a]
</programlisting>
That is, just leave off the "where" clause.  Of course, you can put in the
where clause and over-ride whichever methods you please.
</para>

    <sect2>
      <title> Using generics </title>
      <para>To use generics you need to</para>
      <itemizedlist>
	<listitem>
	  <para>Use the flags <option>-fglasgow-exts</option> (to enable the extra syntax), 
                <option>-fgenerics</option> (to generate extra per-data-type code),
                and <option>-package lang</option> (to make the <literal>Generics</literal> library
                available.  </para>
	</listitem>
	<listitem>
	  <para>Import the module <literal>Generics</literal> from the
          <literal>lang</literal> package.  This import brings into
          scope the data types <literal>Unit</literal>,
          <literal>:*:</literal>, and <literal>:+:</literal>.  (You
          don't need this import if you don't mention these types
          explicitly; for example, if you are simply giving instance
          declarations.)</para>
	</listitem>
      </itemizedlist>
    </sect2>

<sect2> <title> Changes wrt the paper </title>
<para>
Note that the type constructors <literal>:+:</literal> and <literal>:*:</literal> 
can be written infix (indeed, you can now use
any operator starting in a colon as an infix type constructor).  Also note that
the type constructors are not exactly as in the paper (Unit instead of 1, etc).
Finally, note that the syntax of the type patterns in the class declaration
uses "<literal>{|</literal>" and "<literal>|}</literal>" brackets; curly braces
alone would ambiguous when they appear on right hand sides (an extension we 
anticipate wanting).
</para>
</sect2>

<sect2> <title>Terminology and restrictions</title>
<para>
Terminology.  A "generic default method" in a class declaration
is one that is defined using type patterns as above.
A "polymorphic default method" is a default method defined as in Haskell 98.
A "generic class declaration" is a class declaration with at least one
generic default method.
</para>

<para>
Restrictions:
<itemizedlist>
<listitem>
<para>
Alas, we do not yet implement the stuff about constructor names and 
field labels.
</para>
</listitem>

<listitem>
<para>
A generic class can have only one parameter; you can't have a generic
multi-parameter class.
</para>
</listitem>

<listitem>
<para>
A default method must be defined entirely using type patterns, or entirely
without.  So this is illegal:
<programlisting>
  class Foo a where
    op :: a -> (a, Bool)
    op {| Unit |} Unit = (Unit, True)
    op x               = (x,    False)
</programlisting>
However it is perfectly OK for some methods of a generic class to have 
generic default methods and others to have polymorphic default methods.
</para>
</listitem>

<listitem>
<para>
The type variable(s) in the type pattern for a generic method declaration
scope over the right hand side.  So this is legal (note the use of the type variable ``p'' in a type signature on the right hand side:
<programlisting>
  class Foo a where
    op :: a -> Bool
    op {| p :*: q |} (x :*: y) = op (x :: p)
    ...
</programlisting>
</para>
</listitem>

<listitem>
<para>
The type patterns in a generic default method must take one of the forms:
<programlisting>
       a :+: b
       a :*: b
       Unit
</programlisting>
where "a" and "b" are type variables.  Furthermore, all the type patterns for
a single type constructor (<literal>:*:</literal>, say) must be identical; they
must use the same type variables.  So this is illegal:
<programlisting>
  class Foo a where
    op :: a -> Bool
    op {| a :+: b |} (Inl x) = True
    op {| p :+: q |} (Inr y) = False
</programlisting>
The type patterns must be identical, even in equations for different methods of the class.
So this too is illegal:
<programlisting>
  class Foo a where
    op1 :: a -> Bool
    op1 {| a :*: b |} (x :*: y) = True

    op2 :: a -> Bool
    op2 {| p :*: q |} (x :*: y) = False
</programlisting>
(The reason for this restriction is that we gather all the equations for a particular type consructor
into a single generic instance declaration.)
</para>
</listitem>

<listitem>
<para>
A generic method declaration must give a case for each of the three type constructors.
</para>
</listitem>

<listitem>
<para>
The type for a generic method can be built only from:
  <itemizedlist>
  <listitem> <para> Function arrows </para> </listitem>
  <listitem> <para> Type variables </para> </listitem>
  <listitem> <para> Tuples </para> </listitem>
  <listitem> <para> Arbitrary types not involving type variables </para> </listitem>
  </itemizedlist>
Here are some example type signatures for generic methods:
<programlisting>
    op1 :: a -> Bool
    op2 :: Bool -> (a,Bool)
    op3 :: [Int] -> a -> a
    op4 :: [a] -> Bool
</programlisting>
Here, op1, op2, op3 are OK, but op4 is rejected, because it has a type variable
inside a list.  
</para>
<para>
This restriction is an implementation restriction: we just havn't got around to
implementing the necessary bidirectional maps over arbitrary type constructors.
It would be relatively easy to add specific type constructors, such as Maybe and list,
to the ones that are allowed.</para>
</listitem>

<listitem>
<para>
In an instance declaration for a generic class, the idea is that the compiler
will fill in the methods for you, based on the generic templates.  However it can only
do so if
  <itemizedlist>
  <listitem>
  <para>
  The instance type is simple (a type constructor applied to type variables, as in Haskell 98).
  </para>
  </listitem>
  <listitem>
  <para>
  No constructor of the instance type has unboxed fields.
  </para>
  </listitem>
  </itemizedlist>
(Of course, these things can only arise if you are already using GHC extensions.)
However, you can still give an instance declarations for types which break these rules,
provided you give explicit code to override any generic default methods.
</para>
</listitem>

</itemizedlist>
</para>

<para>
The option <option>-ddump-deriv</option> dumps incomprehensible stuff giving details of 
what the compiler does with generic declarations.
</para>

</sect2>

<sect2> <title> Another example </title>
<para>
Just to finish with, here's another example I rather like:
<programlisting>
  class Tag a where
    nCons :: a -> Int
    nCons {| Unit |}    _ = 1
    nCons {| a :*: b |} _ = 1
    nCons {| a :+: b |} _ = nCons (bot::a) + nCons (bot::b)
  
    tag :: a -> Int
    tag {| Unit |}    _       = 1
    tag {| a :*: b |} _       = 1   
    tag {| a :+: b |} (Inl x) = tag x
    tag {| a :+: b |} (Inr y) = nCons (bot::a) + tag y
</programlisting>
</para>
</sect2>
</sect1>



<!-- Emacs stuff:
     ;;; Local Variables: ***
     ;;; mode: xml ***
     ;;; sgml-parent-document: ("users_guide.xml" "book" "chapter" "sect1") ***
     ;;; End: ***
 -->