1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
--------------------------------------------------------------------------------
-- | Boolean formulas without negation (qunatifier free)
{-# LANGUAGE DeriveDataTypeable, DeriveFunctor, DeriveFoldable,
DeriveTraversable #-}
module BooleanFormula (
BooleanFormula(..),
mkFalse, mkTrue, mkAnd, mkOr, mkVar,
isFalse, isTrue,
eval, simplify, isUnsatisfied,
implies, impliesAtom,
pprBooleanFormula, pprBooleanFormulaNice
) where
import Data.List ( nub, intersperse )
import Data.Data
import Data.Foldable ( Foldable )
import Data.Traversable ( Traversable )
import MonadUtils
import Outputable
import Binary
----------------------------------------------------------------------
-- Boolean formula type and smart constructors
----------------------------------------------------------------------
data BooleanFormula a = Var a | And [BooleanFormula a] | Or [BooleanFormula a]
deriving (Eq, Data, Typeable, Functor, Foldable, Traversable)
mkVar :: a -> BooleanFormula a
mkVar = Var
mkFalse, mkTrue :: BooleanFormula a
mkFalse = Or []
mkTrue = And []
mkBool :: Bool -> BooleanFormula a
mkBool False = mkFalse
mkBool True = mkTrue
mkAnd :: Eq a => [BooleanFormula a] -> BooleanFormula a
mkAnd = maybe mkFalse (mkAnd' . nub) . concatMapM fromAnd
where
fromAnd :: BooleanFormula a -> Maybe [BooleanFormula a]
fromAnd (And xs) = Just xs
-- assume that xs are already simplified
-- otherwise we would need: fromAnd (And xs) = concat <$> traverse fromAnd xs
fromAnd (Or []) = Nothing -- in case of False we bail out, And [..,mkFalse,..] == mkFalse
fromAnd x = Just [x]
mkAnd' [x] = x
mkAnd' xs = And xs
mkOr :: Eq a => [BooleanFormula a] -> BooleanFormula a
mkOr = maybe mkTrue (mkOr' . nub) . concatMapM fromOr
where
fromOr (Or xs) = Just xs
fromOr (And []) = Nothing
fromOr x = Just [x]
mkOr' [x] = x
mkOr' xs = Or xs
----------------------------------------------------------------------
-- Evaluation and simplificiation
----------------------------------------------------------------------
isFalse :: BooleanFormula a -> Bool
isFalse (Or []) = True
isFalse _ = False
isTrue :: BooleanFormula a -> Bool
isTrue (And []) = True
isTrue _ = False
eval :: (a -> Bool) -> BooleanFormula a -> Bool
eval f (Var x) = f x
eval f (And xs) = all (eval f) xs
eval f (Or xs) = any (eval f) xs
-- Simplify a boolean formula.
-- The argument function should give the truth of the atoms, or Nothing if undecided.
simplify :: Eq a => (a -> Maybe Bool) -> BooleanFormula a -> BooleanFormula a
simplify f (Var a) = case f a of
Nothing -> Var a
Just b -> mkBool b
simplify f (And xs) = mkAnd (map (simplify f) xs)
simplify f (Or xs) = mkOr (map (simplify f) xs)
-- Test if a boolean formula is satisfied when the given values are assigned to the atoms
-- if it is, returns Nothing
-- if it is not, return (Just remainder)
isUnsatisfied :: Eq a => (a -> Bool) -> BooleanFormula a -> Maybe (BooleanFormula a)
isUnsatisfied f bf
| isTrue bf' = Nothing
| otherwise = Just bf'
where
f' x = if f x then Just True else Nothing
bf' = simplify f' bf
-- prop_simplify:
-- eval f x == True <==> isTrue (simplify (Just . f) x)
-- eval f x == False <==> isFalse (simplify (Just . f) x)
-- If the boolean formula holds, does that mean that the given atom is always true?
impliesAtom :: Eq a => BooleanFormula a -> a -> Bool
Var x `impliesAtom` y = x == y
And xs `impliesAtom` y = any (`impliesAtom` y) xs -- we have all of xs, so one of them implying y is enough
Or xs `impliesAtom` y = all (`impliesAtom` y) xs
implies :: Eq a => BooleanFormula a -> BooleanFormula a -> Bool
x `implies` Var y = x `impliesAtom` y
x `implies` And ys = all (x `implies`) ys
x `implies` Or ys = any (x `implies`) ys
----------------------------------------------------------------------
-- Pretty printing
----------------------------------------------------------------------
pprBooleanFormula' :: (Rational -> a -> SDoc)
-> (Rational -> [SDoc] -> SDoc)
-> (Rational -> [SDoc] -> SDoc)
-> Rational -> BooleanFormula a -> SDoc
pprBooleanFormula' pprVar pprAnd pprOr = go
where
go p (Var x) = pprVar p x
go p (And []) = cparen (p > 0) $ empty
go p (And xs) = pprAnd p (map (go 3) xs)
go _ (Or []) = keyword $ text "FALSE"
go p (Or xs) = pprOr p (map (go 2) xs)
-- Pretty print in source syntax, "a | b | c,d,e"
pprBooleanFormula :: (Rational -> a -> SDoc) -> Rational -> BooleanFormula a -> SDoc
pprBooleanFormula pprVar = pprBooleanFormula' pprVar pprAnd pprOr
where
pprAnd p = cparen (p > 3) . fsep . punctuate comma
pprOr p = cparen (p > 2) . fsep . intersperse (text "|")
-- Pretty print human in readable format, "either `a' or `b' or (`c', `d' and `e')"?
pprBooleanFormulaNice :: Outputable a => BooleanFormula a -> SDoc
pprBooleanFormulaNice = pprBooleanFormula' pprVar pprAnd pprOr 0
where
pprVar _ = quotes . ppr
pprAnd p = cparen (p > 1) . pprAnd'
pprAnd' [] = empty
pprAnd' [x,y] = x <+> text "and" <+> y
pprAnd' xs@(_:_) = fsep (punctuate comma (init xs)) <> text ", and" <+> last xs
pprOr p xs = cparen (p > 1) $ text "either" <+> sep (intersperse (text "or") xs)
instance Outputable a => Outputable (BooleanFormula a) where
pprPrec = pprBooleanFormula pprPrec
----------------------------------------------------------------------
-- Binary
----------------------------------------------------------------------
instance Binary a => Binary (BooleanFormula a) where
put_ bh (Var x) = putByte bh 0 >> put_ bh x
put_ bh (And xs) = putByte bh 1 >> put_ bh xs
put_ bh (Or xs) = putByte bh 2 >> put_ bh xs
get bh = do
h <- getByte bh
case h of
0 -> Var <$> get bh
1 -> And <$> get bh
_ -> Or <$> get bh
|