summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcTypeNats.hs
blob: 3da668aa4f91a4e3a7c1e479d22864da13ad5404 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
{-# LANGUAGE LambdaCase #-}

module TcTypeNats
  ( typeNatTyCons
  , typeNatCoAxiomRules
  , BuiltInSynFamily(..)

    -- If you define a new built-in type family, make sure to export its TyCon
    -- from here as well.
    -- See Note [Adding built-in type families]
  , typeNatAddTyCon
  , typeNatMulTyCon
  , typeNatExpTyCon
  , typeNatLeqTyCon
  , typeNatSubTyCon
  , typeNatDivTyCon
  , typeNatModTyCon
  , typeNatLogTyCon
  , typeNatCmpTyCon
  , typeSymbolCmpTyCon
  , typeSymbolAppendTyCon
  ) where

import GhcPrelude

import Type
import Pair
import TcType     ( TcType, tcEqType )
import TyCon      ( TyCon, FamTyConFlav(..), mkFamilyTyCon
                  , Injectivity(..) )
import Coercion   ( Role(..) )
import Constraint ( Xi )
import CoAxiom    ( CoAxiomRule(..), BuiltInSynFamily(..), TypeEqn )
import Name       ( Name, BuiltInSyntax(..) )
import TysWiredIn
import TysPrim    ( mkTemplateAnonTyConBinders )
import PrelNames  ( gHC_TYPELITS
                  , gHC_TYPENATS
                  , typeNatAddTyFamNameKey
                  , typeNatMulTyFamNameKey
                  , typeNatExpTyFamNameKey
                  , typeNatLeqTyFamNameKey
                  , typeNatSubTyFamNameKey
                  , typeNatDivTyFamNameKey
                  , typeNatModTyFamNameKey
                  , typeNatLogTyFamNameKey
                  , typeNatCmpTyFamNameKey
                  , typeSymbolCmpTyFamNameKey
                  , typeSymbolAppendFamNameKey
                  )
import FastString ( FastString
                  , fsLit, nilFS, nullFS, unpackFS, mkFastString, appendFS
                  )
import qualified Data.Map as Map
import Data.Maybe ( isJust )
import Control.Monad ( guard )
import Data.List  ( isPrefixOf, isSuffixOf )

{-
Note [Type-level literals]
~~~~~~~~~~~~~~~~~~~~~~~~~~
There are currently two forms of type-level literals: natural numbers, and
symbols (even though this module is named TcTypeNats, it covers both).

Type-level literals are supported by CoAxiomRules (conditional axioms), which
power the built-in type families (see Note [Adding built-in type families]).
Currently, all built-in type families are for the express purpose of supporting
type-level literals.

See also the Wiki page:

    https://gitlab.haskell.org/ghc/ghc/wikis/type-nats

Note [Adding built-in type families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are a few steps to adding a built-in type family:

* Adding a unique for the type family TyCon

  These go in PrelNames. It will likely be of the form
  @myTyFamNameKey = mkPreludeTyConUnique xyz@, where @xyz@ is a number that
  has not been chosen before in PrelNames. There are several examples already
  in PrelNames—see, for instance, typeNatAddTyFamNameKey.

* Adding the type family TyCon itself

  This goes in TcTypeNats. There are plenty of examples of how to define
  these—see, for instance, typeNatAddTyCon.

  Once your TyCon has been defined, be sure to:

  - Export it from TcTypeNats. (Not doing so caused #14632.)
  - Include it in the typeNatTyCons list, defined in TcTypeNats.

* Exposing associated type family axioms

  When defining the type family TyCon, you will need to define an axiom for
  the type family in general (see, for instance, axAddDef), and perhaps other
  auxiliary axioms for special cases of the type family (see, for instance,
  axAdd0L and axAdd0R).

  After you have defined all of these axioms, be sure to include them in the
  typeNatCoAxiomRules list, defined in TcTypeNats.
  (Not doing so caused #14934.)

* Define the type family somewhere

  Finally, you will need to define the type family somewhere, likely in @base@.
  Currently, all of the built-in type families are defined in GHC.TypeLits or
  GHC.TypeNats, so those are likely candidates.

  Since the behavior of your built-in type family is specified in TcTypeNats,
  you should give an open type family definition with no instances, like so:

    type family MyTypeFam (m :: Nat) (n :: Nat) :: Nat

  Changing the argument and result kinds as appropriate.

* Update the relevant test cases

  The GHC test suite will likely need to be updated after you add your built-in
  type family. For instance:

  - The T9181 test prints the :browse contents of GHC.TypeLits, so if you added
    a test there, the expected output of T9181 will need to change.
  - The TcTypeNatSimple and TcTypeSymbolSimple tests have compile-time unit
    tests, as well as TcTypeNatSimpleRun and TcTypeSymbolSimpleRun, which have
    runtime unit tests. Consider adding further unit tests to those if your
    built-in type family deals with Nats or Symbols, respectively.
-}

{-------------------------------------------------------------------------------
Built-in type constructors for functions on type-level nats
-}

-- The list of built-in type family TyCons that GHC uses.
-- If you define a built-in type family, make sure to add it to this list.
-- See Note [Adding built-in type families]
typeNatTyCons :: [TyCon]
typeNatTyCons =
  [ typeNatAddTyCon
  , typeNatMulTyCon
  , typeNatExpTyCon
  , typeNatLeqTyCon
  , typeNatSubTyCon
  , typeNatDivTyCon
  , typeNatModTyCon
  , typeNatLogTyCon
  , typeNatCmpTyCon
  , typeSymbolCmpTyCon
  , typeSymbolAppendTyCon
  ]

typeNatAddTyCon :: TyCon
typeNatAddTyCon = mkTypeNatFunTyCon2 name
  BuiltInSynFamily
    { sfMatchFam      = matchFamAdd
    , sfInteractTop   = interactTopAdd
    , sfInteractInert = interactInertAdd
    }
  where
  name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "+")
            typeNatAddTyFamNameKey

typeNatSubTyCon :: TyCon
typeNatSubTyCon = mkTypeNatFunTyCon2 name
  BuiltInSynFamily
    { sfMatchFam      = matchFamSub
    , sfInteractTop   = interactTopSub
    , sfInteractInert = interactInertSub
    }
  where
  name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "-")
            typeNatSubTyFamNameKey

typeNatMulTyCon :: TyCon
typeNatMulTyCon = mkTypeNatFunTyCon2 name
  BuiltInSynFamily
    { sfMatchFam      = matchFamMul
    , sfInteractTop   = interactTopMul
    , sfInteractInert = interactInertMul
    }
  where
  name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "*")
            typeNatMulTyFamNameKey

typeNatDivTyCon :: TyCon
typeNatDivTyCon = mkTypeNatFunTyCon2 name
  BuiltInSynFamily
    { sfMatchFam      = matchFamDiv
    , sfInteractTop   = interactTopDiv
    , sfInteractInert = interactInertDiv
    }
  where
  name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "Div")
            typeNatDivTyFamNameKey

typeNatModTyCon :: TyCon
typeNatModTyCon = mkTypeNatFunTyCon2 name
  BuiltInSynFamily
    { sfMatchFam      = matchFamMod
    , sfInteractTop   = interactTopMod
    , sfInteractInert = interactInertMod
    }
  where
  name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "Mod")
            typeNatModTyFamNameKey





typeNatExpTyCon :: TyCon
typeNatExpTyCon = mkTypeNatFunTyCon2 name
  BuiltInSynFamily
    { sfMatchFam      = matchFamExp
    , sfInteractTop   = interactTopExp
    , sfInteractInert = interactInertExp
    }
  where
  name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "^")
                typeNatExpTyFamNameKey

typeNatLogTyCon :: TyCon
typeNatLogTyCon = mkTypeNatFunTyCon1 name
  BuiltInSynFamily
    { sfMatchFam      = matchFamLog
    , sfInteractTop   = interactTopLog
    , sfInteractInert = interactInertLog
    }
  where
  name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "Log2")
            typeNatLogTyFamNameKey



typeNatLeqTyCon :: TyCon
typeNatLeqTyCon =
  mkFamilyTyCon name
    (mkTemplateAnonTyConBinders [ typeNatKind, typeNatKind ])
    boolTy
    Nothing
    (BuiltInSynFamTyCon ops)
    Nothing
    NotInjective

  where
  name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "<=?")
                typeNatLeqTyFamNameKey
  ops = BuiltInSynFamily
    { sfMatchFam      = matchFamLeq
    , sfInteractTop   = interactTopLeq
    , sfInteractInert = interactInertLeq
    }

typeNatCmpTyCon :: TyCon
typeNatCmpTyCon =
  mkFamilyTyCon name
    (mkTemplateAnonTyConBinders [ typeNatKind, typeNatKind ])
    orderingKind
    Nothing
    (BuiltInSynFamTyCon ops)
    Nothing
    NotInjective

  where
  name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "CmpNat")
                typeNatCmpTyFamNameKey
  ops = BuiltInSynFamily
    { sfMatchFam      = matchFamCmpNat
    , sfInteractTop   = interactTopCmpNat
    , sfInteractInert = \_ _ _ _ -> []
    }

typeSymbolCmpTyCon :: TyCon
typeSymbolCmpTyCon =
  mkFamilyTyCon name
    (mkTemplateAnonTyConBinders [ typeSymbolKind, typeSymbolKind ])
    orderingKind
    Nothing
    (BuiltInSynFamTyCon ops)
    Nothing
    NotInjective

  where
  name = mkWiredInTyConName UserSyntax gHC_TYPELITS (fsLit "CmpSymbol")
                typeSymbolCmpTyFamNameKey
  ops = BuiltInSynFamily
    { sfMatchFam      = matchFamCmpSymbol
    , sfInteractTop   = interactTopCmpSymbol
    , sfInteractInert = \_ _ _ _ -> []
    }

typeSymbolAppendTyCon :: TyCon
typeSymbolAppendTyCon = mkTypeSymbolFunTyCon2 name
  BuiltInSynFamily
    { sfMatchFam      = matchFamAppendSymbol
    , sfInteractTop   = interactTopAppendSymbol
    , sfInteractInert = interactInertAppendSymbol
    }
  where
  name = mkWiredInTyConName UserSyntax gHC_TYPELITS (fsLit "AppendSymbol")
                typeSymbolAppendFamNameKey



-- Make a unary built-in constructor of kind: Nat -> Nat
mkTypeNatFunTyCon1 :: Name -> BuiltInSynFamily -> TyCon
mkTypeNatFunTyCon1 op tcb =
  mkFamilyTyCon op
    (mkTemplateAnonTyConBinders [ typeNatKind ])
    typeNatKind
    Nothing
    (BuiltInSynFamTyCon tcb)
    Nothing
    NotInjective


-- Make a binary built-in constructor of kind: Nat -> Nat -> Nat
mkTypeNatFunTyCon2 :: Name -> BuiltInSynFamily -> TyCon
mkTypeNatFunTyCon2 op tcb =
  mkFamilyTyCon op
    (mkTemplateAnonTyConBinders [ typeNatKind, typeNatKind ])
    typeNatKind
    Nothing
    (BuiltInSynFamTyCon tcb)
    Nothing
    NotInjective

-- Make a binary built-in constructor of kind: Symbol -> Symbol -> Symbol
mkTypeSymbolFunTyCon2 :: Name -> BuiltInSynFamily -> TyCon
mkTypeSymbolFunTyCon2 op tcb =
  mkFamilyTyCon op
    (mkTemplateAnonTyConBinders [ typeSymbolKind, typeSymbolKind ])
    typeSymbolKind
    Nothing
    (BuiltInSynFamTyCon tcb)
    Nothing
    NotInjective


{-------------------------------------------------------------------------------
Built-in rules axioms
-------------------------------------------------------------------------------}

-- If you add additional rules, please remember to add them to
-- `typeNatCoAxiomRules` also.
-- See Note [Adding built-in type families]
axAddDef
  , axMulDef
  , axExpDef
  , axLeqDef
  , axCmpNatDef
  , axCmpSymbolDef
  , axAppendSymbolDef
  , axAdd0L
  , axAdd0R
  , axMul0L
  , axMul0R
  , axMul1L
  , axMul1R
  , axExp1L
  , axExp0R
  , axExp1R
  , axLeqRefl
  , axCmpNatRefl
  , axCmpSymbolRefl
  , axLeq0L
  , axSubDef
  , axSub0R
  , axAppendSymbol0R
  , axAppendSymbol0L
  , axDivDef
  , axDiv1
  , axModDef
  , axMod1
  , axLogDef
  :: CoAxiomRule

axAddDef = mkBinAxiom "AddDef" typeNatAddTyCon $
              \x y -> Just $ num (x + y)

axMulDef = mkBinAxiom "MulDef" typeNatMulTyCon $
              \x y -> Just $ num (x * y)

axExpDef = mkBinAxiom "ExpDef" typeNatExpTyCon $
              \x y -> Just $ num (x ^ y)

axLeqDef = mkBinAxiom "LeqDef" typeNatLeqTyCon $
              \x y -> Just $ bool (x <= y)

axCmpNatDef   = mkBinAxiom "CmpNatDef" typeNatCmpTyCon
              $ \x y -> Just $ ordering (compare x y)

axCmpSymbolDef =
  CoAxiomRule
    { coaxrName      = fsLit "CmpSymbolDef"
    , coaxrAsmpRoles = [Nominal, Nominal]
    , coaxrRole      = Nominal
    , coaxrProves    = \cs ->
        do [Pair s1 s2, Pair t1 t2] <- return cs
           s2' <- isStrLitTy s2
           t2' <- isStrLitTy t2
           return (mkTyConApp typeSymbolCmpTyCon [s1,t1] ===
                   ordering (compare s2' t2')) }

axAppendSymbolDef = CoAxiomRule
    { coaxrName      = fsLit "AppendSymbolDef"
    , coaxrAsmpRoles = [Nominal, Nominal]
    , coaxrRole      = Nominal
    , coaxrProves    = \cs ->
        do [Pair s1 s2, Pair t1 t2] <- return cs
           s2' <- isStrLitTy s2
           t2' <- isStrLitTy t2
           let z = mkStrLitTy (appendFS s2' t2')
           return (mkTyConApp typeSymbolAppendTyCon [s1, t1] === z)
    }

axSubDef = mkBinAxiom "SubDef" typeNatSubTyCon $
              \x y -> fmap num (minus x y)

axDivDef = mkBinAxiom "DivDef" typeNatDivTyCon $
              \x y -> do guard (y /= 0)
                         return (num (div x y))

axModDef = mkBinAxiom "ModDef" typeNatModTyCon $
              \x y -> do guard (y /= 0)
                         return (num (mod x y))

axLogDef = mkUnAxiom "LogDef" typeNatLogTyCon $
              \x -> do (a,_) <- genLog x 2
                       return (num a)

axAdd0L     = mkAxiom1 "Add0L"    $ \(Pair s t) -> (num 0 .+. s) === t
axAdd0R     = mkAxiom1 "Add0R"    $ \(Pair s t) -> (s .+. num 0) === t
axSub0R     = mkAxiom1 "Sub0R"    $ \(Pair s t) -> (s .-. num 0) === t
axMul0L     = mkAxiom1 "Mul0L"    $ \(Pair s _) -> (num 0 .*. s) === num 0
axMul0R     = mkAxiom1 "Mul0R"    $ \(Pair s _) -> (s .*. num 0) === num 0
axMul1L     = mkAxiom1 "Mul1L"    $ \(Pair s t) -> (num 1 .*. s) === t
axMul1R     = mkAxiom1 "Mul1R"    $ \(Pair s t) -> (s .*. num 1) === t
axDiv1      = mkAxiom1 "Div1"     $ \(Pair s t) -> (tDiv s (num 1) === t)
axMod1      = mkAxiom1 "Mod1"     $ \(Pair s _) -> (tMod s (num 1) === num 0)
                                    -- XXX: Shouldn't we check that _ is 0?
axExp1L     = mkAxiom1 "Exp1L"    $ \(Pair s _) -> (num 1 .^. s) === num 1
axExp0R     = mkAxiom1 "Exp0R"    $ \(Pair s _) -> (s .^. num 0) === num 1
axExp1R     = mkAxiom1 "Exp1R"    $ \(Pair s t) -> (s .^. num 1) === t
axLeqRefl   = mkAxiom1 "LeqRefl"  $ \(Pair s _) -> (s <== s) === bool True
axCmpNatRefl    = mkAxiom1 "CmpNatRefl"
                $ \(Pair s _) -> (cmpNat s s) === ordering EQ
axCmpSymbolRefl = mkAxiom1 "CmpSymbolRefl"
                $ \(Pair s _) -> (cmpSymbol s s) === ordering EQ
axLeq0L     = mkAxiom1 "Leq0L"    $ \(Pair s _) -> (num 0 <== s) === bool True
axAppendSymbol0R  = mkAxiom1 "Concat0R"
            $ \(Pair s t) -> (mkStrLitTy nilFS `appendSymbol` s) === t
axAppendSymbol0L  = mkAxiom1 "Concat0L"
            $ \(Pair s t) -> (s `appendSymbol` mkStrLitTy nilFS) === t

-- The list of built-in type family axioms that GHC uses.
-- If you define new axioms, make sure to include them in this list.
-- See Note [Adding built-in type families]
typeNatCoAxiomRules :: Map.Map FastString CoAxiomRule
typeNatCoAxiomRules = Map.fromList $ map (\x -> (coaxrName x, x))
  [ axAddDef
  , axMulDef
  , axExpDef
  , axLeqDef
  , axCmpNatDef
  , axCmpSymbolDef
  , axAppendSymbolDef
  , axAdd0L
  , axAdd0R
  , axMul0L
  , axMul0R
  , axMul1L
  , axMul1R
  , axExp1L
  , axExp0R
  , axExp1R
  , axLeqRefl
  , axCmpNatRefl
  , axCmpSymbolRefl
  , axLeq0L
  , axSubDef
  , axSub0R
  , axAppendSymbol0R
  , axAppendSymbol0L
  , axDivDef
  , axDiv1
  , axModDef
  , axMod1
  , axLogDef
  ]



{-------------------------------------------------------------------------------
Various utilities for making axioms and types
-------------------------------------------------------------------------------}

(.+.) :: Type -> Type -> Type
s .+. t = mkTyConApp typeNatAddTyCon [s,t]

(.-.) :: Type -> Type -> Type
s .-. t = mkTyConApp typeNatSubTyCon [s,t]

(.*.) :: Type -> Type -> Type
s .*. t = mkTyConApp typeNatMulTyCon [s,t]

tDiv :: Type -> Type -> Type
tDiv s t = mkTyConApp typeNatDivTyCon [s,t]

tMod :: Type -> Type -> Type
tMod s t = mkTyConApp typeNatModTyCon [s,t]

(.^.) :: Type -> Type -> Type
s .^. t = mkTyConApp typeNatExpTyCon [s,t]

(<==) :: Type -> Type -> Type
s <== t = mkTyConApp typeNatLeqTyCon [s,t]

cmpNat :: Type -> Type -> Type
cmpNat s t = mkTyConApp typeNatCmpTyCon [s,t]

cmpSymbol :: Type -> Type -> Type
cmpSymbol s t = mkTyConApp typeSymbolCmpTyCon [s,t]

appendSymbol :: Type -> Type -> Type
appendSymbol s t = mkTyConApp typeSymbolAppendTyCon [s, t]

(===) :: Type -> Type -> Pair Type
x === y = Pair x y

num :: Integer -> Type
num = mkNumLitTy

bool :: Bool -> Type
bool b = if b then mkTyConApp promotedTrueDataCon []
              else mkTyConApp promotedFalseDataCon []

isBoolLitTy :: Type -> Maybe Bool
isBoolLitTy tc =
  do (tc,[]) <- splitTyConApp_maybe tc
     case () of
       _ | tc == promotedFalseDataCon -> return False
         | tc == promotedTrueDataCon  -> return True
         | otherwise                   -> Nothing

orderingKind :: Kind
orderingKind = mkTyConApp orderingTyCon []

ordering :: Ordering -> Type
ordering o =
  case o of
    LT -> mkTyConApp promotedLTDataCon []
    EQ -> mkTyConApp promotedEQDataCon []
    GT -> mkTyConApp promotedGTDataCon []

isOrderingLitTy :: Type -> Maybe Ordering
isOrderingLitTy tc =
  do (tc1,[]) <- splitTyConApp_maybe tc
     case () of
       _ | tc1 == promotedLTDataCon -> return LT
         | tc1 == promotedEQDataCon -> return EQ
         | tc1 == promotedGTDataCon -> return GT
         | otherwise                -> Nothing

known :: (Integer -> Bool) -> TcType -> Bool
known p x = case isNumLitTy x of
              Just a  -> p a
              Nothing -> False


mkUnAxiom :: String -> TyCon -> (Integer -> Maybe Type) -> CoAxiomRule
mkUnAxiom str tc f =
  CoAxiomRule
    { coaxrName      = fsLit str
    , coaxrAsmpRoles = [Nominal]
    , coaxrRole      = Nominal
    , coaxrProves    = \cs ->
        do [Pair s1 s2] <- return cs
           s2' <- isNumLitTy s2
           z   <- f s2'
           return (mkTyConApp tc [s1] === z)
    }



-- For the definitional axioms
mkBinAxiom :: String -> TyCon ->
              (Integer -> Integer -> Maybe Type) -> CoAxiomRule
mkBinAxiom str tc f =
  CoAxiomRule
    { coaxrName      = fsLit str
    , coaxrAsmpRoles = [Nominal, Nominal]
    , coaxrRole      = Nominal
    , coaxrProves    = \cs ->
        do [Pair s1 s2, Pair t1 t2] <- return cs
           s2' <- isNumLitTy s2
           t2' <- isNumLitTy t2
           z   <- f s2' t2'
           return (mkTyConApp tc [s1,t1] === z)
    }



mkAxiom1 :: String -> (TypeEqn -> TypeEqn) -> CoAxiomRule
mkAxiom1 str f =
  CoAxiomRule
    { coaxrName      = fsLit str
    , coaxrAsmpRoles = [Nominal]
    , coaxrRole      = Nominal
    , coaxrProves    = \case [eqn] -> Just (f eqn)
                             _     -> Nothing
    }


{-------------------------------------------------------------------------------
Evaluation
-------------------------------------------------------------------------------}

matchFamAdd :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamAdd [s,t]
  | Just 0 <- mbX = Just (axAdd0L, [t], t)
  | Just 0 <- mbY = Just (axAdd0R, [s], s)
  | Just x <- mbX, Just y <- mbY =
    Just (axAddDef, [s,t], num (x + y))
  where mbX = isNumLitTy s
        mbY = isNumLitTy t
matchFamAdd _ = Nothing

matchFamSub :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamSub [s,t]
  | Just 0 <- mbY = Just (axSub0R, [s], s)
  | Just x <- mbX, Just y <- mbY, Just z <- minus x y =
    Just (axSubDef, [s,t], num z)
  where mbX = isNumLitTy s
        mbY = isNumLitTy t
matchFamSub _ = Nothing

matchFamMul :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamMul [s,t]
  | Just 0 <- mbX = Just (axMul0L, [t], num 0)
  | Just 0 <- mbY = Just (axMul0R, [s], num 0)
  | Just 1 <- mbX = Just (axMul1L, [t], t)
  | Just 1 <- mbY = Just (axMul1R, [s], s)
  | Just x <- mbX, Just y <- mbY =
    Just (axMulDef, [s,t], num (x * y))
  where mbX = isNumLitTy s
        mbY = isNumLitTy t
matchFamMul _ = Nothing

matchFamDiv :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamDiv [s,t]
  | Just 1 <- mbY = Just (axDiv1, [s], s)
  | Just x <- mbX, Just y <- mbY, y /= 0 = Just (axDivDef, [s,t], num (div x y))
  where mbX = isNumLitTy s
        mbY = isNumLitTy t
matchFamDiv _ = Nothing

matchFamMod :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamMod [s,t]
  | Just 1 <- mbY = Just (axMod1, [s], num 0)
  | Just x <- mbX, Just y <- mbY, y /= 0 = Just (axModDef, [s,t], num (mod x y))
  where mbX = isNumLitTy s
        mbY = isNumLitTy t
matchFamMod _ = Nothing



matchFamExp :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamExp [s,t]
  | Just 0 <- mbY = Just (axExp0R, [s], num 1)
  | Just 1 <- mbX = Just (axExp1L, [t], num 1)
  | Just 1 <- mbY = Just (axExp1R, [s], s)
  | Just x <- mbX, Just y <- mbY =
    Just (axExpDef, [s,t], num (x ^ y))
  where mbX = isNumLitTy s
        mbY = isNumLitTy t
matchFamExp _ = Nothing

matchFamLog :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamLog [s]
  | Just x <- mbX, Just (n,_) <- genLog x 2 = Just (axLogDef, [s], num n)
  where mbX = isNumLitTy s
matchFamLog _ = Nothing


matchFamLeq :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamLeq [s,t]
  | Just 0 <- mbX = Just (axLeq0L, [t], bool True)
  | Just x <- mbX, Just y <- mbY =
    Just (axLeqDef, [s,t], bool (x <= y))
  | tcEqType s t  = Just (axLeqRefl, [s], bool True)
  where mbX = isNumLitTy s
        mbY = isNumLitTy t
matchFamLeq _ = Nothing

matchFamCmpNat :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamCmpNat [s,t]
  | Just x <- mbX, Just y <- mbY =
    Just (axCmpNatDef, [s,t], ordering (compare x y))
  | tcEqType s t = Just (axCmpNatRefl, [s], ordering EQ)
  where mbX = isNumLitTy s
        mbY = isNumLitTy t
matchFamCmpNat _ = Nothing

matchFamCmpSymbol :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamCmpSymbol [s,t]
  | Just x <- mbX, Just y <- mbY =
    Just (axCmpSymbolDef, [s,t], ordering (compare x y))
  | tcEqType s t = Just (axCmpSymbolRefl, [s], ordering EQ)
  where mbX = isStrLitTy s
        mbY = isStrLitTy t
matchFamCmpSymbol _ = Nothing

matchFamAppendSymbol :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamAppendSymbol [s,t]
  | Just x <- mbX, nullFS x = Just (axAppendSymbol0R, [t], t)
  | Just y <- mbY, nullFS y = Just (axAppendSymbol0L, [s], s)
  | Just x <- mbX, Just y <- mbY =
    Just (axAppendSymbolDef, [s,t], mkStrLitTy (appendFS x y))
  where
  mbX = isStrLitTy s
  mbY = isStrLitTy t
matchFamAppendSymbol _ = Nothing

{-------------------------------------------------------------------------------
Interact with axioms
-------------------------------------------------------------------------------}

interactTopAdd :: [Xi] -> Xi -> [Pair Type]
interactTopAdd [s,t] r
  | Just 0 <- mbZ = [ s === num 0, t === num 0 ]                          -- (s + t ~ 0) => (s ~ 0, t ~ 0)
  | Just x <- mbX, Just z <- mbZ, Just y <- minus z x = [t === num y]     -- (5 + t ~ 8) => (t ~ 3)
  | Just y <- mbY, Just z <- mbZ, Just x <- minus z y = [s === num x]     -- (s + 5 ~ 8) => (s ~ 3)
  where
  mbX = isNumLitTy s
  mbY = isNumLitTy t
  mbZ = isNumLitTy r
interactTopAdd _ _ = []

{-
Note [Weakened interaction rule for subtraction]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A simpler interaction here might be:

  `s - t ~ r` --> `t + r ~ s`

This would enable us to reuse all the code for addition.
Unfortunately, this works a little too well at the moment.
Consider the following example:

    0 - 5 ~ r --> 5 + r ~ 0 --> (5 = 0, r = 0)

This (correctly) spots that the constraint cannot be solved.

However, this may be a problem if the constraint did not
need to be solved in the first place!  Consider the following example:

f :: Proxy (If (5 <=? 0) (0 - 5) (5 - 0)) -> Proxy 5
f = id

Currently, GHC is strict while evaluating functions, so this does not
work, because even though the `If` should evaluate to `5 - 0`, we
also evaluate the "then" branch which generates the constraint `0 - 5 ~ r`,
which fails.

So, for the time being, we only add an improvement when the RHS is a constant,
which happens to work OK for the moment, although clearly we need to do
something more general.
-}
interactTopSub :: [Xi] -> Xi -> [Pair Type]
interactTopSub [s,t] r
  | Just z <- mbZ = [ s === (num z .+. t) ]         -- (s - t ~ 5) => (5 + t ~ s)
  where
  mbZ = isNumLitTy r
interactTopSub _ _ = []





interactTopMul :: [Xi] -> Xi -> [Pair Type]
interactTopMul [s,t] r
  | Just 1 <- mbZ = [ s === num 1, t === num 1 ]                        -- (s * t ~ 1)  => (s ~ 1, t ~ 1)
  | Just x <- mbX, Just z <- mbZ, Just y <- divide z x = [t === num y]  -- (3 * t ~ 15) => (t ~ 5)
  | Just y <- mbY, Just z <- mbZ, Just x <- divide z y = [s === num x]  -- (s * 3 ~ 15) => (s ~ 5)
  where
  mbX = isNumLitTy s
  mbY = isNumLitTy t
  mbZ = isNumLitTy r
interactTopMul _ _ = []

interactTopDiv :: [Xi] -> Xi -> [Pair Type]
interactTopDiv _ _ = []   -- I can't think of anything...

interactTopMod :: [Xi] -> Xi -> [Pair Type]
interactTopMod _ _ = []   -- I can't think of anything...

interactTopExp :: [Xi] -> Xi -> [Pair Type]
interactTopExp [s,t] r
  | Just 0 <- mbZ = [ s === num 0 ]                                       -- (s ^ t ~ 0) => (s ~ 0)
  | Just x <- mbX, Just z <- mbZ, Just y <- logExact  z x = [t === num y] -- (2 ^ t ~ 8) => (t ~ 3)
  | Just y <- mbY, Just z <- mbZ, Just x <- rootExact z y = [s === num x] -- (s ^ 2 ~ 9) => (s ~ 3)
  where
  mbX = isNumLitTy s
  mbY = isNumLitTy t
  mbZ = isNumLitTy r
interactTopExp _ _ = []

interactTopLog :: [Xi] -> Xi -> [Pair Type]
interactTopLog _ _ = []   -- I can't think of anything...



interactTopLeq :: [Xi] -> Xi -> [Pair Type]
interactTopLeq [s,t] r
  | Just 0 <- mbY, Just True <- mbZ = [ s === num 0 ]                     -- (s <= 0) => (s ~ 0)
  where
  mbY = isNumLitTy t
  mbZ = isBoolLitTy r
interactTopLeq _ _ = []

interactTopCmpNat :: [Xi] -> Xi -> [Pair Type]
interactTopCmpNat [s,t] r
  | Just EQ <- isOrderingLitTy r = [ s === t ]
interactTopCmpNat _ _ = []

interactTopCmpSymbol :: [Xi] -> Xi -> [Pair Type]
interactTopCmpSymbol [s,t] r
  | Just EQ <- isOrderingLitTy r = [ s === t ]
interactTopCmpSymbol _ _ = []

interactTopAppendSymbol :: [Xi] -> Xi -> [Pair Type]
interactTopAppendSymbol [s,t] r
  -- (AppendSymbol a b ~ "") => (a ~ "", b ~ "")
  | Just z <- mbZ, nullFS z =
    [s === mkStrLitTy nilFS, t === mkStrLitTy nilFS ]

  -- (AppendSymbol "foo" b ~ "foobar") => (b ~ "bar")
  | Just x <- fmap unpackFS mbX, Just z <- fmap unpackFS mbZ, x `isPrefixOf` z =
    [ t === mkStrLitTy (mkFastString $ drop (length x) z) ]

  -- (AppendSymbol f "bar" ~ "foobar") => (f ~ "foo")
  | Just y <- fmap unpackFS mbY, Just z <- fmap unpackFS mbZ, y `isSuffixOf` z =
    [ t === mkStrLitTy (mkFastString $ take (length z - length y) z) ]

  where
  mbX = isStrLitTy s
  mbY = isStrLitTy t
  mbZ = isStrLitTy r

interactTopAppendSymbol _ _ = []

{-------------------------------------------------------------------------------
Interaction with inerts
-------------------------------------------------------------------------------}

interactInertAdd :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertAdd [x1,y1] z1 [x2,y2] z2
  | sameZ && tcEqType x1 x2         = [ y1 === y2 ]
  | sameZ && tcEqType y1 y2         = [ x1 === x2 ]
  where sameZ = tcEqType z1 z2
interactInertAdd _ _ _ _ = []

interactInertSub :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertSub [x1,y1] z1 [x2,y2] z2
  | sameZ && tcEqType x1 x2         = [ y1 === y2 ]
  | sameZ && tcEqType y1 y2         = [ x1 === x2 ]
  where sameZ = tcEqType z1 z2
interactInertSub _ _ _ _ = []

interactInertMul :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertMul [x1,y1] z1 [x2,y2] z2
  | sameZ && known (/= 0) x1 && tcEqType x1 x2 = [ y1 === y2 ]
  | sameZ && known (/= 0) y1 && tcEqType y1 y2 = [ x1 === x2 ]
  where sameZ   = tcEqType z1 z2

interactInertMul _ _ _ _ = []

interactInertDiv :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertDiv _ _ _ _ = []

interactInertMod :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertMod _ _ _ _ = []

interactInertExp :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertExp [x1,y1] z1 [x2,y2] z2
  | sameZ && known (> 1) x1 && tcEqType x1 x2 = [ y1 === y2 ]
  | sameZ && known (> 0) y1 && tcEqType y1 y2 = [ x1 === x2 ]
  where sameZ = tcEqType z1 z2

interactInertExp _ _ _ _ = []

interactInertLog :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertLog _ _ _ _ = []


interactInertLeq :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertLeq [x1,y1] z1 [x2,y2] z2
  | bothTrue && tcEqType x1 y2 && tcEqType y1 x2 = [ x1 === y1 ]
  | bothTrue && tcEqType y1 x2                 = [ (x1 <== y2) === bool True ]
  | bothTrue && tcEqType y2 x1                 = [ (x2 <== y1) === bool True ]
  where bothTrue = isJust $ do True <- isBoolLitTy z1
                               True <- isBoolLitTy z2
                               return ()

interactInertLeq _ _ _ _ = []


interactInertAppendSymbol :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertAppendSymbol [x1,y1] z1 [x2,y2] z2
  | sameZ && tcEqType x1 x2         = [ y1 === y2 ]
  | sameZ && tcEqType y1 y2         = [ x1 === x2 ]
  where sameZ = tcEqType z1 z2
interactInertAppendSymbol _ _ _ _ = []



{- -----------------------------------------------------------------------------
These inverse functions are used for simplifying propositions using
concrete natural numbers.
----------------------------------------------------------------------------- -}

-- | Subtract two natural numbers.
minus :: Integer -> Integer -> Maybe Integer
minus x y = if x >= y then Just (x - y) else Nothing

-- | Compute the exact logarithm of a natural number.
-- The logarithm base is the second argument.
logExact :: Integer -> Integer -> Maybe Integer
logExact x y = do (z,True) <- genLog x y
                  return z


-- | Divide two natural numbers.
divide :: Integer -> Integer -> Maybe Integer
divide _ 0  = Nothing
divide x y  = case divMod x y of
                (a,0) -> Just a
                _     -> Nothing

-- | Compute the exact root of a natural number.
-- The second argument specifies which root we are computing.
rootExact :: Integer -> Integer -> Maybe Integer
rootExact x y = do (z,True) <- genRoot x y
                   return z



{- | Compute the n-th root of a natural number, rounded down to
the closest natural number.  The boolean indicates if the result
is exact (i.e., True means no rounding was done, False means rounded down).
The second argument specifies which root we are computing. -}
genRoot :: Integer -> Integer -> Maybe (Integer, Bool)
genRoot _  0    = Nothing
genRoot x0 1    = Just (x0, True)
genRoot x0 root = Just (search 0 (x0+1))
  where
  search from to = let x = from + div (to - from) 2
                       a = x ^ root
                   in case compare a x0 of
                        EQ              -> (x, True)
                        LT | x /= from  -> search x to
                           | otherwise  -> (from, False)
                        GT | x /= to    -> search from x
                           | otherwise  -> (from, False)

{- | Compute the logarithm of a number in the given base, rounded down to the
closest integer.  The boolean indicates if we the result is exact
(i.e., True means no rounding happened, False means we rounded down).
The logarithm base is the second argument. -}
genLog :: Integer -> Integer -> Maybe (Integer, Bool)
genLog x 0    = if x == 1 then Just (0, True) else Nothing
genLog _ 1    = Nothing
genLog 0 _    = Nothing
genLog x base = Just (exactLoop 0 x)
  where
  exactLoop s i
    | i == 1     = (s,True)
    | i < base   = (s,False)
    | otherwise  =
        let s1 = s + 1
        in s1 `seq` case divMod i base of
                      (j,r)
                        | r == 0    -> exactLoop s1 j
                        | otherwise -> (underLoop s1 j, False)

  underLoop s i
    | i < base  = s
    | otherwise = let s1 = s + 1 in s1 `seq` underLoop s1 (div i base)