1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
|
%
% (c) The University of Glasgow 2006
%
\begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
-- http://ghc.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details
{-# LANGUAGE ScopedTypeVariables #-}
module Digraph(
Graph, graphFromVerticesAndAdjacency, graphFromEdgedVertices,
SCC(..), Node, flattenSCC, flattenSCCs,
stronglyConnCompG, stronglyConnCompFromG,
topologicalSortG, dfsTopSortG,
verticesG, edgesG, hasVertexG,
reachableG, transposeG,
outdegreeG, indegreeG,
vertexGroupsG, emptyG,
componentsG,
findCycle,
-- For backwards compatability with the simpler version of Digraph
stronglyConnCompFromEdgedVertices, stronglyConnCompFromEdgedVerticesR,
-- No friendly interface yet, not used but exported to avoid warnings
tabulate, preArr,
components, undirected,
back, cross, forward,
path,
bcc, do_label, bicomps, collect
) where
#include "HsVersions.h"
------------------------------------------------------------------------------
-- A version of the graph algorithms described in:
--
-- ``Lazy Depth-First Search and Linear IntGraph Algorithms in Haskell''
-- by David King and John Launchbury
--
-- Also included is some additional code for printing tree structures ...
------------------------------------------------------------------------------
import Util ( minWith, count )
import Outputable
import Maybes ( expectJust )
import MonadUtils ( allM )
-- Extensions
import Control.Monad ( filterM, liftM, liftM2 )
import Control.Monad.ST
-- std interfaces
import Data.Maybe
import Data.Array
import Data.List hiding (transpose)
import Data.Ord
import Data.Array.ST
import qualified Data.Map as Map
import qualified Data.Set as Set
\end{code}
%************************************************************************
%* *
%* Graphs and Graph Construction
%* *
%************************************************************************
Note [Nodes, keys, vertices]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* A 'node' is a big blob of client-stuff
* Each 'node' has a unique (client) 'key', but the latter
is in Ord and has fast comparison
* Digraph then maps each 'key' to a Vertex (Int) which is
arranged densely in 0.n
\begin{code}
data Graph node = Graph {
gr_int_graph :: IntGraph,
gr_vertex_to_node :: Vertex -> node,
gr_node_to_vertex :: node -> Maybe Vertex
}
data Edge node = Edge node node
type Node key payload = (payload, key, [key])
-- The payload is user data, just carried around in this module
-- The keys are ordered
-- The [key] are the dependencies of the node;
-- it's ok to have extra keys in the dependencies that
-- are not the key of any Node in the graph
emptyGraph :: Graph a
emptyGraph = Graph (array (1, 0) []) (error "emptyGraph") (const Nothing)
graphFromVerticesAndAdjacency
:: Ord key
=> [(node, key)]
-> [(key, key)] -- First component is source vertex key,
-- second is target vertex key (thing depended on)
-- Unlike the other interface I insist they correspond to
-- actual vertices because the alternative hides bugs. I can't
-- do the same thing for the other one for backcompat reasons.
-> Graph (node, key)
graphFromVerticesAndAdjacency [] _ = emptyGraph
graphFromVerticesAndAdjacency vertices edges = Graph graph vertex_node (key_vertex . key_extractor)
where key_extractor = snd
(bounds, vertex_node, key_vertex, _) = reduceNodesIntoVertices vertices key_extractor
key_vertex_pair (a, b) = (expectJust "graphFromVerticesAndAdjacency" $ key_vertex a,
expectJust "graphFromVerticesAndAdjacency" $ key_vertex b)
reduced_edges = map key_vertex_pair edges
graph = buildG bounds reduced_edges
graphFromEdgedVertices
:: Ord key
=> [Node key payload] -- The graph; its ok for the
-- out-list to contain keys which arent
-- a vertex key, they are ignored
-> Graph (Node key payload)
graphFromEdgedVertices [] = emptyGraph
graphFromEdgedVertices edged_vertices = Graph graph vertex_fn (key_vertex . key_extractor)
where key_extractor (_, k, _) = k
(bounds, vertex_fn, key_vertex, numbered_nodes) = reduceNodesIntoVertices edged_vertices key_extractor
graph = array bounds [(v, mapMaybe key_vertex ks) | (v, (_, _, ks)) <- numbered_nodes]
reduceNodesIntoVertices
:: Ord key
=> [node]
-> (node -> key)
-> (Bounds, Vertex -> node, key -> Maybe Vertex, [(Int, node)])
reduceNodesIntoVertices nodes key_extractor = (bounds, (!) vertex_map, key_vertex, numbered_nodes)
where
max_v = length nodes - 1
bounds = (0, max_v) :: (Vertex, Vertex)
sorted_nodes = sortBy (comparing key_extractor) nodes
numbered_nodes = zipWith (,) [0..] sorted_nodes
key_map = array bounds [(i, key_extractor node) | (i, node) <- numbered_nodes]
vertex_map = array bounds numbered_nodes
--key_vertex :: key -> Maybe Vertex
-- returns Nothing for non-interesting vertices
key_vertex k = find 0 max_v
where
find a b | a > b = Nothing
| otherwise = let mid = (a + b) `div` 2
in case compare k (key_map ! mid) of
LT -> find a (mid - 1)
EQ -> Just mid
GT -> find (mid + 1) b
\end{code}
%************************************************************************
%* *
%* SCC
%* *
%************************************************************************
\begin{code}
type WorkItem key payload
= (Node key payload, -- Tip of the path
[payload]) -- Rest of the path;
-- [a,b,c] means c depends on b, b depends on a
-- | Find a reasonably short cycle a->b->c->a, in a strongly
-- connected component. The input nodes are presumed to be
-- a SCC, so you can start anywhere.
findCycle :: forall payload key. Ord key
=> [Node key payload] -- The nodes. The dependencies can
-- contain extra keys, which are ignored
-> Maybe [payload] -- A cycle, starting with node
-- so each depends on the next
findCycle graph
= go Set.empty (new_work root_deps []) []
where
env :: Map.Map key (Node key payload)
env = Map.fromList [ (key, node) | node@(_, key, _) <- graph ]
-- Find the node with fewest dependencies among the SCC modules
-- This is just a heuristic to find some plausible root module
root :: Node key payload
root = fst (minWith snd [ (node, count (`Map.member` env) deps)
| node@(_,_,deps) <- graph ])
(root_payload,root_key,root_deps) = root
-- 'go' implements Dijkstra's algorithm, more or less
go :: Set.Set key -- Visited
-> [WorkItem key payload] -- Work list, items length n
-> [WorkItem key payload] -- Work list, items length n+1
-> Maybe [payload] -- Returned cycle
-- Invariant: in a call (go visited ps qs),
-- visited = union (map tail (ps ++ qs))
go _ [] [] = Nothing -- No cycles
go visited [] qs = go visited qs []
go visited (((payload,key,deps), path) : ps) qs
| key == root_key = Just (root_payload : reverse path)
| key `Set.member` visited = go visited ps qs
| key `Map.notMember` env = go visited ps qs
| otherwise = go (Set.insert key visited)
ps (new_qs ++ qs)
where
new_qs = new_work deps (payload : path)
new_work :: [key] -> [payload] -> [WorkItem key payload]
new_work deps path = [ (n, path) | Just n <- map (`Map.lookup` env) deps ]
\end{code}
%************************************************************************
%* *
%* SCC
%* *
%************************************************************************
\begin{code}
data SCC vertex = AcyclicSCC vertex
| CyclicSCC [vertex]
instance Functor SCC where
fmap f (AcyclicSCC v) = AcyclicSCC (f v)
fmap f (CyclicSCC vs) = CyclicSCC (fmap f vs)
flattenSCCs :: [SCC a] -> [a]
flattenSCCs = concatMap flattenSCC
flattenSCC :: SCC a -> [a]
flattenSCC (AcyclicSCC v) = [v]
flattenSCC (CyclicSCC vs) = vs
instance Outputable a => Outputable (SCC a) where
ppr (AcyclicSCC v) = text "NONREC" $$ (nest 3 (ppr v))
ppr (CyclicSCC vs) = text "REC" $$ (nest 3 (vcat (map ppr vs)))
\end{code}
%************************************************************************
%* *
%* Strongly Connected Component wrappers for Graph
%* *
%************************************************************************
Note: the components are returned topologically sorted: later components
depend on earlier ones, but not vice versa i.e. later components only have
edges going from them to earlier ones.
\begin{code}
stronglyConnCompG :: Graph node -> [SCC node]
stronglyConnCompG graph = decodeSccs graph forest
where forest = {-# SCC "Digraph.scc" #-} scc (gr_int_graph graph)
-- Find the set of strongly connected components starting from the
-- given roots. This is a good way to discard unreachable nodes at
-- the same time as computing SCCs.
stronglyConnCompFromG :: Graph node -> [node] -> [SCC node]
stronglyConnCompFromG graph roots = decodeSccs graph forest
where forest = {-# SCC "Digraph.scc" #-} sccFrom (gr_int_graph graph) vs
vs = [ v | Just v <- map (gr_node_to_vertex graph) roots ]
decodeSccs :: Graph node -> Forest Vertex -> [SCC node]
decodeSccs Graph { gr_int_graph = graph, gr_vertex_to_node = vertex_fn } forest
= map decode forest
where
decode (Node v []) | mentions_itself v = CyclicSCC [vertex_fn v]
| otherwise = AcyclicSCC (vertex_fn v)
decode other = CyclicSCC (dec other [])
where dec (Node v ts) vs = vertex_fn v : foldr dec vs ts
mentions_itself v = v `elem` (graph ! v)
-- The following two versions are provided for backwards compatability:
stronglyConnCompFromEdgedVertices
:: Ord key
=> [Node key payload]
-> [SCC payload]
stronglyConnCompFromEdgedVertices
= map (fmap get_node) . stronglyConnCompFromEdgedVerticesR
where get_node (n, _, _) = n
-- The "R" interface is used when you expect to apply SCC to
-- (some of) the result of SCC, so you dont want to lose the dependency info
stronglyConnCompFromEdgedVerticesR
:: Ord key
=> [Node key payload]
-> [SCC (Node key payload)]
stronglyConnCompFromEdgedVerticesR = stronglyConnCompG . graphFromEdgedVertices
\end{code}
%************************************************************************
%* *
%* Misc wrappers for Graph
%* *
%************************************************************************
\begin{code}
topologicalSortG :: Graph node -> [node]
topologicalSortG graph = map (gr_vertex_to_node graph) result
where result = {-# SCC "Digraph.topSort" #-} topSort (gr_int_graph graph)
dfsTopSortG :: Graph node -> [[node]]
dfsTopSortG graph =
map (map (gr_vertex_to_node graph) . flattenTree) $ dfs g (topSort g)
where
g = gr_int_graph graph
reachableG :: Graph node -> node -> [node]
reachableG graph from = map (gr_vertex_to_node graph) result
where from_vertex = expectJust "reachableG" (gr_node_to_vertex graph from)
result = {-# SCC "Digraph.reachable" #-} reachable (gr_int_graph graph) from_vertex
hasVertexG :: Graph node -> node -> Bool
hasVertexG graph node = isJust $ gr_node_to_vertex graph node
verticesG :: Graph node -> [node]
verticesG graph = map (gr_vertex_to_node graph) $ vertices (gr_int_graph graph)
edgesG :: Graph node -> [Edge node]
edgesG graph = map (\(v1, v2) -> Edge (v2n v1) (v2n v2)) $ edges (gr_int_graph graph)
where v2n = gr_vertex_to_node graph
transposeG :: Graph node -> Graph node
transposeG graph = Graph (transpose (gr_int_graph graph)) (gr_vertex_to_node graph) (gr_node_to_vertex graph)
outdegreeG :: Graph node -> node -> Maybe Int
outdegreeG = degreeG outdegree
indegreeG :: Graph node -> node -> Maybe Int
indegreeG = degreeG indegree
degreeG :: (IntGraph -> Table Int) -> Graph node -> node -> Maybe Int
degreeG degree graph node = let table = degree (gr_int_graph graph)
in fmap ((!) table) $ gr_node_to_vertex graph node
vertexGroupsG :: Graph node -> [[node]]
vertexGroupsG graph = map (map (gr_vertex_to_node graph)) result
where result = vertexGroups (gr_int_graph graph)
emptyG :: Graph node -> Bool
emptyG g = graphEmpty (gr_int_graph g)
componentsG :: Graph node -> [[node]]
componentsG graph = map (map (gr_vertex_to_node graph) . flattenTree) $ components (gr_int_graph graph)
\end{code}
%************************************************************************
%* *
%* Showing Graphs
%* *
%************************************************************************
\begin{code}
instance Outputable node => Outputable (Graph node) where
ppr graph = vcat [
hang (text "Vertices:") 2 (vcat (map ppr $ verticesG graph)),
hang (text "Edges:") 2 (vcat (map ppr $ edgesG graph))
]
instance Outputable node => Outputable (Edge node) where
ppr (Edge from to) = ppr from <+> text "->" <+> ppr to
\end{code}
%************************************************************************
%* *
%* IntGraphs
%* *
%************************************************************************
\begin{code}
type Vertex = Int
type Table a = Array Vertex a
type IntGraph = Table [Vertex]
type Bounds = (Vertex, Vertex)
type IntEdge = (Vertex, Vertex)
\end{code}
\begin{code}
vertices :: IntGraph -> [Vertex]
vertices = indices
edges :: IntGraph -> [IntEdge]
edges g = [ (v, w) | v <- vertices g, w <- g!v ]
mapT :: (Vertex -> a -> b) -> Table a -> Table b
mapT f t = array (bounds t) [ (v, f v (t ! v)) | v <- indices t ]
buildG :: Bounds -> [IntEdge] -> IntGraph
buildG bounds edges = accumArray (flip (:)) [] bounds edges
transpose :: IntGraph -> IntGraph
transpose g = buildG (bounds g) (reverseE g)
reverseE :: IntGraph -> [IntEdge]
reverseE g = [ (w, v) | (v, w) <- edges g ]
outdegree :: IntGraph -> Table Int
outdegree = mapT numEdges
where numEdges _ ws = length ws
indegree :: IntGraph -> Table Int
indegree = outdegree . transpose
graphEmpty :: IntGraph -> Bool
graphEmpty g = lo > hi
where (lo, hi) = bounds g
\end{code}
%************************************************************************
%* *
%* Trees and forests
%* *
%************************************************************************
\begin{code}
data Tree a = Node a (Forest a)
type Forest a = [Tree a]
mapTree :: (a -> b) -> (Tree a -> Tree b)
mapTree f (Node x ts) = Node (f x) (map (mapTree f) ts)
flattenTree :: Tree a -> [a]
flattenTree (Node x ts) = x : concatMap flattenTree ts
\end{code}
\begin{code}
instance Show a => Show (Tree a) where
showsPrec _ t s = showTree t ++ s
showTree :: Show a => Tree a -> String
showTree = drawTree . mapTree show
drawTree :: Tree String -> String
drawTree = unlines . draw
draw :: Tree String -> [String]
draw (Node x ts) = grp this (space (length this)) (stLoop ts)
where this = s1 ++ x ++ " "
space n = replicate n ' '
stLoop [] = [""]
stLoop [t] = grp s2 " " (draw t)
stLoop (t:ts) = grp s3 s4 (draw t) ++ [s4] ++ rsLoop ts
rsLoop [] = []
rsLoop [t] = grp s5 " " (draw t)
rsLoop (t:ts) = grp s6 s4 (draw t) ++ [s4] ++ rsLoop ts
grp fst rst = zipWith (++) (fst:repeat rst)
[s1,s2,s3,s4,s5,s6] = ["- ", "--", "-+", " |", " `", " +"]
\end{code}
%************************************************************************
%* *
%* Depth first search
%* *
%************************************************************************
\begin{code}
type Set s = STArray s Vertex Bool
mkEmpty :: Bounds -> ST s (Set s)
mkEmpty bnds = newArray bnds False
contains :: Set s -> Vertex -> ST s Bool
contains m v = readArray m v
include :: Set s -> Vertex -> ST s ()
include m v = writeArray m v True
\end{code}
\begin{code}
dff :: IntGraph -> Forest Vertex
dff g = dfs g (vertices g)
dfs :: IntGraph -> [Vertex] -> Forest Vertex
dfs g vs = prune (bounds g) (map (generate g) vs)
generate :: IntGraph -> Vertex -> Tree Vertex
generate g v = Node v (map (generate g) (g!v))
prune :: Bounds -> Forest Vertex -> Forest Vertex
prune bnds ts = runST (mkEmpty bnds >>= \m ->
chop m ts)
chop :: Set s -> Forest Vertex -> ST s (Forest Vertex)
chop _ [] = return []
chop m (Node v ts : us)
= contains m v >>= \visited ->
if visited then
chop m us
else
include m v >>= \_ ->
chop m ts >>= \as ->
chop m us >>= \bs ->
return (Node v as : bs)
\end{code}
%************************************************************************
%* *
%* Algorithms
%* *
%************************************************************************
------------------------------------------------------------
-- Algorithm 1: depth first search numbering
------------------------------------------------------------
\begin{code}
preorder :: Tree a -> [a]
preorder (Node a ts) = a : preorderF ts
preorderF :: Forest a -> [a]
preorderF ts = concat (map preorder ts)
tabulate :: Bounds -> [Vertex] -> Table Int
tabulate bnds vs = array bnds (zip vs [1..])
preArr :: Bounds -> Forest Vertex -> Table Int
preArr bnds = tabulate bnds . preorderF
\end{code}
------------------------------------------------------------
-- Algorithm 2: topological sorting
------------------------------------------------------------
\begin{code}
postorder :: Tree a -> [a] -> [a]
postorder (Node a ts) = postorderF ts . (a :)
postorderF :: Forest a -> [a] -> [a]
postorderF ts = foldr (.) id $ map postorder ts
postOrd :: IntGraph -> [Vertex]
postOrd g = postorderF (dff g) []
postOrdFrom :: IntGraph -> [Vertex] -> [Vertex]
postOrdFrom g vs = postorderF (dfs g vs) []
topSort :: IntGraph -> [Vertex]
topSort = reverse . postOrd
\end{code}
------------------------------------------------------------
-- Algorithm 3: connected components
------------------------------------------------------------
\begin{code}
components :: IntGraph -> Forest Vertex
components = dff . undirected
undirected :: IntGraph -> IntGraph
undirected g = buildG (bounds g) (edges g ++ reverseE g)
\end{code}
------------------------------------------------------------
-- Algorithm 4: strongly connected components
------------------------------------------------------------
\begin{code}
scc :: IntGraph -> Forest Vertex
scc g = dfs g (reverse (postOrd (transpose g)))
sccFrom :: IntGraph -> [Vertex] -> Forest Vertex
sccFrom g vs = reverse (dfs (transpose g) (reverse (postOrdFrom g vs)))
\end{code}
------------------------------------------------------------
-- Algorithm 5: Classifying edges
------------------------------------------------------------
\begin{code}
back :: IntGraph -> Table Int -> IntGraph
back g post = mapT select g
where select v ws = [ w | w <- ws, post!v < post!w ]
cross :: IntGraph -> Table Int -> Table Int -> IntGraph
cross g pre post = mapT select g
where select v ws = [ w | w <- ws, post!v > post!w, pre!v > pre!w ]
forward :: IntGraph -> IntGraph -> Table Int -> IntGraph
forward g tree pre = mapT select g
where select v ws = [ w | w <- ws, pre!v < pre!w ] \\ tree!v
\end{code}
------------------------------------------------------------
-- Algorithm 6: Finding reachable vertices
------------------------------------------------------------
\begin{code}
reachable :: IntGraph -> Vertex -> [Vertex]
reachable g v = preorderF (dfs g [v])
path :: IntGraph -> Vertex -> Vertex -> Bool
path g v w = w `elem` (reachable g v)
\end{code}
------------------------------------------------------------
-- Algorithm 7: Biconnected components
------------------------------------------------------------
\begin{code}
bcc :: IntGraph -> Forest [Vertex]
bcc g = (concat . map bicomps . map (do_label g dnum)) forest
where forest = dff g
dnum = preArr (bounds g) forest
do_label :: IntGraph -> Table Int -> Tree Vertex -> Tree (Vertex,Int,Int)
do_label g dnum (Node v ts) = Node (v,dnum!v,lv) us
where us = map (do_label g dnum) ts
lv = minimum ([dnum!v] ++ [dnum!w | w <- g!v]
++ [lu | Node (_,_,lu) _ <- us])
bicomps :: Tree (Vertex, Int, Int) -> Forest [Vertex]
bicomps (Node (v,_,_) ts)
= [ Node (v:vs) us | (_,Node vs us) <- map collect ts]
collect :: Tree (Vertex, Int, Int) -> (Int, Tree [Vertex])
collect (Node (v,dv,lv) ts) = (lv, Node (v:vs) cs)
where collected = map collect ts
vs = concat [ ws | (lw, Node ws _) <- collected, lw<dv]
cs = concat [ if lw<dv then us else [Node (v:ws) us]
| (lw, Node ws us) <- collected ]
\end{code}
------------------------------------------------------------
-- Algorithm 8: Total ordering on groups of vertices
------------------------------------------------------------
The plan here is to extract a list of groups of elements of the graph
such that each group has no dependence except on nodes in previous
groups (i.e. in particular they may not depend on nodes in their own
group) and is maximal such group.
Clearly we cannot provide a solution for cyclic graphs.
We proceed by iteratively removing elements with no outgoing edges
and their associated edges from the graph.
This probably isn't very efficient and certainly isn't very clever.
\begin{code}
vertexGroups :: IntGraph -> [[Vertex]]
vertexGroups g = runST (mkEmpty (bounds g) >>= \provided -> vertexGroupsS provided g next_vertices)
where next_vertices = noOutEdges g
noOutEdges :: IntGraph -> [Vertex]
noOutEdges g = [ v | v <- vertices g, null (g!v)]
vertexGroupsS :: Set s -> IntGraph -> [Vertex] -> ST s [[Vertex]]
vertexGroupsS provided g to_provide
= if null to_provide
then do {
all_provided <- allM (provided `contains`) (vertices g)
; if all_provided
then return []
else error "vertexGroup: cyclic graph"
}
else do {
mapM_ (include provided) to_provide
; to_provide' <- filterM (vertexReady provided g) (vertices g)
; rest <- vertexGroupsS provided g to_provide'
; return $ to_provide : rest
}
vertexReady :: Set s -> IntGraph -> Vertex -> ST s Bool
vertexReady provided g v = liftM2 (&&) (liftM not $ provided `contains` v) (allM (provided `contains`) (g!v))
\end{code}
|