1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
|
{-# LANGUAGE TupleSections #-}
-- |Vectorisation of expressions.
module Vectorise.Exp
( -- * Vectorise polymorphic expressions with special cases for right-hand sides of particular
-- variable bindings
vectPolyExpr
, vectDictExpr
, vectScalarFun
, vectScalarDFun
)
where
#include "HsVersions.h"
import Vectorise.Type.Type
import Vectorise.Var
import Vectorise.Convert
import Vectorise.Vect
import Vectorise.Env
import Vectorise.Monad
import Vectorise.Builtins
import Vectorise.Utils
import CoreUtils
import MkCore
import CoreSyn
import CoreFVs
import Class
import DataCon
import TyCon
import TcType
import Type
import PrelNames
import Var
import VarEnv
import VarSet
import Id
import BasicTypes( isStrongLoopBreaker )
import Literal
import TysWiredIn
import TysPrim
import Outputable
import FastString
import Control.Monad
import Control.Applicative
import Data.Maybe
import Data.List
import TcRnMonad (doptM)
import DynFlags
import Util
-- Main entry point to vectorise expressions -----------------------------------
-- |Vectorise a polymorphic expression.
--
-- If not yet available, precompute vectorisation avoidance information before vectorising. If
-- the vectorisation avoidance optimisation is enabled, also use the vectorisation avoidance
-- information to encapsulated subexpression that do not need to be vectorised.
--
vectPolyExpr :: Bool -> [Var] -> CoreExprWithFVs -> Maybe VITree
-> VM (Inline, Bool, VExpr)
-- precompute vectorisation avoidance information (and possibly encapsulated subexpressions)
vectPolyExpr loop_breaker recFns expr Nothing
= do
{ vectAvoidance <- liftDs $ doptM Opt_AvoidVect
; vi <- vectAvoidInfo expr
; (expr', vi') <-
if vectAvoidance
then do
{ (expr', vi') <- encapsulateScalars vi expr
; traceVt "vectPolyExpr encapsulated:" (ppr $ deAnnotate expr')
; return (expr', vi')
}
else return (expr, vi)
; vectPolyExpr loop_breaker recFns expr' (Just vi')
}
-- traverse through ticks
vectPolyExpr loop_breaker recFns (_, AnnTick tickish expr) (Just (VITNode _ [vit]))
= do
{ (inline, isScalarFn, expr') <- vectPolyExpr loop_breaker recFns expr (Just vit)
; return (inline, isScalarFn, vTick tickish expr')
}
-- collect and vectorise type abstractions; then, descent into the body
vectPolyExpr loop_breaker recFns expr (Just vit)
= do
{ let (tvs, mono) = collectAnnTypeBinders expr
vit' = stripLevels (length tvs) vit
; arity <- polyArity tvs
; polyAbstract tvs $ \args ->
do
{ (inline, isScalarFn, mono') <- vectFnExpr False loop_breaker recFns mono vit'
; return (addInlineArity inline arity, isScalarFn, mapVect (mkLams $ tvs ++ args) mono')
}
}
where
stripLevels 0 vit = vit
stripLevels n (VITNode _ [vit]) = stripLevels (n - 1) vit
stripLevels _ vit = pprPanic "vectPolyExpr: stripLevels:" (text (show vit))
-- Encapsulate every purely sequential subexpression of a (potentially) parallel expression into a
-- into a lambda abstraction over all its free variables followed by the corresponding application
-- to those variables. We can, then, avoid the vectorisation of the ensapsulated subexpressions.
--
-- Preconditions:
--
-- * All free variables and the result type must be /simple/ types.
-- * The expression is sufficientlt complex (top warrant special treatment). For now, that is
-- every expression that is not constant and contains at least one operation.
--
encapsulateScalars :: VITree -> CoreExprWithFVs -> VM (CoreExprWithFVs, VITree)
encapsulateScalars vit ce@(_, AnnType _ty)
= return (ce, vit)
encapsulateScalars vit ce@(_, AnnVar _v)
= return (ce, vit)
encapsulateScalars vit ce@(_, AnnLit _)
= return (ce, vit)
encapsulateScalars (VITNode vi [vit]) (fvs, AnnTick tck expr)
= do { (extExpr, vit') <- encapsulateScalars vit expr
; return ((fvs, AnnTick tck extExpr), VITNode vi [vit'])
}
encapsulateScalars _ (_fvs, AnnTick _tck _expr)
= panic "encapsulateScalar AnnTick doesn't match up"
encapsulateScalars (VITNode vi [vit]) ce@(fvs, AnnLam bndr expr)
= do { varsS <- varsSimple fvs
; case (vi, varsS) of
(VISimple, True) -> do { let (e', vit') = liftSimple vit ce
; return (e', vit')
}
_ -> do { (extExpr, vit') <- encapsulateScalars vit expr
; return ((fvs, AnnLam bndr extExpr), VITNode vi [vit'])
}
}
encapsulateScalars _ (_fvs, AnnLam _bndr _expr)
= panic "encapsulateScalars AnnLam doesn't match up"
encapsulateScalars vt@(VITNode vi [vit1, vit2]) ce@(fvs, AnnApp ce1 ce2)
= do { varsS <- varsSimple fvs
; case (vi, varsS) of
(VISimple, True) -> do { let (e', vt') = liftSimple vt ce
-- ; checkTreeAnnM vt' e'
-- ; traceVt "Passed checkTree test!!" (ppr $ deAnnotate e')
; return (e', vt')
}
_ -> do { (etaCe1, vit1') <- encapsulateScalars vit1 ce1
; (etaCe2, vit2') <- encapsulateScalars vit2 ce2
; return ((fvs, AnnApp etaCe1 etaCe2), VITNode vi [vit1', vit2'])
}
}
encapsulateScalars _ (_fvs, AnnApp _ce1 _ce2)
= panic "encapsulateScalars AnnApp doesn't match up"
encapsulateScalars vt@(VITNode vi (scrutVit : altVits)) ce@(fvs, AnnCase scrut bndr ty alts)
= do { varsS <- varsSimple fvs
; case (vi, varsS) of
(VISimple, True) -> return $ liftSimple vt ce
_ -> do { (extScrut, scrutVit') <- encapsulateScalars scrutVit scrut
; extAltsVits <- zipWithM expAlt altVits alts
; let (extAlts, altVits') = unzip extAltsVits
; return ((fvs, AnnCase extScrut bndr ty extAlts), VITNode vi (scrutVit': altVits'))
}
}
where
expAlt vt (con, bndrs, expr)
= do { (extExpr, vt') <- encapsulateScalars vt expr
; return ((con, bndrs, extExpr), vt')
}
encapsulateScalars _ (_fvs, AnnCase _scrut _bndr _ty _alts)
= panic "encapsulateScalars AnnCase doesn't match up"
encapsulateScalars vt@(VITNode vi [vt1, vt2]) ce@(fvs, AnnLet (AnnNonRec bndr expr1) expr2)
= do { varsS <- varsSimple fvs
; case (vi, varsS) of
(VISimple, True) -> return $ liftSimple vt ce
_ -> do { (extExpr1, vt1') <- encapsulateScalars vt1 expr1
; (extExpr2, vt2') <- encapsulateScalars vt2 expr2
; return ((fvs, AnnLet (AnnNonRec bndr extExpr1) extExpr2), VITNode vi [vt1', vt2'])
}
}
encapsulateScalars _ (_fvs, AnnLet (AnnNonRec _bndr _expr1) _expr2)
= panic "encapsulateScalars AnnLet nonrec doesn't match up"
encapsulateScalars vt@(VITNode vi (vtB : vtBnds)) ce@(fvs, AnnLet (AnnRec bndngs) expr)
= do { varsS <- varsSimple fvs
; case (vi, varsS) of
(VISimple, True) -> return $ liftSimple vt ce
_ -> do { extBndsVts <- zipWithM expBndg vtBnds bndngs
; let (extBnds, vtBnds') = unzip extBndsVts
; (extExpr, vtB') <- encapsulateScalars vtB expr
; let vt' = VITNode vi (vtB':vtBnds')
; return ((fvs, AnnLet (AnnRec extBnds) extExpr), vt')
}
}
where
expBndg vit (bndr, expr)
= do { (extExpr, vit') <- encapsulateScalars vit expr
; return ((bndr, extExpr), vit')
}
encapsulateScalars _ (_fvs, AnnLet (AnnRec _) _expr2)
= panic "encapsulateScalars AnnLet rec doesn't match up"
encapsulateScalars (VITNode vi [vit]) (fvs, AnnCast expr coercion)
= do { (extExpr, vit') <- encapsulateScalars vit expr
; return ((fvs, AnnCast extExpr coercion), VITNode vi [vit'])
}
encapsulateScalars _ (_fvs, AnnCast _expr _coercion)
= panic "encapsulateScalars AnnCast rec doesn't match up"
encapsulateScalars _ _
= panic "encapsulateScalars case not handled"
-- Lambda-lift the given expression and apply it to the abstracted free variables.
--
-- If the expression is a case expression scrutinising anything but a primitive type, then lift
-- each alternative individually.
--
liftSimple :: VITree -> CoreExprWithFVs -> (CoreExprWithFVs, VITree)
liftSimple (VITNode vi (scrutVit : altVits)) (fvs, AnnCase expr bndr t alts)
| Just (c,_) <- splitTyConApp_maybe (exprType $ deAnnotate $ expr),
(not $ elem c [boolTyCon, intTyCon, doubleTyCon, floatTyCon]) -- FIXME: shouldn't be hardcoded
= ((fvs, AnnCase expr bndr t alts'), VITNode vi (scrutVit : altVits'))
where
(alts', altVits') = unzip $ map (\(ac,bndrs, (alt, avi)) -> ((ac,bndrs,alt), avi)) $
zipWith (\(ac, bndrs, aex) -> \altVi -> (ac, bndrs, liftSimple altVi aex)) alts altVits
liftSimple viTree ae@(fvs, _annEx)
= (mkAnnApps (mkAnnLams ae vars) vars, viTree')
where
mkViTreeLams (VITNode _ vits) [] = VITNode VIEncaps vits
mkViTreeLams vi (_:vs) = VITNode VIEncaps [mkViTreeLams vi vs]
mkViTreeApps vi [] = vi
mkViTreeApps vi (_:vs) = VITNode VISimple [mkViTreeApps vi vs, VITNode VISimple []]
vars = varSetElems fvs
viTree' = mkViTreeApps (mkViTreeLams viTree vars) vars
mkAnnLam :: bndr -> AnnExpr bndr VarSet -> AnnExpr' bndr VarSet
mkAnnLam bndr ce = AnnLam bndr ce
mkAnnLams:: CoreExprWithFVs -> [Var] -> CoreExprWithFVs
mkAnnLams (fv, aex') [] = (fv, aex') -- fv should be empty. check!
mkAnnLams (fv, aex') (v:vs) = mkAnnLams (delVarSet fv v, (mkAnnLam v ((delVarSet fv v), aex'))) vs
mkAnnApp :: (AnnExpr bndr VarSet) -> Var -> (AnnExpr' bndr VarSet)
mkAnnApp aex v = AnnApp aex (unitVarSet v, (AnnVar v))
mkAnnApps:: CoreExprWithFVs -> [Var] -> CoreExprWithFVs
mkAnnApps (fv, aex') [] = (fv, aex')
mkAnnApps ae (v:vs) =
let
(fv, aex') = mkAnnApps ae vs
in (extendVarSet fv v, mkAnnApp (fv, aex') v)
-- |Vectorise an expression.
--
vectExpr :: CoreExprWithFVs -> VITree -> VM VExpr
-- vectExpr e vi | not (checkTree vi (deAnnotate e))
-- = pprPanic "vectExpr" (ppr $ deAnnotate e)
vectExpr (_, AnnVar v) _
= vectVar v
vectExpr (_, AnnLit lit) _
= vectConst $ Lit lit
vectExpr e@(_, AnnLam bndr _) vt
| isId bndr = (\(_, _, ve) -> ve) <$> vectFnExpr True False [] e vt
| otherwise = do dflags <- getDynFlags
cantVectorise dflags "Unexpected type lambda (vectExpr)" (ppr (deAnnotate e))
-- SPECIAL CASE: Vectorise/lift 'patError @ ty err' by only vectorising/lifting the type 'ty';
-- its only purpose is to abort the program, but we need to adjust the type to keep CoreLint
-- happy.
-- FIXME: can't be do this with a VECTORISE pragma on 'pAT_ERROR_ID' now?
vectExpr (_, AnnApp (_, AnnApp (_, AnnVar v) (_, AnnType ty)) err) _
| v == pAT_ERROR_ID
= do { (vty, lty) <- vectAndLiftType ty
; return (mkCoreApps (Var v) [Type vty, err'], mkCoreApps (Var v) [Type lty, err'])
}
where
err' = deAnnotate err
-- type application (handle multiple consecutive type applications simultaneously to ensure the
-- PA dictionaries are put at the right places)
vectExpr e@(_, AnnApp _ arg) (VITNode _ [_, _])
| isAnnTypeArg arg
= vectPolyApp e
-- 'Int', 'Float', or 'Double' literal
-- FIXME: this needs to be generalised
vectExpr (_, AnnApp (_, AnnVar v) (_, AnnLit lit)) _
| Just con <- isDataConId_maybe v
, is_special_con con
= do
let vexpr = App (Var v) (Lit lit)
lexpr <- liftPD vexpr
return (vexpr, lexpr)
where
is_special_con con = con `elem` [intDataCon, floatDataCon, doubleDataCon]
-- value application (dictionary or user value)
vectExpr e@(_, AnnApp fn arg) (VITNode _ [vit1, vit2])
| isPredTy arg_ty -- dictionary application (whose result is not a dictionary)
= vectPolyApp e
| otherwise -- user value
= do { -- vectorise the types
; varg_ty <- vectType arg_ty
; vres_ty <- vectType res_ty
-- vectorise the function and argument expression
; vfn <- vectExpr fn vit1
; varg <- vectExpr arg vit2
-- the vectorised function is a closure; apply it to the vectorised argument
; mkClosureApp varg_ty vres_ty vfn varg
}
where
(arg_ty, res_ty) = splitFunTy . exprType $ deAnnotate fn
vectExpr (_, AnnCase scrut bndr ty alts) vt
| Just (tycon, ty_args) <- splitTyConApp_maybe scrut_ty
, isAlgTyCon tycon
= vectAlgCase tycon ty_args scrut bndr ty alts vt
| otherwise = do dflags <- getDynFlags
cantVectorise dflags "Can't vectorise expression" (ppr scrut_ty)
where
scrut_ty = exprType (deAnnotate scrut)
vectExpr (_, AnnLet (AnnNonRec bndr rhs) body) (VITNode _ [vt1, vt2])
= do
vrhs <- localV . inBind bndr . liftM (\(_,_,z)->z) $ vectPolyExpr False [] rhs (Just vt1)
(vbndr, vbody) <- vectBndrIn bndr (vectExpr body vt2)
return $ vLet (vNonRec vbndr vrhs) vbody
vectExpr (_, AnnLet (AnnRec bs) body) (VITNode _ (vtB : vtBnds))
= do
(vbndrs, (vrhss, vbody)) <- vectBndrsIn bndrs
$ liftM2 (,)
(zipWith3M vect_rhs bndrs rhss vtBnds)
(vectExpr body vtB)
return $ vLet (vRec vbndrs vrhss) vbody
where
(bndrs, rhss) = unzip bs
vect_rhs bndr rhs vt = localV
. inBind bndr
. liftM (\(_,_,z)->z)
$ vectPolyExpr (isStrongLoopBreaker $ idOccInfo bndr) [] rhs (Just vt)
zipWith3M f xs ys zs = zipWithM (\x -> \(y,z) -> (f x y z)) xs (zip ys zs)
vectExpr (_, AnnTick tickish expr) (VITNode _ [vit])
= liftM (vTick tickish) (vectExpr expr vit)
vectExpr (_, AnnType ty) _
= liftM vType (vectType ty)
vectExpr e vit = do dflags <- getDynFlags
cantVectorise dflags "Can't vectorise expression (vectExpr)" (ppr (deAnnotate e) $$ text (" " ++ show vit))
-- |Vectorise an expression that *may* have an outer lambda abstraction.
--
-- We do not handle type variables at this point, as they will already have been stripped off by
-- 'vectPolyExpr'. We also only have to worry about one set of dictionary arguments as we (1) only
-- deal with Haskell 2011 and (2) class selectors are vectorised elsewhere.
--
vectFnExpr :: Bool -- ^ If we process the RHS of a binding, whether that binding should
-- be inlined
-> Bool -- ^ Whether the binding is a loop breaker
-> [Var] -- ^ Names of function in same recursive binding group
-> CoreExprWithFVs -- ^ Expression to vectorise; must have an outer `AnnLam`
-> VITree
-> VM (Inline, Bool, VExpr)
-- vectFnExpr _ _ _ e vi | not (checkTree vi (deAnnotate e))
-- = pprPanic "vectFnExpr" (ppr $ deAnnotate e)
vectFnExpr inline loop_breaker recFns expr@(_fvs, AnnLam bndr body) vt@(VITNode _ [vt'])
-- predicate abstraction: leave as a normal abstraction, but vectorise the predicate type
| isId bndr
&& isPredTy (idType bndr)
= do { vBndr <- vectBndr bndr
; (inline, isScalarFn, vbody) <- vectFnExpr inline loop_breaker recFns body vt'
; return (inline, isScalarFn, mapVect (mkLams [vectorised vBndr]) vbody)
}
-- non-predicate abstraction: vectorise (try to vectorise as a scalar computation)
| isId bndr
= mark DontInline True (vectScalarFunMaybe (deAnnotate expr) vt)
`orElseV`
mark inlineMe False (vectLam inline loop_breaker expr vt)
vectFnExpr _ _ _ e vt
-- not an abstraction: vectorise as a vanilla expression
= mark DontInline False $ vectExpr e vt
mark :: Inline -> Bool -> VM a -> VM (Inline, Bool, a)
mark b isScalarFn p = do { x <- p; return (b, isScalarFn, x) }
-- |Vectorise type and dictionary applications.
--
-- These are always headed by a variable (as we don't support higher-rank polymorphism), but may
-- involve two sets of type variables and dictionaries. Consider,
--
-- > class C a where
-- > m :: D b => b -> a
--
-- The type of 'm' is 'm :: forall a. C a => forall b. D b => b -> a'.
--
vectPolyApp :: CoreExprWithFVs -> VM VExpr
vectPolyApp e0
= case e4 of
(_, AnnVar var)
-> do { -- get the vectorised form of the variable
; vVar <- lookupVar var
; traceVt "vectPolyApp of" (ppr var)
-- vectorise type and dictionary arguments
; vDictsOuter <- mapM vectDictExpr (map deAnnotate dictsOuter)
; vDictsInner <- mapM vectDictExpr (map deAnnotate dictsInner)
; vTysOuter <- mapM vectType tysOuter
; vTysInner <- mapM vectType tysInner
; let reconstructOuter v = (`mkApps` vDictsOuter) <$> polyApply v vTysOuter
; case vVar of
Local (vv, lv)
-> do { MASSERT( null dictsInner ) -- local vars cannot be class selectors
; traceVt " LOCAL" (text "")
; (,) <$> reconstructOuter (Var vv) <*> reconstructOuter (Var lv)
}
Global vv
| isDictComp var -- dictionary computation
-> do { -- in a dictionary computation, the innermost, non-empty set of
-- arguments are non-vectorised arguments, where no 'PA'dictionaries
-- are needed for the type variables
; ve <- if null dictsInner
then
return $ Var vv `mkTyApps` vTysOuter `mkApps` vDictsOuter
else
reconstructOuter
(Var vv `mkTyApps` vTysInner `mkApps` vDictsInner)
; traceVt " GLOBAL (dict):" (ppr ve)
; vectConst ve
}
| otherwise -- non-dictionary computation
-> do { MASSERT( null dictsInner )
; ve <- reconstructOuter (Var vv)
; traceVt " GLOBAL (non-dict):" (ppr ve)
; vectConst ve
}
}
_ -> pprSorry "Cannot vectorise programs with higher-rank types:" (ppr . deAnnotate $ e0)
where
-- if there is only one set of variables or dictionaries, it will be the outer set
(e1, dictsOuter) = collectAnnDictArgs e0
(e2, tysOuter) = collectAnnTypeArgs e1
(e3, dictsInner) = collectAnnDictArgs e2
(e4, tysInner) = collectAnnTypeArgs e3
--
isDictComp var = (isJust . isClassOpId_maybe $ var) || isDFunId var
-- |Vectorise the body of a dfun.
--
-- Dictionary computations are special for the following reasons. The application of dictionary
-- functions are always saturated, so there is no need to create closures. Dictionary computations
-- don't depend on array values, so they are always scalar computations whose result we can
-- replicate (instead of executing them in parallel).
--
-- NB: To keep things simple, we are not rewriting any of the bindings introduced in a dictionary
-- computation. Consequently, the variable case needs to deal with cases where binders are
-- in the vectoriser environments and where that is not the case.
--
vectDictExpr :: CoreExpr -> VM CoreExpr
vectDictExpr (Var var)
= do { mb_scope <- lookupVar_maybe var
; case mb_scope of
Nothing -> return $ Var var -- binder from within the dict. computation
Just (Local (vVar, _)) -> return $ Var vVar -- local vectorised variable
Just (Global vVar) -> return $ Var vVar -- global vectorised variable
}
vectDictExpr (Lit lit)
= pprPanic "Vectorise.Exp.vectDictExpr: literal in dictionary computation" (ppr lit)
vectDictExpr (Lam bndr e)
= Lam bndr <$> vectDictExpr e
vectDictExpr (App fn arg)
= App <$> vectDictExpr fn <*> vectDictExpr arg
vectDictExpr (Case e bndr ty alts)
= Case <$> vectDictExpr e <*> pure bndr <*> vectType ty <*> mapM vectDictAlt alts
where
vectDictAlt (con, bs, e) = (,,) <$> vectDictAltCon con <*> pure bs <*> vectDictExpr e
--
vectDictAltCon (DataAlt datacon) = DataAlt <$> maybeV dataConErr (lookupDataCon datacon)
where
dataConErr = ptext (sLit "Cannot vectorise data constructor:") <+> ppr datacon
vectDictAltCon (LitAlt lit) = return $ LitAlt lit
vectDictAltCon DEFAULT = return DEFAULT
vectDictExpr (Let bnd body)
= Let <$> vectDictBind bnd <*> vectDictExpr body
where
vectDictBind (NonRec bndr e) = NonRec bndr <$> vectDictExpr e
vectDictBind (Rec bnds) = Rec <$> mapM (\(bndr, e) -> (bndr,) <$> vectDictExpr e) bnds
vectDictExpr e@(Cast _e _coe)
= pprSorry "Vectorise.Exp.vectDictExpr: cast" (ppr e)
vectDictExpr (Tick tickish e)
= Tick tickish <$> vectDictExpr e
vectDictExpr (Type ty)
= Type <$> vectType ty
vectDictExpr (Coercion coe)
= pprSorry "Vectorise.Exp.vectDictExpr: coercion" (ppr coe)
-- |Vectorise an expression of functional type, where all arguments and the result are of primitive
-- types (i.e., 'Int', 'Float', 'Double' etc., which have instances of the 'Scalar' type class) and
-- which does not contain any subcomputations that involve parallel arrays. Such functionals do not
-- require the full blown vectorisation transformation; instead, they can be lifted by application
-- of a member of the zipWith family (i.e., 'map', 'zipWith', zipWith3', etc.)
--
-- Dictionary functions are also scalar functions (as dictionaries themselves are not vectorised,
-- instead they become dictionaries of vectorised methods). We treat them differently, though see
-- "Note [Scalar dfuns]" in 'Vectorise'.
--
vectScalarFunMaybe :: CoreExpr -- ^ Expression to be vectorised
-> VITree -- ^ Vectorisation information
-> VM VExpr
vectScalarFunMaybe expr (VITNode VIEncaps _) = vectScalarFun expr
vectScalarFunMaybe _expr _ = noV $ ptext (sLit "not a scalar function")
-- |Vectorise an expression of functional type by lifting it by an application of a member of the
-- zipWith family (i.e., 'map', 'zipWith', zipWith3', etc.) This is only a valid strategy if the
-- function does not contain parallel subcomputations and has only 'Scalar' types in its result and
-- arguments — this is a predcondition for calling this function.
--
-- Dictionary functions are also scalar functions (as dictionaries themselves are not vectorised,
-- instead they become dictionaries of vectorised methods). We treat them differently, though see
-- "Note [Scalar dfuns]" in 'Vectorise'.
--
vectScalarFun :: CoreExpr -> VM VExpr
vectScalarFun expr
= do
{ traceVt "vectScalarFun" (ppr expr)
; let (arg_tys, res_ty) = splitFunTys (exprType expr)
; mkScalarFun arg_tys res_ty expr
}
-- Generate code for a scalar function by generating a scalar closure. If the function is a
-- dictionary function, vectorise it as dictionary code.
--
mkScalarFun :: [Type] -> Type -> CoreExpr -> VM VExpr
mkScalarFun arg_tys res_ty expr
| isPredTy res_ty
= do { vExpr <- vectDictExpr expr
; return (vExpr, unused)
}
| otherwise
= do { traceVt "mkScalarFun: " $ ppr expr $$ ptext (sLit " ::") <+> ppr (mkFunTys arg_tys res_ty)
; fn_var <- hoistExpr (fsLit "fn") expr DontInline
; zipf <- zipScalars arg_tys res_ty
; clo <- scalarClosure arg_tys res_ty (Var fn_var) (zipf `App` Var fn_var)
; clo_var <- hoistExpr (fsLit "clo") clo DontInline
; lclo <- liftPD (Var clo_var)
; return (Var clo_var, lclo)
}
where
unused = error "Vectorise.Exp.mkScalarFun: we don't lift dictionary expressions"
-- |Vectorise a dictionary function that has a 'VECTORISE SCALAR instance' pragma.
--
-- In other words, all methods in that dictionary are scalar functions — to be vectorised with
-- 'vectScalarFun'. The dictionary "function" itself may be a constant, though.
--
-- NB: You may think that we could implement this function guided by the struture of the Core
-- expression of the right-hand side of the dictionary function. We cannot proceed like this as
-- 'vectScalarDFun' must also work for *imported* dfuns, where we don't necessarily have access
-- to the Core code of the unvectorised dfun.
--
-- Here an example — assume,
--
-- > class Eq a where { (==) :: a -> a -> Bool }
-- > instance (Eq a, Eq b) => Eq (a, b) where { (==) = ... }
-- > {-# VECTORISE SCALAR instance Eq (a, b) }
--
-- The unvectorised dfun for the above instance has the following signature:
--
-- > $dEqPair :: forall a b. Eq a -> Eq b -> Eq (a, b)
--
-- We generate the following (scalar) vectorised dfun (liberally using TH notation):
--
-- > $v$dEqPair :: forall a b. V:Eq a -> V:Eq b -> V:Eq (a, b)
-- > $v$dEqPair = /\a b -> \dEqa :: V:Eq a -> \dEqb :: V:Eq b ->
-- > D:V:Eq $(vectScalarFun True recFns
-- > [| (==) @(a, b) ($dEqPair @a @b $(unVect dEqa) $(unVect dEqb)) |])
--
-- NB:
-- * '(,)' vectorises to '(,)' — hence, the type constructor in the result type remains the same.
-- * We share the '$(unVect di)' sub-expressions between the different selectors, but duplicate
-- the application of the unvectorised dfun, to enable the dictionary selection rules to fire.
--
vectScalarDFun :: Var -- ^ Original dfun
-> VM CoreExpr
vectScalarDFun var
= do { -- bring the type variables into scope
; mapM_ defLocalTyVar tvs
-- vectorise dictionary argument types and generate variables for them
; vTheta <- mapM vectType theta
; vThetaBndr <- mapM (newLocalVar (fsLit "vd")) vTheta
; let vThetaVars = varsToCoreExprs vThetaBndr
-- vectorise superclass dictionaries and methods as scalar expressions
; thetaVars <- mapM (newLocalVar (fsLit "d")) theta
; thetaExprs <- zipWithM unVectDict theta vThetaVars
; let thetaDictBinds = zipWith NonRec thetaVars thetaExprs
dict = Var var `mkTyApps` (mkTyVarTys tvs) `mkVarApps` thetaVars
scsOps = map (\selId -> varToCoreExpr selId `mkTyApps` tys `mkApps` [dict])
selIds
; vScsOps <- mapM (\e -> vectorised <$> vectScalarFun e) scsOps
-- vectorised applications of the class-dictionary data constructor
; Just vDataCon <- lookupDataCon dataCon
; vTys <- mapM vectType tys
; let vBody = thetaDictBinds `mkLets` mkCoreConApps vDataCon (map Type vTys ++ vScsOps)
; return $ mkLams (tvs ++ vThetaBndr) vBody
}
where
ty = varType var
(tvs, theta, pty) = tcSplitSigmaTy ty -- 'theta' is the instance context
(cls, tys) = tcSplitDFunHead pty -- 'pty' is the instance head
selIds = classAllSelIds cls
dataCon = classDataCon cls
-- Build a value of the dictionary before vectorisation from original, unvectorised type and an
-- expression computing the vectorised dictionary.
--
-- Given the vectorised version of a dictionary 'vd :: V:C vt1..vtn', generate code that computes
-- the unvectorised version, thus:
--
-- > D:C op1 .. opm
-- > where
-- > opi = $(fromVect opTyi [| vSeli @vt1..vtk vd |])
--
-- where 'opTyi' is the type of the i-th superclass or op of the unvectorised dictionary.
--
unVectDict :: Type -> CoreExpr -> VM CoreExpr
unVectDict ty e
= do { vTys <- mapM vectType tys
; let meths = map (\sel -> Var sel `mkTyApps` vTys `mkApps` [e]) selIds
; scOps <- zipWithM fromVect methTys meths
; return $ mkCoreConApps dataCon (map Type tys ++ scOps)
}
where
(tycon, tys, dataCon, methTys) = splitProductType "unVectDict: original type" ty
cls = case tyConClass_maybe tycon of
Just cls -> cls
Nothing -> panic "Vectorise.Exp.unVectDict: no class"
selIds = classAllSelIds cls
-- Vectorise an 'n'-ary lambda abstraction by building a set of 'n' explicit closures.
--
-- All non-dictionary free variables go into the closure's environment, whereas the dictionary
-- variables are passed explicit (as conventional arguments) into the body during closure
-- construction.
--
vectLam :: Bool -- ^ When the RHS of a binding, whether that binding should be inlined.
-> Bool -- ^ Whether the binding is a loop breaker.
-> CoreExprWithFVs -- ^ Body of abstraction.
-> VITree
-> VM VExpr
vectLam inline loop_breaker expr@(fvs, AnnLam _ _) vi
= do { let (bndrs, body) = collectAnnValBinders expr
-- grab the in-scope type variables
; tyvars <- localTyVars
-- collect and vectorise all /local/ free variables
; vfvs <- readLEnv $ \env ->
[ (var, fromJust mb_vv)
| var <- varSetElems fvs
, let mb_vv = lookupVarEnv (local_vars env) var
, isJust mb_vv -- its local == is in local var env
]
-- separate dictionary from non-dictionary variables in the free variable set
; let (vvs_dict, vvs_nondict) = partition (isPredTy . varType . fst) vfvs
(_fvs_dict, vfvs_dict) = unzip vvs_dict
(fvs_nondict, vfvs_nondict) = unzip vvs_nondict
-- compute the type of the vectorised closure
; arg_tys <- mapM (vectType . idType) bndrs
; res_ty <- vectType (exprType $ deAnnotate body)
; let arity = length fvs_nondict + length bndrs
vfvs_dict' = map vectorised vfvs_dict
; buildClosures tyvars vfvs_dict' vfvs_nondict arg_tys res_ty
. hoistPolyVExpr tyvars vfvs_dict' (maybe_inline arity)
$ do { -- generate the vectorised body of the lambda abstraction
; lc <- builtin liftingContext
; let viBody = stripLams expr vi
-- ; checkTreeAnnM vi expr
; (vbndrs, vbody) <- vectBndrsIn (fvs_nondict ++ bndrs) (vectExpr body viBody)
; vbody' <- break_loop lc res_ty vbody
; return $ vLams lc vbndrs vbody'
}
}
where
stripLams (_, AnnLam _ e) (VITNode _ [vt]) = stripLams e vt
stripLams _ vi = vi
maybe_inline n | inline = Inline n
| otherwise = DontInline
-- If this is the body of a binding marked as a loop breaker, add a recursion termination test
-- to the /lifted/ version of the function body. The termination tests checks if the lifting
-- context is empty. If so, it returns an empty array of the (lifted) result type instead of
-- executing the function body. This is the test from the last line (defining \mathcal{L}')
-- in Figure 6 of HtM.
break_loop lc ty (ve, le)
| loop_breaker
= do { empty <- emptyPD ty
; lty <- mkPDataType ty
; return (ve, mkWildCase (Var lc) intPrimTy lty
[(DEFAULT, [], le),
(LitAlt (mkMachInt 0), [], empty)])
}
| otherwise = return (ve, le)
vectLam _ _ _ _ = panic "vectLam"
-- Vectorise an algebraic case expression.
--
-- We convert
--
-- case e :: t of v { ... }
--
-- to
--
-- V: let v' = e in case v' of _ { ... }
-- L: let v' = e in case v' `cast` ... of _ { ... }
--
-- When lifting, we have to do it this way because v must have the type
-- [:V(T):] but the scrutinee must be cast to the representation type. We also
-- have to handle the case where v is a wild var correctly.
--
-- FIXME: this is too lazy
vectAlgCase :: TyCon -> [Type] -> CoreExprWithFVs-> Var -> Type
-> [(AltCon, [Var], CoreExprWithFVs)] -> VITree
-> VM VExpr
vectAlgCase _tycon _ty_args scrut bndr ty [(DEFAULT, [], body)] (VITNode _ (scrutVit : [altVit]))
= do
vscrut <- vectExpr scrut scrutVit
(vty, lty) <- vectAndLiftType ty
(vbndr, vbody) <- vectBndrIn bndr (vectExpr body altVit)
return $ vCaseDEFAULT vscrut vbndr vty lty vbody
vectAlgCase _tycon _ty_args scrut bndr ty [(DataAlt _, [], body)] (VITNode _ (scrutVit : [altVit]))
= do
vscrut <- vectExpr scrut scrutVit
(vty, lty) <- vectAndLiftType ty
(vbndr, vbody) <- vectBndrIn bndr (vectExpr body altVit)
return $ vCaseDEFAULT vscrut vbndr vty lty vbody
vectAlgCase _tycon _ty_args scrut bndr ty [(DataAlt dc, bndrs, body)] (VITNode _ (scrutVit : [altVit]))
= do
(vty, lty) <- vectAndLiftType ty
vexpr <- vectExpr scrut scrutVit
(vbndr, (vbndrs, (vect_body, lift_body)))
<- vect_scrut_bndr
. vectBndrsIn bndrs
$ vectExpr body altVit
let (vect_bndrs, lift_bndrs) = unzip vbndrs
(vscrut, lscrut, pdata_dc) <- pdataUnwrapScrut (vVar vbndr)
vect_dc <- maybeV dataConErr (lookupDataCon dc)
let vcase = mk_wild_case vscrut vty vect_dc vect_bndrs vect_body
lcase = mk_wild_case lscrut lty pdata_dc lift_bndrs lift_body
return $ vLet (vNonRec vbndr vexpr) (vcase, lcase)
where
vect_scrut_bndr | isDeadBinder bndr = vectBndrNewIn bndr (fsLit "scrut")
| otherwise = vectBndrIn bndr
mk_wild_case expr ty dc bndrs body
= mkWildCase expr (exprType expr) ty [(DataAlt dc, bndrs, body)]
dataConErr = (text "vectAlgCase: data constructor not vectorised" <+> ppr dc)
vectAlgCase tycon _ty_args scrut bndr ty alts (VITNode _ (scrutVit : altVits))
= do
vect_tc <- maybeV tyConErr (lookupTyCon tycon)
(vty, lty) <- vectAndLiftType ty
let arity = length (tyConDataCons vect_tc)
sel_ty <- builtin (selTy arity)
sel_bndr <- newLocalVar (fsLit "sel") sel_ty
let sel = Var sel_bndr
(vbndr, valts) <- vect_scrut_bndr
$ mapM (proc_alt arity sel vty lty) (zip alts' altVits)
let (vect_dcs, vect_bndrss, lift_bndrss, vbodies) = unzip4 valts
vexpr <- vectExpr scrut scrutVit
(vect_scrut, lift_scrut, pdata_dc) <- pdataUnwrapScrut (vVar vbndr)
let (vect_bodies, lift_bodies) = unzip vbodies
vdummy <- newDummyVar (exprType vect_scrut)
ldummy <- newDummyVar (exprType lift_scrut)
let vect_case = Case vect_scrut vdummy vty
(zipWith3 mk_vect_alt vect_dcs vect_bndrss vect_bodies)
lc <- builtin liftingContext
lbody <- combinePD vty (Var lc) sel lift_bodies
let lift_case = Case lift_scrut ldummy lty
[(DataAlt pdata_dc, sel_bndr : concat lift_bndrss,
lbody)]
return . vLet (vNonRec vbndr vexpr)
$ (vect_case, lift_case)
where
tyConErr = (text "vectAlgCase: type constructor not vectorised" <+> ppr tycon)
vect_scrut_bndr | isDeadBinder bndr = vectBndrNewIn bndr (fsLit "scrut")
| otherwise = vectBndrIn bndr
alts' = sortBy (\(alt1, _, _) (alt2, _, _) -> cmp alt1 alt2) alts
cmp (DataAlt dc1) (DataAlt dc2) = dataConTag dc1 `compare` dataConTag dc2
cmp DEFAULT DEFAULT = EQ
cmp DEFAULT _ = LT
cmp _ DEFAULT = GT
cmp _ _ = panic "vectAlgCase/cmp"
proc_alt arity sel _ lty ((DataAlt dc, bndrs, body), vi)
= do
vect_dc <- maybeV dataConErr (lookupDataCon dc)
let ntag = dataConTagZ vect_dc
tag = mkDataConTag vect_dc
fvs = freeVarsOf body `delVarSetList` bndrs
sel_tags <- liftM (`App` sel) (builtin (selTags arity))
lc <- builtin liftingContext
elems <- builtin (selElements arity ntag)
(vbndrs, vbody)
<- vectBndrsIn bndrs
. localV
$ do
binds <- mapM (pack_var (Var lc) sel_tags tag)
. filter isLocalId
$ varSetElems fvs
(ve, le) <- vectExpr body vi
return (ve, Case (elems `App` sel) lc lty
[(DEFAULT, [], (mkLets (concat binds) le))])
-- empty <- emptyPD vty
-- return (ve, Case (elems `App` sel) lc lty
-- [(DEFAULT, [], Let (NonRec flags_var flags_expr)
-- $ mkLets (concat binds) le),
-- (LitAlt (mkMachInt 0), [], empty)])
let (vect_bndrs, lift_bndrs) = unzip vbndrs
return (vect_dc, vect_bndrs, lift_bndrs, vbody)
where
dataConErr = (text "vectAlgCase: data constructor not vectorised" <+> ppr dc)
proc_alt _ _ _ _ _ = panic "vectAlgCase/proc_alt"
mk_vect_alt vect_dc bndrs body = (DataAlt vect_dc, bndrs, body)
pack_var len tags t v
= do
r <- lookupVar v
case r of
Local (vv, lv) ->
do
lv' <- cloneVar lv
expr <- packByTagPD (idType vv) (Var lv) len tags t
updLEnv (\env -> env { local_vars = extendVarEnv
(local_vars env) v (vv, lv') })
return [(NonRec lv' expr)]
_ -> return []
vectAlgCase tycon _ty_args _scrut _bndr _ty _alts (VITNode _ _)
= pprPanic "vectAlgCase (mismatched node information)" (ppr tycon)
-- Support to compute information for vectorisation avoidance ------------------
-- Annotation for Core AST nodes that describes how they should be handled during vectorisation
-- and especially if vectorisation of the corresponding computation can be avoided.
--
data VectAvoidInfo = VIParr -- tree contains parallel computations
| VISimple -- result type is scalar & no parallel subcomputation
| VIComplex -- any result type, no parallel subcomputation
| VIEncaps -- tree encapsulated by 'liftSimple'
deriving (Eq, Show)
-- Instead of integrating the vectorisation avoidance information into Core expression, we keep
-- them in a separate tree (that structurally mirrors the Core expression that it annotates).
--
data VITree = VITNode VectAvoidInfo [VITree]
deriving (Show)
-- Is any of the tree nodes a 'VIPArr' node?
--
anyVIPArr :: [VITree] -> Bool
anyVIPArr = or . (map (\(VITNode vi _) -> vi == VIParr))
-- Compute Core annotations to determine for which subexpressions we can avoid vectorisation
--
-- FIXME: free scalar vars don't actually need to be passed through, since encapsulations makes sure,
-- that there are no free variables in encapsulated lambda expressions
vectAvoidInfo :: CoreExprWithFVs -> VM VITree
vectAvoidInfo ce@(_, AnnVar v)
= do { vi <- vectAvoidInfoType $ exprType $ deAnnotate ce
; viTrace ce vi []
; traceVt "vectAvoidInfo AnnVar" ((ppr v) <+> (ppr $ exprType $ deAnnotate ce))
; return $ VITNode vi []
}
vectAvoidInfo ce@(_, AnnLit _)
= do { vi <- vectAvoidInfoType $ exprType $ deAnnotate ce
; viTrace ce vi []
; traceVt "vectAvoidInfo AnnLit" (ppr $ exprType $ deAnnotate ce)
; return $ VITNode vi []
}
vectAvoidInfo ce@(_, AnnApp e1 e2)
= do { vt1 <- vectAvoidInfo e1
; vt2 <- vectAvoidInfo e2
; vi <- if anyVIPArr [vt1, vt2]
then return VIParr
else vectAvoidInfoType $ exprType $ deAnnotate ce
; viTrace ce vi [vt1, vt2]
; return $ VITNode vi [vt1, vt2]
}
vectAvoidInfo ce@(_, AnnLam _var body)
= do { vt@(VITNode vi _) <- vectAvoidInfo body
; viTrace ce vi [vt]
; let resultVI | vi == VIParr = VIParr
| otherwise = VIComplex
; return $ VITNode resultVI [vt]
}
vectAvoidInfo ce@(_, AnnLet (AnnNonRec _var expr) body)
= do { vtE <- vectAvoidInfo expr
; vtB <- vectAvoidInfo body
; vi <- if anyVIPArr [vtE, vtB]
then return VIParr
else vectAvoidInfoType $ exprType $ deAnnotate ce
; viTrace ce vi [vtE, vtB]
; return $ VITNode vi [vtE, vtB]
}
vectAvoidInfo ce@(_, AnnLet (AnnRec bnds) body)
= do { let (_, exprs) = unzip bnds
; vtBnds <- mapM (\e -> vectAvoidInfo e) exprs
; if (anyVIPArr vtBnds)
then do { vtBnds' <- mapM (\e -> vectAvoidInfo e) exprs
; vtB <- vectAvoidInfo body
; return (VITNode VIParr (vtB: vtBnds'))
}
else do { vtB@(VITNode vib _) <- vectAvoidInfo body
; ni <- if (vib == VIParr)
then return VIParr
else vectAvoidInfoType $ exprType $ deAnnotate ce
; viTrace ce ni (vtB : vtBnds)
; return $ VITNode ni (vtB : vtBnds)
}
}
vectAvoidInfo ce@(_, AnnCase expr _var _ty alts)
= do { vtExpr <- vectAvoidInfo expr
; vtAlts <- mapM (\(_, _, e) -> vectAvoidInfo e) alts
; ni <- if anyVIPArr (vtExpr : vtAlts)
then return VIParr
else vectAvoidInfoType $ exprType $ deAnnotate ce
; viTrace ce ni (vtExpr : vtAlts)
; return $ VITNode ni (vtExpr: vtAlts)
}
vectAvoidInfo (_, AnnCast expr _)
= do { vt@(VITNode vi _) <- vectAvoidInfo expr
; return $ VITNode vi [vt]
}
vectAvoidInfo (_, AnnTick _ expr)
= do { vt@(VITNode vi _) <- vectAvoidInfo expr
; return $ VITNode vi [vt]
}
vectAvoidInfo (_, AnnType {})
= return $ VITNode VISimple []
vectAvoidInfo (_, AnnCoercion {})
= return $ VITNode VISimple []
-- Compute vectorisation avoidance information for a type.
--
vectAvoidInfoType :: Type -> VM VectAvoidInfo
vectAvoidInfoType ty
| maybeParrTy ty = return VIParr
| otherwise
= do { sType <- isSimpleType ty
; if sType
then return VISimple
else return VIComplex
}
-- Checks whether the type might be a parallel array type. In particular, if the outermost
-- constructor is a type family, we conservatively assume that it may be a parallel array type.
--
maybeParrTy :: Type -> Bool
maybeParrTy ty
| Just ty' <- coreView ty = maybeParrTy ty'
| Just (tyCon, ts) <- splitTyConApp_maybe ty = isPArrTyCon tyCon || isSynFamilyTyCon tyCon
|| or (map maybeParrTy ts)
maybeParrTy _ = False
-- FIXME: This should not be hardcoded.
isSimpleType :: Type -> VM Bool
isSimpleType ty
| Just (c, _cs) <- splitTyConApp_maybe ty
= return $ (tyConName c) `elem` [boolTyConName, intTyConName, word8TyConName, doubleTyConName, floatTyConName]
{-
= do { globals <- globalScalarTyCons
; traceVt ("isSimpleType " ++ (show (elemNameSet (tyConName c) globals ))) (ppr c)
; return (elemNameSet (tyConName c) globals )
}
-}
| Nothing <- splitTyConApp_maybe ty
= return False
isSimpleType ty
= pprPanic "Vectorise.Exp.isSimpleType not handled" (ppr ty)
varsSimple :: VarSet -> VM Bool
varsSimple vs
= do { varTypes <- mapM isSimpleType $ map varType $ varSetElems vs
; return $ and varTypes
}
viTrace :: CoreExprWithFVs -> VectAvoidInfo -> [VITree] -> VM ()
viTrace ce vi vTs
= traceVt ("vitrace " ++ (show vi) ++ "[" ++ (concat $ map (\(VITNode vi _) -> show vi ++ " ") vTs) ++"]")
(ppr $ deAnnotate ce)
{-
---- Sanity check of the tree, for debugging only
checkTree :: VITree -> CoreExpr -> Bool
checkTree (VITNode _ []) (Type _ty)
= True
checkTree (VITNode _ []) (Var _v)
= True
checkTree (VITNode _ []) (Lit _)
= True
checkTree (VITNode _ [vit]) (Tick _ expr)
= checkTree vit expr
checkTree (VITNode _ [vit]) (Lam _ expr)
= checkTree vit expr
checkTree (VITNode _ [vit1, vit2]) (App ce1 ce2)
= (checkTree vit1 ce1) && (checkTree vit2 ce2)
checkTree (VITNode _ (scrutVit : altVits)) (Case scrut _ _ alts)
= (checkTree scrutVit scrut) && (and $ zipWith checkAlt altVits alts)
where
checkAlt vt (_, _, expr) = checkTree vt expr
checkTree (VITNode _ [vt1, vt2]) (Let (NonRec _ expr1) expr2)
= (checkTree vt1 expr1) && (checkTree vt2 expr2)
checkTree (VITNode _ (vtB : vtBnds)) (Let (Rec bndngs) expr)
= (and $ zipWith checkBndr vtBnds bndngs) &&
(checkTree vtB expr)
where
checkBndr vt (_, e) = checkTree vt e
checkTree (VITNode _ [vit]) (Cast expr _)
= checkTree vit expr
checkTree _ _ = False
checkTreeAnnM:: VITree -> CoreExprWithFVs -> VM ()
checkTreeAnnM vi e =
if not (checkTree vi $ deAnnotate e)
then error ("checkTreeAnnM : \n " ++ show vi)
else return ()
-}
|