summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcSMonad.hs
blob: 303fee8edb7372a6c1aae2490c2fa9172f4eb003 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
{-# LANGUAGE CPP, TypeFamilies #-}

-- Type definitions for the constraint solver
module TcSMonad (

    -- The work list
    WorkList(..), isEmptyWorkList, emptyWorkList,
    extendWorkListNonEq, extendWorkListCt, extendWorkListDerived,
    extendWorkListCts, extendWorkListEq, extendWorkListFunEq,
    appendWorkList,
    selectNextWorkItem,
    workListSize, workListWantedCount,
    getWorkList, updWorkListTcS,

    -- The TcS monad
    TcS, runTcS, runTcSDeriveds, runTcSWithEvBinds,
    failTcS, warnTcS, addErrTcS,
    runTcSEqualities,
    nestTcS, nestImplicTcS,

    runTcPluginTcS, addUsedDataCons, deferTcSForAllEq,

    -- Tracing etc
    panicTcS, traceTcS,
    traceFireTcS, bumpStepCountTcS, csTraceTcS,
    wrapErrTcS, wrapWarnTcS,

    -- Evidence creation and transformation
    MaybeNew(..), freshGoals, isFresh, getEvTerm,

    newTcEvBinds,
    newWantedEq,
    newWanted, newWantedEvVar, newWantedEvVarNC, newDerivedNC,
    newBoundEvVarId,
    unifyTyVar, unflattenFmv, reportUnifications,
    setEvBind, setWantedEq, setEqIfWanted,
    setWantedEvTerm, setWantedEvBind, setEvBindIfWanted,
    newEvVar, newGivenEvVar, newGivenEvVars,
    emitNewDerived, emitNewDeriveds, emitNewDerivedEq,
    checkReductionDepth,

    getInstEnvs, getFamInstEnvs,                -- Getting the environments
    getTopEnv, getGblEnv, getLclEnv,
    getTcEvBinds, getTcEvBindsFromVar, getTcLevel,
    getTcEvBindsMap,
    tcLookupClass,

    -- Inerts
    InertSet(..), InertCans(..),
    updInertTcS, updInertCans, updInertDicts, updInertIrreds,
    getNoGivenEqs, setInertCans,
    getInertEqs, getInertCans, getInertModel, getInertGivens,
    emptyInert, getTcSInerts, setTcSInerts, takeGivenInsolubles,
    matchableGivens, prohibitedSuperClassSolve,
    getUnsolvedInerts,
    removeInertCts, getPendingScDicts,
    addInertCan, addInertEq, insertFunEq,
    emitInsoluble, emitWorkNC,

    -- The Model
    InertModel, kickOutAfterUnification,

    -- Inert Safe Haskell safe-overlap failures
    addInertSafehask, insertSafeOverlapFailureTcS, updInertSafehask,
    getSafeOverlapFailures,

    -- Inert CDictCans
    lookupInertDict, findDictsByClass, addDict, addDictsByClass,
    delDict, partitionDicts, foldDicts, filterDicts,

    -- Inert CTyEqCans
    EqualCtList, findTyEqs, foldTyEqs, isInInertEqs,

    -- Inert solved dictionaries
    addSolvedDict, lookupSolvedDict,

    -- Irreds
    foldIrreds,

    -- The flattening cache
    lookupFlatCache, extendFlatCache, newFlattenSkolem,            -- Flatten skolems

    -- Inert CFunEqCans
    updInertFunEqs, findFunEq, sizeFunEqMap, filterFunEqs,
    findFunEqsByTyCon, partitionFunEqs, foldFunEqs,

    instDFunType,                              -- Instantiation

    -- MetaTyVars
    newFlexiTcSTy, instFlexiTcS,
    cloneMetaTyVar, demoteUnfilledFmv,

    TcLevel, isTouchableMetaTyVarTcS,
    isFilledMetaTyVar_maybe, isFilledMetaTyVar,
    zonkTyCoVarsAndFV, zonkTcType, zonkTcTypes, zonkTcTyVar, zonkCo,
    zonkSimples, zonkWC,

    -- References
    newTcRef, readTcRef, updTcRef,

    -- Misc
    getDefaultInfo, getDynFlags, getGlobalRdrEnvTcS,
    matchFam, matchFamTcM,
    checkWellStagedDFun,
    pprEq                                    -- Smaller utils, re-exported from TcM
                                             -- TODO (DV): these are only really used in the
                                             -- instance matcher in TcSimplify. I am wondering
                                             -- if the whole instance matcher simply belongs
                                             -- here
) where

#include "HsVersions.h"

import HscTypes

import qualified Inst as TcM
import InstEnv
import FamInst
import FamInstEnv

import qualified TcRnMonad as TcM
import qualified TcMType as TcM
import qualified TcEnv as TcM
       ( checkWellStaged, topIdLvl, tcGetDefaultTys, tcLookupClass )
import Kind
import TcType
import DynFlags
import Type
import Coercion
import Unify

import TcEvidence
import Class
import TyCon
import TcErrors   ( solverDepthErrorTcS )

import Name
import RdrName ( GlobalRdrEnv)
import qualified RnEnv as TcM
import Var
import VarEnv
import VarSet
import Outputable
import Bag
import UniqSupply
import Util
import TcRnTypes

import Unique
import UniqFM
import Maybes

import StaticFlags( opt_PprStyle_Debug )
import TrieMap
import Control.Monad
#if __GLASGOW_HASKELL__ > 710
import qualified Control.Monad.Fail as MonadFail
#endif
import MonadUtils
import Data.IORef
import Data.List ( foldl', partition )

#ifdef DEBUG
import Digraph
#endif

{-
************************************************************************
*                                                                      *
*                            Worklists                                *
*  Canonical and non-canonical constraints that the simplifier has to  *
*  work on. Including their simplification depths.                     *
*                                                                      *
*                                                                      *
************************************************************************

Note [WorkList priorities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
A WorkList contains canonical and non-canonical items (of all flavors).
Notice that each Ct now has a simplification depth. We may
consider using this depth for prioritization as well in the future.

As a simple form of priority queue, our worklist separates out
equalities (wl_eqs) from the rest of the canonical constraints,
so that it's easier to deal with them first, but the separation
is not strictly necessary. Notice that non-canonical constraints
are also parts of the worklist.

Note [Process derived items last]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can often solve all goals without processing *any* derived constraints.
The derived constraints are just there to help us if we get stuck.  So
we keep them in a separate list.

-}

-- See Note [WorkList priorities]
data WorkList
  = WL { wl_eqs     :: [Ct]
       , wl_funeqs  :: [Ct]  -- LIFO stack of goals
       , wl_rest    :: [Ct]
       , wl_deriv   :: [CtEvidence]  -- Implicitly non-canonical
                                     -- See Note [Process derived items last]
       , wl_implics :: Bag Implication  -- See Note [Residual implications]
    }

appendWorkList :: WorkList -> WorkList -> WorkList
appendWorkList
    (WL { wl_eqs = eqs1, wl_funeqs = funeqs1, wl_rest = rest1
        , wl_deriv = ders1, wl_implics = implics1 })
    (WL { wl_eqs = eqs2, wl_funeqs = funeqs2, wl_rest = rest2
        , wl_deriv = ders2, wl_implics = implics2 })
   = WL { wl_eqs     = eqs1     ++ eqs2
        , wl_funeqs  = funeqs1  ++ funeqs2
        , wl_rest    = rest1    ++ rest2
        , wl_deriv   = ders1    ++ ders2
        , wl_implics = implics1 `unionBags`   implics2 }

workListSize :: WorkList -> Int
workListSize (WL { wl_eqs = eqs, wl_funeqs = funeqs, wl_deriv = ders, wl_rest = rest })
  = length eqs + length funeqs + length rest + length ders

workListWantedCount :: WorkList -> Int
workListWantedCount (WL { wl_eqs = eqs, wl_rest = rest })
  = count isWantedCt eqs + count isWantedCt rest

extendWorkListEq :: Ct -> WorkList -> WorkList
extendWorkListEq ct wl = wl { wl_eqs = ct : wl_eqs wl }

extendWorkListEqs :: [Ct] -> WorkList -> WorkList
extendWorkListEqs cts wl = wl { wl_eqs = cts ++ wl_eqs wl }

extendWorkListFunEq :: Ct -> WorkList -> WorkList
extendWorkListFunEq ct wl = wl { wl_funeqs = ct : wl_funeqs wl }

extendWorkListNonEq :: Ct -> WorkList -> WorkList
-- Extension by non equality
extendWorkListNonEq ct wl = wl { wl_rest = ct : wl_rest wl }

extendWorkListDerived :: CtLoc -> CtEvidence -> WorkList -> WorkList
extendWorkListDerived loc ev wl
  | isDroppableDerivedLoc loc = wl { wl_deriv = ev : wl_deriv wl }
  | otherwise                 = extendWorkListEq (mkNonCanonical ev) wl

extendWorkListDeriveds :: CtLoc -> [CtEvidence] -> WorkList -> WorkList
extendWorkListDeriveds loc evs wl
  | isDroppableDerivedLoc loc = wl { wl_deriv = evs ++ wl_deriv wl }
  | otherwise                 = extendWorkListEqs (map mkNonCanonical evs) wl

extendWorkListImplic :: Implication -> WorkList -> WorkList
extendWorkListImplic implic wl = wl { wl_implics = implic `consBag` wl_implics wl }

extendWorkListCt :: Ct -> WorkList -> WorkList
-- Agnostic
extendWorkListCt ct wl
 = case classifyPredType (ctPred ct) of
     EqPred NomEq ty1 _
       | Just (tc,_) <- tcSplitTyConApp_maybe ty1
       , isTypeFamilyTyCon tc
       -> extendWorkListFunEq ct wl
     EqPred {}
       -> extendWorkListEq ct wl

     _ -> extendWorkListNonEq ct wl

extendWorkListCts :: [Ct] -> WorkList -> WorkList
-- Agnostic
extendWorkListCts cts wl = foldr extendWorkListCt wl cts

isEmptyWorkList :: WorkList -> Bool
isEmptyWorkList (WL { wl_eqs = eqs, wl_funeqs = funeqs
                    , wl_rest = rest, wl_deriv = ders, wl_implics = implics })
  = null eqs && null rest && null funeqs && isEmptyBag implics && null ders

emptyWorkList :: WorkList
emptyWorkList = WL { wl_eqs  = [], wl_rest = []
                   , wl_funeqs = [], wl_deriv = [], wl_implics = emptyBag }

selectWorkItem :: WorkList -> Maybe (Ct, WorkList)
selectWorkItem wl@(WL { wl_eqs = eqs, wl_funeqs = feqs
                      , wl_rest = rest })
  | ct:cts <- eqs  = Just (ct, wl { wl_eqs    = cts })
  | ct:fes <- feqs = Just (ct, wl { wl_funeqs = fes })
  | ct:cts <- rest = Just (ct, wl { wl_rest   = cts })
  | otherwise      = Nothing

getWorkList :: TcS WorkList
getWorkList = do { wl_var <- getTcSWorkListRef
                 ; wrapTcS (TcM.readTcRef wl_var) }

selectDerivedWorkItem  :: WorkList -> Maybe (Ct, WorkList)
selectDerivedWorkItem wl@(WL { wl_deriv = ders })
  | ev:evs <- ders = Just (mkNonCanonical ev, wl { wl_deriv  = evs })
  | otherwise      = Nothing

selectNextWorkItem :: TcS (Maybe Ct)
selectNextWorkItem
  = do { wl_var <- getTcSWorkListRef
       ; wl <- wrapTcS (TcM.readTcRef wl_var)

       ; let try :: Maybe (Ct,WorkList) -> TcS (Maybe Ct) -> TcS (Maybe Ct)
             try mb_work do_this_if_fail
                | Just (ct, new_wl) <- mb_work
                = do { checkReductionDepth (ctLoc ct) (ctPred ct)
                     ; wrapTcS (TcM.writeTcRef wl_var new_wl)
                     ; return (Just ct) }
                | otherwise
                = do_this_if_fail

       ; try (selectWorkItem wl) $

    do { ics <- getInertCans
       ; solve_deriveds <- keepSolvingDeriveds
       ; if inert_count ics == 0 && not solve_deriveds
         then return Nothing
         else try (selectDerivedWorkItem wl) (return Nothing) } }

-- Pretty printing
instance Outputable WorkList where
  ppr (WL { wl_eqs = eqs, wl_funeqs = feqs
          , wl_rest = rest, wl_implics = implics, wl_deriv = ders })
   = text "WL" <+> (braces $
     vcat [ ppUnless (null eqs) $
            text "Eqs =" <+> vcat (map ppr eqs)
          , ppUnless (null feqs) $
            text "Funeqs =" <+> vcat (map ppr feqs)
          , ppUnless (null rest) $
            text "Non-eqs =" <+> vcat (map ppr rest)
          , ppUnless (null ders) $
            text "Derived =" <+> vcat (map ppr ders)
          , ppUnless (isEmptyBag implics) $
            if opt_PprStyle_Debug  -- Typically we only want the work list for this level
            then text "Implics =" <+> vcat (map ppr (bagToList implics))
            else text "(Implics omitted)"
          ])


{- *********************************************************************
*                                                                      *
                InertSet: the inert set
*                                                                      *
*                                                                      *
********************************************************************* -}

data InertSet
  = IS { inert_cans :: InertCans
              -- Canonical Given, Wanted, Derived (no Solved)
              -- Sometimes called "the inert set"

       , inert_flat_cache :: ExactFunEqMap (TcCoercion, TcType, CtFlavour)
              -- See Note [Type family equations]
              -- If    F tys :-> (co, ty, ev),
              -- then  co :: F tys ~ ty
              --
              -- Just a hash-cons cache for use when flattening only
              -- These include entirely un-processed goals, so don't use
              -- them to solve a top-level goal, else you may end up solving
              -- (w:F ty ~ a) by setting w:=w!  We just use the flat-cache
              -- when allocating a new flatten-skolem.
              -- Not necessarily inert wrt top-level equations (or inert_cans)

              -- NB: An ExactFunEqMap -- this doesn't match via loose types!

       , inert_solved_dicts   :: DictMap CtEvidence
              -- Of form ev :: C t1 .. tn
              -- See Note [Solved dictionaries]
              -- and Note [Do not add superclasses of solved dictionaries]
       }

instance Outputable InertSet where
  ppr is = vcat [ ppr $ inert_cans is
                , text "Solved dicts" <+> vcat (map ppr (bagToList (dictsToBag (inert_solved_dicts is)))) ]

emptyInert :: InertSet
emptyInert
  = IS { inert_cans = IC { inert_count    = 0
                         , inert_eqs      = emptyVarEnv
                         , inert_dicts    = emptyDicts
                         , inert_safehask = emptyDicts
                         , inert_funeqs   = emptyFunEqs
                         , inert_irreds   = emptyCts
                         , inert_insols   = emptyCts
                         , inert_model    = emptyVarEnv }
       , inert_flat_cache    = emptyExactFunEqs
       , inert_solved_dicts  = emptyDictMap }


{- Note [Solved dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we apply a top-level instance declararation, we add the "solved"
dictionary to the inert_solved_dicts.  In general, we use it to avoid
creating a new EvVar when we have a new goal that we have solved in
the past.

But in particular, we can use it to create *recursive* dicationaries.
The simplest, degnerate case is
    instance C [a] => C [a] where ...
If we have
    [W] d1 :: C [x]
then we can apply the instance to get
    d1 = $dfCList d
    [W] d2 :: C [x]
Now 'd1' goes in inert_solved_dicts, and we can solve d2 directly from d1.
    d1 = $dfCList d
    d2 = d1

See Note [Example of recursive dictionaries]
Other notes about solved dictionaries

* See also Note [Do not add superclasses of solved dictionaries]

* The inert_solved_dicts field is not rewritten by equalities, so it may
  get out of date.

Note [Do not add superclasses of solved dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Every member of inert_solved_dicts is the result of applying a dictionary
function, NOT of applying superclass selection to anything.
Consider

        class Ord a => C a where
        instance Ord [a] => C [a] where ...

Suppose we are trying to solve
  [G] d1 : Ord a
  [W] d2 : C [a]

Then we'll use the instance decl to give

  [G] d1 : Ord a     Solved: d2 : C [a] = $dfCList d3
  [W] d3 : Ord [a]

We must not add d4 : Ord [a] to the 'solved' set (by taking the
superclass of d2), otherwise we'll use it to solve d3, without ever
using d1, which would be a catastrophe.

Solution: when extending the solved dictionaries, do not add superclasses.
That's why each element of the inert_solved_dicts is the result of applying
a dictionary function.

Note [Example of recursive dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--- Example 1

    data D r = ZeroD | SuccD (r (D r));

    instance (Eq (r (D r))) => Eq (D r) where
        ZeroD     == ZeroD     = True
        (SuccD a) == (SuccD b) = a == b
        _         == _         = False;

    equalDC :: D [] -> D [] -> Bool;
    equalDC = (==);

We need to prove (Eq (D [])). Here's how we go:

   [W] d1 : Eq (D [])
By instance decl of Eq (D r):
   [W] d2 : Eq [D []]      where   d1 = dfEqD d2
By instance decl of Eq [a]:
   [W] d3 : Eq (D [])      where   d2 = dfEqList d3
                                   d1 = dfEqD d2
Now this wanted can interact with our "solved" d1 to get:
    d3 = d1

-- Example 2:
This code arises in the context of "Scrap Your Boilerplate with Class"

    class Sat a
    class Data ctx a
    instance  Sat (ctx Char)             => Data ctx Char       -- dfunData1
    instance (Sat (ctx [a]), Data ctx a) => Data ctx [a]        -- dfunData2

    class Data Maybe a => Foo a

    instance Foo t => Sat (Maybe t)                             -- dfunSat

    instance Data Maybe a => Foo a                              -- dfunFoo1
    instance Foo a        => Foo [a]                            -- dfunFoo2
    instance                 Foo [Char]                         -- dfunFoo3

Consider generating the superclasses of the instance declaration
         instance Foo a => Foo [a]

So our problem is this
    [G] d0 : Foo t
    [W] d1 : Data Maybe [t]   -- Desired superclass

We may add the given in the inert set, along with its superclasses
  Inert:
    [G] d0 : Foo t
    [G] d01 : Data Maybe t   -- Superclass of d0
  WorkList
    [W] d1 : Data Maybe [t]

Solve d1 using instance dfunData2; d1 := dfunData2 d2 d3
  Inert:
    [G] d0 : Foo t
    [G] d01 : Data Maybe t   -- Superclass of d0
  Solved:
        d1 : Data Maybe [t]
  WorkList:
    [W] d2 : Sat (Maybe [t])
    [W] d3 : Data Maybe t

Now, we may simplify d2 using dfunSat; d2 := dfunSat d4
  Inert:
    [G] d0 : Foo t
    [G] d01 : Data Maybe t   -- Superclass of d0
  Solved:
        d1 : Data Maybe [t]
        d2 : Sat (Maybe [t])
  WorkList:
    [W] d3 : Data Maybe t
    [W] d4 : Foo [t]

Now, we can just solve d3 from d01; d3 := d01
  Inert
    [G] d0 : Foo t
    [G] d01 : Data Maybe t   -- Superclass of d0
  Solved:
        d1 : Data Maybe [t]
        d2 : Sat (Maybe [t])
  WorkList
    [W] d4 : Foo [t]

Now, solve d4 using dfunFoo2;  d4 := dfunFoo2 d5
  Inert
    [G] d0  : Foo t
    [G] d01 : Data Maybe t   -- Superclass of d0
  Solved:
        d1 : Data Maybe [t]
        d2 : Sat (Maybe [t])
        d4 : Foo [t]
  WorkList:
    [W] d5 : Foo t

Now, d5 can be solved! d5 := d0

Result
   d1 := dfunData2 d2 d3
   d2 := dfunSat d4
   d3 := d01
   d4 := dfunFoo2 d5
   d5 := d0
-}

{- *********************************************************************
*                                                                      *
                InertCans: the canonical inerts
*                                                                      *
*                                                                      *
********************************************************************* -}

data InertCans   -- See Note [Detailed InertCans Invariants] for more
  = IC { inert_model :: InertModel
              -- See Note [inert_model: the inert model]

       , inert_eqs :: TyVarEnv EqualCtList
              -- See Note [inert_eqs: the inert equalities]
              -- All Given/Wanted CTyEqCans; index is the LHS tyvar

       , inert_funeqs :: FunEqMap Ct
              -- All CFunEqCans; index is the whole family head type.
              -- All Nominal (that's an invarint of all CFunEqCans)
              -- LHS is fully rewritten (modulo eqCanRewrite constraints)
              --     wrt inert_eqs/inert_model
              -- We can get Derived ones from e.g.
              --   (a) flattening derived equalities
              --   (b) emitDerivedShadows

       , inert_dicts :: DictMap Ct
              -- Dictionaries only
              -- All fully rewritten (modulo flavour constraints)
              --     wrt inert_eqs/inert_model

       , inert_safehask :: DictMap Ct
              -- Failed dictionary resolution due to Safe Haskell overlapping
              -- instances restriction. We keep this seperate from inert_dicts
              -- as it doesn't cause compilation failure, just safe inference
              -- failure.
              --
              -- ^ See Note [Safe Haskell Overlapping Instances Implementation]
              -- in TcSimplify

       , inert_irreds :: Cts
              -- Irreducible predicates

       , inert_insols :: Cts
              -- Frozen errors (as non-canonicals)

       , inert_count :: Int
              -- Number of Wanted goals in
              --     inert_eqs, inert_dicts, inert_safehask, inert_irreds
              -- Does not include insolubles
              -- When non-zero, keep trying to solved
       }

type InertModel  = TyVarEnv Ct
     -- If a -> ct, then ct is a
     --    nominal, Derived, canonical CTyEqCan for [D] (a ~N rhs)
     -- The index of the TyVarEnv is the 'a'
     -- All saturated info for Given, Wanted, Derived is here


{- Note [Detailed InertCans Invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The InertCans represents a collection of constraints with the following properties:

  * All canonical

  * No two dictionaries with the same head
  * No two CIrreds with the same type

  * Family equations inert wrt top-level family axioms

  * Dictionaries have no matching top-level instance

  * Given family or dictionary constraints don't mention touchable
    unification variables

  * Non-CTyEqCan constraints are fully rewritten with respect
    to the CTyEqCan equalities (modulo canRewrite of course;
    eg a wanted cannot rewrite a given)

  * CTyEqCan equalities: see Note [Applying the inert substitution]
                         in TcFlatten

Note [Type family equations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Type-family equations, of form (ev : F tys ~ ty), live in three places

  * The work-list, of course

  * The inert_flat_cache.  This is used when flattening, to get maximal
    sharing.  It contains lots of things that are still in the work-list.
    E.g Suppose we have (w1: F (G a) ~ Int), and (w2: H (G a) ~ Int) in the
        work list.  Then we flatten w1, dumping (w3: G a ~ f1) in the work
        list.  Now if we flatten w2 before we get to w3, we still want to
        share that (G a).

    Because it contains work-list things, DO NOT use the flat cache to solve
    a top-level goal.  Eg in the above example we don't want to solve w3
    using w3 itself!

  * The inert_funeqs are un-solved but fully processed and in the InertCans.

Note [inert_model: the inert model]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Part of the inert set is the “model”

   * The “Model” is an non-idempotent but no-occurs-check
     substitution, reflecting *all* *Nominal* equalities (a ~N ty)
     that are not immediately soluble by unification.

   * All the constraints in the model are Derived CTyEqCans
     That is if (a -> ty) is in the model, then
     we have an inert constraint [D] a ~N ty.

   * There are two sources of constraints in the model:

     - Derived constraints arising from functional dependencies, or
       decomposing injective arguments of type functions, and
       suchlike.

     - A Derived "shadow copy" for every Given or Wanted (a ~N ty) in
       inert_eqs.

   * The model is not subject to "kicking-out". Reason: we make a Derived
     shadow copy of any Given/Wanted (a ~ ty), and that Derived copy will
     be fully rewritten by the model before it is added

   * The principal reason for maintaining the model is to generate
     equalities that tell us how to unify a variable: that is, what
     Mark Jones calls "improvement". The same idea is sometimes also
     called "saturation"; find all the equalities that must hold in
     any solution.

   * Domain of the model = skolems + untouchables.
     A touchable unification variable wouuld have been unified first.

   * The inert_eqs are all Given/Wanted.  The Derived ones are in the
     inert_model only.

   * However inert_dicts, inert_funeqs, inert_irreds
     may well contain derived costraints.

Note [inert_eqs: the inert equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Definition [Can-rewrite relation]
A "can-rewrite" relation between flavours, written f1 >= f2, is a
binary relation with the following properties

  (R1) >= is transitive
  (R2) If f1 >= f, and f2 >= f,
       then either f1 >= f2 or f2 >= f1

Lemma.  If f1 >= f then f1 >= f1
Proof.  By property (R2), with f1=f2

Definition [Generalised substitution]
A "generalised substitution" S is a set of triples (a -f-> t), where
  a is a type variable
  t is a type
  f is a flavour
such that
  (WF1) if (a -f1-> t1) in S
           (a -f2-> t2) in S
        then neither (f1 >= f2) nor (f2 >= f1) hold
  (WF2) if (a -f-> t) is in S, then t /= a

Definition [Applying a generalised substitution]
If S is a generalised substitution
   S(f,a) = t,  if (a -fs-> t) in S, and fs >= f
          = a,  otherwise
Application extends naturally to types S(f,t), modulo roles.
See Note [Flavours with roles].

Theorem: S(f,a) is well defined as a function.
Proof: Suppose (a -f1-> t1) and (a -f2-> t2) are both in S,
               and  f1 >= f and f2 >= f
       Then by (R2) f1 >= f2 or f2 >= f1, which contradicts (WF1)

Notation: repeated application.
  S^0(f,t)     = t
  S^(n+1)(f,t) = S(f, S^n(t))

Definition: inert generalised substitution
A generalised substitution S is "inert" iff

  (IG1) there is an n such that
        for every f,t, S^n(f,t) = S^(n+1)(f,t)

By (IG1) we define S*(f,t) to be the result of exahaustively
applying S(f,_) to t.

----------------------------------------------------------------
Our main invariant:
   the inert CTyEqCans should be an inert generalised substitution
----------------------------------------------------------------

Note that inertness is not the same as idempotence.  To apply S to a
type, you may have to apply it recursive.  But inertness does
guarantee that this recursive use will terminate.

Note [Extending the inert equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Theorem [Stability under extension]
   This is the main theorem!
   Suppose we have a "work item"
       a -fw-> t
   and an inert generalised substitution S,
   such that
      (T1) S(fw,a) = a     -- LHS of work-item is a fixpoint of S(fw,_)
      (T2) S(fw,t) = t     -- RHS of work-item is a fixpoint of S(fw,_)
      (T3) a not in t      -- No occurs check in the work item

      (K1) for every (a -fs-> s) in S, then not (fw >= fs)
           Reason: the work item is fully rewritten by S, hence not (fs >= fw)
                   but if (fw >= fs) then the work item could rewrite
                   the inert item

      (K2) for every (b -fs-> s) in S, where b /= a, then
              (K2a) not (fs >= fs)
           or (K2b) fs >= fw
           or (K2c) not (fw >= fs)
           or (K2d) a not in s

      (K3) See Note [K3: completeness of solving]
           If (b -fs-> s) is in S with (fw >= fs), then
        (K3a) If the role of fs is nominal: s /= a
        (K3b) If the role of fs is representational: EITHER
                a not in s, OR
                the path from the top of s to a includes at least one non-newtype

   then the extended substition T = S+(a -fw-> t)
   is an inert generalised substitution.

Conditions (T1-T3) are established by the canonicaliser
Conditions (K1-K3) are established by TcSMonad.kickOutRewriteable

The idea is that
* (T1-2) are guaranteed by exhaustively rewriting the work-item
  with S(fw,_).

* T3 is guaranteed by a simple occurs-check on the work item.
  This is done during canonicalisation, in canEqTyVar;
  (invariant: a CTyEqCan never has an occurs check).

* (K1-3) are the "kick-out" criteria.  (As stated, they are really the
  "keep" criteria.) If the current inert S contains a triple that does
  not satisfy (K1-3), then we remove it from S by "kicking it out",
  and re-processing it.

* Note that kicking out is a Bad Thing, because it means we have to
  re-process a constraint.  The less we kick out, the better.
  TODO: Make sure that kicking out really *is* a Bad Thing. We've assumed
  this but haven't done the empirical study to check.

* Assume we have  G>=G, G>=W and that's all.  Then, when performing
  a unification we add a new given  a -G-> ty.  But doing so does NOT require
  us to kick out an inert wanted that mentions a, because of (K2a).  This
  is a common case, hence good not to kick out.

* Lemma (L2): if not (fw >= fw), then K1-K3 all hold.
  Proof: using Definition [Can-rewrite relation], fw can't rewrite anything
         and so K1-K3 hold.  Intuitively, since fw can't rewrite anything,
         adding it cannot cause any loops
  This is a common case, because Wanteds cannot rewrite Wanteds.

* Lemma (L1): The conditions of the Main Theorem imply that there is no
              (a -fs-> t) in S, s.t.  (fs >= fw).
  Proof. Suppose the contrary (fs >= fw).  Then because of (T1),
  S(fw,a)=a.  But since fs>=fw, S(fw,a) = s, hence s=a.  But now we
  have (a -fs-> a) in S, which contradicts (WF2).

* The extended substitution satisfies (WF1) and (WF2)
  - (K1) plus (L1) guarantee that the extended substitution satisfies (WF1).
  - (T3) guarantees (WF2).

* (K2) is about inertness.  Intuitively, any infinite chain T^0(f,t),
  T^1(f,t), T^2(f,T).... must pass through the new work item infnitely
  often, since the substution without the work item is inert; and must
  pass through at least one of the triples in S infnitely often.

  - (K2a): if not(fs>=fs) then there is no f that fs can rewrite (fs>=f),
    and hence this triple never plays a role in application S(f,a).
    It is always safe to extend S with such a triple.

    (NB: we could strengten K1) in this way too, but see K3.

  - (K2b): If this holds then, by (T2), b is not in t.  So applying the
    work item does not genenerate any new opportunities for applying S

  - (K2c): If this holds, we can't pass through this triple infinitely
    often, because if we did then fs>=f, fw>=f, hence by (R2)
      * either fw>=fs, contradicting K2c
      * or fs>=fw; so by the agument in K2b we can't have a loop

  - (K2d): if a not in s, we hae no further opportunity to apply the
    work item, similar to (K2b)

  NB: Dimitrios has a PDF that does this in more detail

Key lemma to make it watertight.
  Under the conditions of the Main Theorem,
  forall f st fw >= f, a is not in S^k(f,t), for any k

Also, consider roles more carefully. See Note [Flavours with roles]

Note [K3: completeness of solving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(K3) is not necessary for the extended substitution
to be inert.  In fact K1 could be made stronger by saying
   ... then (not (fw >= fs) or not (fs >= fs))
But it's not enough for S to be inert; we also want completeness.
That is, we want to be able to solve all soluble wanted equalities.
Suppose we have

   work-item   b -G-> a
   inert-item  a -W-> b

Assuming (G >= W) but not (W >= W), this fulfills all the conditions,
so we could extend the inerts, thus:

   inert-items   b -G-> a
                 a -W-> b

But if we kicked-out the inert item, we'd get

   work-item     a -W-> b
   inert-item    b -G-> a

Then rewrite the work-item gives us (a -W-> a), which is soluble via Refl.
So we add one more clause to the kick-out criteria

Another way to understand (K3) is that we treat an inert item
        a -f-> b
in the same way as
        b -f-> a
So if we kick out one, we should kick out the other.  The orientation
is somewhat accidental.

When considering roles, we also need the second clause (K3b). Consider

  inert-item   a -W/R-> b c
  work-item    c -G/N-> a

The work-item doesn't get rewritten by the inert, because (>=) doesn't hold.
We've satisfied conditions (T1)-(T3) and (K1) and (K2). If all we had were
condition (K3a), then we would keep the inert around and add the work item.
But then, consider if we hit the following:

  work-item2   b -G/N-> Id

where

  newtype Id x = Id x

For similar reasons, if we only had (K3a), we wouldn't kick the
representational inert out. And then, we'd miss solving the inert, which
now reduced to reflexivity. The solution here is to kick out representational
inerts whenever the tyvar of a work item is "exposed", where exposed means
not under some proper data-type constructor, like [] or Maybe. See
isTyVarExposed in TcType. This is encoded in (K3b).

Note [Stability of flattening]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The inert_eqs and inert_model, *considered separately* are each stable;
that is, substituting using them will terminate.  Considered *together*
they are not.  E.g.

  Add: [G] a~[b] to inert set with model  [D] b~[a]

  We add [G] a~[b] to inert_eqs, and emit [D] a~[b]. At this point
  the combination of inert_eqs and inert_model is not stable.

  Then we canonicalise [D] a~[b] to [D] a~[[a]], and add that to
  insolubles as an occurs check.

* When canonicalizing, the flattener respects flavours. In particular,
  when flattening a type variable 'a':
    * Derived:      look up 'a' in the inert_model
    * Given/Wanted: look up 'a' in the inert_eqs


Note [Flavours with roles]
~~~~~~~~~~~~~~~~~~~~~~~~~~
The system described in Note [inert_eqs: the inert equalities]
discusses an abstract
set of flavours. In GHC, flavours have two components: the flavour proper,
taken from {Wanted, Derived, Given} and the equality relation (often called
role), taken from {NomEq, ReprEq}.
When substituting w.r.t. the inert set,
as described in Note [inert_eqs: the inert equalities],
we must be careful to respect all components of a flavour.
For example, if we have

  inert set: a -G/R-> Int
             b -G/R-> Bool

  type role T nominal representational

and we wish to compute S(W/R, T a b), the correct answer is T a Bool, NOT
T Int Bool. The reason is that T's first parameter has a nominal role, and
thus rewriting a to Int in T a b is wrong. Indeed, this non-congruence of
substitution means that the proof in Note [The inert equalities] may need
to be revisited, but we don't think that the end conclusion is wrong.

Note [Examples of how the inert_model helps completeness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

----------- Example 2 (indexed-types/should_fail/T4093a)
  Ambiguity check for f: (Foo e ~ Maybe e) => Foo e

  We get [G] Foo e ~ Maybe e
         [W] Foo e ~ Foo ee      -- ee is a unification variable
         [W] Foo ee ~ Maybe ee

  Flatten: [G] Foo e ~ fsk
           [G] fsk ~ Maybe e   -- (A)

           [W] Foo ee ~ fmv
           [W] fmv ~ fsk       -- (B) From Foo e ~ Foo ee
           [W] fmv ~ Maybe ee

  --> rewrite (B) with (A)
           [W] Foo ee ~ fmv
           [W] fmv ~ Maybe e
           [W] fmv ~ Maybe ee

  But now awe appear to be stuck, since we don't rewrite Wanteds with
  Wanteds. But inert_model to the rescue.  In the model we first added
           fmv -> Maybe e
  Then when adding [W] fmv -> Maybe ee to the inert set, we noticed
  that the model can rewrite the constraint, and so emit [D] fmv ~ Maybe ee.
  That canonicalises to
           [D] Maybe e ~ Maybe ee
  and that soon yields ee := e, and all is well

----------- Example 3 (typecheck/should_compile/Improvement.hs)
    type instance F Int = Bool
    instance (b~Int) => C Bool b

    [W] w1 : C (F alpha) alpha, [W] w2 : F alpha ~ Bool

  If we rewrote wanteds with wanteds, we could rewrite w1 to
  C Bool alpha, use the instance to get alpha ~ Int, and solve
  the whole thing.

  And that is exactly what happens, in the *Derived* constraints.
  In effect we get

    [D] F alpha ~ fmv
    [D] C fmv alpha
    [D] fmv ~ Bool

  and now we can rewrite (C fmv alpha) with (fmv ~ Bool), ane
  we are off to the races.

----------- Example 4 (Trac #10009, a nasty example):

    f :: (UnF (F b) ~ b) => F b -> ()

    g :: forall a. (UnF (F a) ~ a) => a -> ()
    g _ = f (undefined :: F a)

  For g we get [G] UnF (F a) ~ a
               [W] UnF (F beta) ~ beta
               [W] F a ~ F beta
  Flatten:
      [G] g1: F a ~ fsk1         fsk1 := F a
      [G] g2: UnF fsk1 ~ fsk2    fsk2 := UnF fsk1
      [G] g3: fsk2 ~ a

      [W] w1: F beta ~ fmv1
      [W] w2: UnF fmv1 ~ fmv2
      [W] w3: beta ~ fmv2
      [W] w5: fmv1 ~ fsk1   -- From F a ~ F beta using flat-cache
                            -- and re-orient to put meta-var on left

  Unify beta := fmv2
      [W] w1: F fmv2 ~ fmv1
      [W] w2: UnF fmv1 ~ fmv2
      [W] w5: fmv1 ~ fsk1

  In the model, we have the shadow Deriveds of w1 and w2
  (I name them for convenience even though they are anonymous)
      [D] d1: F fmv2 ~ fmv1d
      [D] d2: fmv1d ~ fmv1
      [D] d3: UnF fmv1 ~ fmv2d
      [D] d4: fmv2d ~ fmv2

  Now we can rewrite d3 with w5, and match with g2, to get
      fmv2d := fsk2
      [D] d1: F fmv2 ~ fmv1d
      [D] d2: fmv1d ~ fmv1
      [D] d4: fmv2 ~ fsk2

  Use g2 to rewrite fsk2 to a.
      [D] d1: F fmv2 ~ fmv1d
      [D] d2: fmv1d ~ fmv1
      [D] d4: fmv2 ~ a

  Use d4 to rewrite d1, rewrite with g3,
  match with g1, to get
      fmv1d := fsk1
      [D] d2: fmv1 ~ fsk1
      [D] d4: fmv2 ~ a

  At this point we are stuck so we unflatten this set:
  See Note [Orientation of equalities with fmvs] in TcFlatten
      [W] w1: F fmv2 ~ fmv1
      [W] w2: UnF fmv1 ~ fmv2
      [W] w5: fmv1 ~ fsk1
      [D] d4: fmv2 ~ a

  Unflattening will discharge w1: fmv1 := F fmv2
  It can't discharge w2, so it is kept.  But we can
  unify fmv2 := fsk2, and that is "progress". Result
      [W] w2: UnF (F a) ~ a
      [W] w5: F a ~ fsk1

  And now both of these are easily proved in the next iteration.  Phew!
-}

instance Outputable InertCans where
  ppr (IC { inert_model = model, inert_eqs = eqs
          , inert_funeqs = funeqs, inert_dicts = dicts
          , inert_safehask = safehask, inert_irreds = irreds
          , inert_insols = insols, inert_count = count })
    = braces $ vcat
      [ ppUnless (isEmptyVarEnv eqs) $
        text "Equalities:"
          <+> pprCts (foldVarEnv (\eqs rest -> listToBag eqs `andCts` rest) emptyCts eqs)
      , ppUnless (isEmptyTcAppMap funeqs) $
        text "Type-function equalities =" <+> pprCts (funEqsToBag funeqs)
      , ppUnless (isEmptyTcAppMap dicts) $
        text "Dictionaries =" <+> pprCts (dictsToBag dicts)
      , ppUnless (isEmptyTcAppMap safehask) $
        text "Safe Haskell unsafe overlap =" <+> pprCts (dictsToBag safehask)
      , ppUnless (isEmptyCts irreds) $
        text "Irreds =" <+> pprCts irreds
      , ppUnless (isEmptyCts insols) $
        text "Insolubles =" <+> pprCts insols
      , ppUnless (isEmptyVarEnv model) $
        text "Model =" <+> pprCts (foldVarEnv consCts emptyCts model)
      , text "Unsolved goals =" <+> int count
      ]

{- *********************************************************************
*                                                                      *
                  Adding an inert
*                                                                      *
************************************************************************

Note [Adding an inert canonical constraint the InertCans]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Adding any constraint c *other* than a CTyEqCan (TcSMonad.addInertCan):

    * If c can be rewritten by model, emit the shadow constraint [D] c
      as NonCanonical.   See Note [Emitting shadow constraints]

    * Reason for non-canonical: a CFunEqCan has a unique fmv on the RHS,
      so we must not duplicate it.

* Adding a *nominal* CTyEqCan (a ~N ty) to the inert set (TcSMonad.addInertEq).

    (A) Always (G/W/D) kick out constraints that can be rewritten
        (respecting flavours) by the new constraint. This is done
        by kickOutRewritable.

    (B) Applies only to nominal equalities: a ~ ty.  Four cases:

        [Representational]   [G/W/D] a ~R ty:
          Just add it to inert_eqs

        [Derived Nominal]  [D] a ~N ty:
          1. Add (a~ty) to the model
             NB: 'a' cannot be in fv(ty), because the constraint is canonical.

          2. (DShadow) Do emitDerivedShadows
               For every inert G/W constraint c, st
                (a) (a~ty) can rewrite c (see Note [Emitting shadow constraints]),
                    and
                (b) the model cannot rewrite c
               kick out a Derived *copy*, leaving the original unchanged.
               Reason for (b) if the model can rewrite c, then we have already
               generated a shadow copy

       [Given/Wanted Nominal]  [G/W] a ~N ty:
          1. Add it to inert_eqs
          2. Emit [D] a~ty
          Step (2) is needed to allow the current model to fully
          rewrite [D] a~ty before adding it using the [Derived Nominal]
          steps above.

          We must do this even for Givens, because
             work-item [G] a ~ [b], model has [D] b ~ a.
          We need a shadow [D] a ~ [b] in the work-list
          When we process it, we'll rewrite to a ~ [a] and get an occurs check


* Unifying a:=ty, is like adding [G] a~ty, but we can't make a [D]
  a~ty, as in step (1) of the [G/W] case above.  So instead, do
  kickOutAfterUnification:
    - Kick out from the model any equality (b~ty2) that mentions 'a'
      (i.e. a=b or a in ty2).  Example:
            [G] a ~ [b],    model [D] b ~ [a]

Note [Emitting shadow constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * Given a new model element [D] a ~ ty, we want to emit shadow
   [D] constraints for any inert constraints 'c' that can be
   rewritten [D] a-> ty

 * And similarly given a new Given/Wanted 'c', we want to emit a
   shadow 'c' if the model can rewrite [D] c

See modelCanRewrite.

NB the use of rewritableTyVars. You might wonder whether, given the new
constraint [D] fmv ~ ty and the inert [W] F alpha ~ fmv, do we want to
emit a shadow constraint [D] F alpha ~ fmv?  No, we don't, because
it'll literally be a duplicate (since we do not rewrite the RHS of a
CFunEqCan) and hence immediately eliminated again.  Insetad we simply
want to *kick-out* the [W] F alpha ~ fmv, so that it is reconsidered
from a fudep point of view.  See Note [Kicking out CFunEqCan for
fundeps]

Note [Kicking out CFunEqCan for fundeps]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider:
   New:    [D] fmv1 ~ fmv2
   Inert:  [W] F alpha ~ fmv1
           [W] F beta  ~ fmv2

The new (derived) equality certainly can't rewrite the inerts. But we
*must* kick out the first one, to get:

   New:   [W] F alpha ~ fmv1
   Inert: [W] F beta ~ fmv2
   Model: [D] fmv1 ~ fmv2

and now improvement will discover [D] alpha ~ beta. This is important;
eg in Trac #9587.
-}

addInertEq :: Ct -> TcS ()
-- This is a key function, because of the kick-out stuff
-- Precondition: item /is/ canonical
addInertEq ct@(CTyEqCan { cc_tyvar = tv })
  = do { traceTcS "addInertEq {" $
         text "Adding new inert equality:" <+> ppr ct
       ; ics <- getInertCans

       ; let (kicked_out, ics1) = kickOutRewritable (ctFlavourRole ct) tv ics
       ; ics2 <- add_inert_eq ics1 ct

       ; setInertCans ics2

       ; unless (isEmptyWorkList kicked_out) $
         do { updWorkListTcS (appendWorkList kicked_out)
            ; csTraceTcS $
               hang (text "Kick out, tv =" <+> ppr tv)
                  2 (vcat [ text "n-kicked =" <+> int (workListSize kicked_out)
                          , ppr kicked_out ]) }

       ; traceTcS "addInertEq }" $ empty }
addInertEq ct = pprPanic "addInertEq" (ppr ct)

add_inert_eq :: InertCans -> Ct -> TcS InertCans
add_inert_eq ics@(IC { inert_count = n
                     , inert_eqs = old_eqs
                     , inert_model = old_model })
             ct@(CTyEqCan { cc_ev = ev, cc_eq_rel = eq_rel, cc_tyvar = tv
                          , cc_rhs = _rhs })
  | ReprEq <- eq_rel
  = return new_ics

  | isDerived ev
  = do { emitDerivedShadows ics tv
       ; return (ics { inert_model = extendVarEnv old_model tv ct }) }

  | otherwise   -- Given/Wanted Nominal equality [W] tv ~N ty
  = do { emitNewDerived loc pred
       ; return new_ics }
  where
    loc     = ctEvLoc ev
    pred    = ctEvPred ev
    new_ics = ics { inert_eqs   = addTyEq old_eqs tv ct
                  , inert_count = bumpUnsolvedCount ev n }

add_inert_eq _ ct = pprPanic "addInertEq" (ppr ct)

emitDerivedShadows :: InertCans -> TcTyVar -> TcS ()
emitDerivedShadows IC { inert_eqs      = tv_eqs
                      , inert_dicts    = dicts
                      , inert_safehask = safehask
                      , inert_funeqs   = funeqs
                      , inert_irreds   = irreds
                      , inert_model    = model } new_tv
  | null shadows
  = return ()
  | otherwise
  = do { traceTcS "Emit derived shadows:" $
         vcat [ text "tyvar =" <+> ppr new_tv
              , text "shadows =" <+> vcat (map ppr shadows) ]
       ; emitWork shadows }
  where
    shadows = foldDicts  get_ct dicts    $
              foldDicts  get_ct safehask $
              foldFunEqs get_ct funeqs   $
              foldIrreds get_ct irreds   $
              foldTyEqs  get_ct tv_eqs []
      -- Ignore insolubles

    get_ct ct cts | want_shadow ct = mkShadowCt ct : cts
                  | otherwise      = cts

    want_shadow ct
      =  not (isDerivedCt ct)              -- No need for a shadow of a Derived!
      && (new_tv `elemVarSet` rw_tvs)      -- New tv can rewrite ct, yielding a
                                           -- different ct
      && not (modelCanRewrite model rw_tvs)-- We have not already created a
                                           -- shadow
      where
        rw_tvs = rewritableTyCoVars ct

mkShadowCt :: Ct -> Ct
-- Produce a Derived shadow constraint from the input
-- If it is a CFunEqCan, make it NonCanonical, to avoid
--   duplicating the flatten-skolems
-- Otherwise keep the canonical shape.  This just saves work, but
-- is sometimes important; see Note [Keep CDictCan shadows as CDictCan]
mkShadowCt ct
  | CFunEqCan {} <- ct = CNonCanonical { cc_ev = derived_ev }
  | otherwise          = ct { cc_ev = derived_ev }
  where
    ev = ctEvidence ct
    derived_ev = CtDerived { ctev_pred = ctEvPred ev
                           , ctev_loc  = ctEvLoc ev }

{- Note [Keep CDictCan shadows as CDictCan]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
  class C a => D a b
and [G] D a b, [G] C a in the inert set.  Now we insert
[D] b ~ c.  We want to kick out a derived shadow for [D] D a b,
so we can rewrite it with the new constraint, and perhaps get
instance reduction or other consequences.

BUT we do not want to kick out a *non-canonical* (D a b). If we
did, we would do this:
  - rewrite it to [D] D a c, with pend_sc = True
  - use expandSuperClasses to add C a
  - go round again, which solves C a from the givens
This loop goes on for ever and triggers the simpl_loop limit.

Solution: kick out the CDictCan which will have pend_sc = False,
because we've already added its superclasses.  So we won't re-add
them.  If we forget the pend_sc flag, our cunning scheme for avoiding
generating superclasses repeatedly will fail.

See Trac #11379 for a case of this.
-}

modelCanRewrite :: InertModel -> TcTyCoVarSet -> Bool
-- See Note [Emitting shadow constraints]
-- True if there is any intersection between dom(model) and tvs
modelCanRewrite model tvs = not (disjointUFM model tvs)
     -- The low-level use of disjointUFM might e surprising.
     -- InertModel = TyVarEnv Ct, and we want to see if its domain
     -- is disjoint from that of a TcTyCoVarSet.  So we drop down
     -- to the underlying UniqFM.  A bit yukky, but efficient.

rewritableTyCoVars :: Ct -> TcTyVarSet
-- The tyvars of a Ct that can be rewritten
rewritableTyCoVars (CFunEqCan { cc_tyargs = tys }) = tyCoVarsOfTypes tys
rewritableTyCoVars ct                              = tyCoVarsOfType (ctPred ct)

--------------
addInertCan :: Ct -> TcS ()  -- Constraints *other than* equalities
addInertCan ct
  = do { traceTcS "insertInertCan {" $
         text "Trying to insert new inert item:" <+> ppr ct

       ; ics <- getInertCans
       ; setInertCans (add_item ics ct)

       -- Emit shadow derived if necessary
       -- See Note [Emitting shadow constraints]
       ; let rw_tvs = rewritableTyCoVars ct
       ; when (not (isDerivedCt ct) && modelCanRewrite (inert_model ics) rw_tvs)
              (emitWork [mkShadowCt ct])

       ; traceTcS "addInertCan }" $ empty }

add_item :: InertCans -> Ct -> InertCans
add_item ics item@(CFunEqCan { cc_fun = tc, cc_tyargs = tys })
  = ics { inert_funeqs = insertFunEq (inert_funeqs ics) tc tys item }

add_item ics item@(CIrredEvCan { cc_ev = ev })
  = ics { inert_irreds = inert_irreds ics `Bag.snocBag` item
        , inert_count = bumpUnsolvedCount ev (inert_count ics) }
       -- The 'False' is because the irreducible constraint might later instantiate
       -- to an equality.
       -- But since we try to simplify first, if there's a constraint function FC with
       --    type instance FC Int = Show
       -- we'll reduce a constraint (FC Int a) to Show a, and never add an inert irreducible

add_item ics item@(CDictCan { cc_ev = ev, cc_class = cls, cc_tyargs = tys })
  = ics { inert_dicts = addDict (inert_dicts ics) cls tys item
        , inert_count = bumpUnsolvedCount ev (inert_count ics) }

add_item _ item
  = pprPanic "upd_inert set: can't happen! Inserting " $
    ppr item   -- CTyEqCan is dealt with by addInertEq
               -- Can't be CNonCanonical, CHoleCan,
               -- because they only land in inert_insols

bumpUnsolvedCount :: CtEvidence -> Int -> Int
bumpUnsolvedCount ev n | isWanted ev = n+1
                       | otherwise   = n


-----------------------------------------
kickOutRewritable :: CtFlavourRole  -- Flavour/role of the equality that
                                    -- is being added to the inert set
                  -> TcTyVar        -- The new equality is tv ~ ty
                  -> InertCans
                  -> (WorkList, InertCans)
-- See Note [kickOutRewritable]
kickOutRewritable new_fr new_tv ics@(IC { inert_eqs      = tv_eqs
                                        , inert_dicts    = dictmap
                                        , inert_safehask = safehask
                                        , inert_funeqs   = funeqmap
                                        , inert_irreds   = irreds
                                        , inert_insols   = insols
                                        , inert_count    = n
                                        , inert_model    = model })
  | not (new_fr `eqCanRewriteFR` new_fr)
  = (emptyWorkList, ics)
        -- If new_fr can't rewrite itself, it can't rewrite
        -- anything else, so no need to kick out anything.
        -- (This is a common case: wanteds can't rewrite wanteds)
        -- Lemma (L2) in Note [Extending the inert equalities]

  | otherwise
  = (kicked_out, inert_cans_in)
  where
    inert_cans_in = IC { inert_eqs      = tv_eqs_in
                       , inert_dicts    = dicts_in
                       , inert_safehask = safehask   -- ??
                       , inert_funeqs   = feqs_in
                       , inert_irreds   = irs_in
                       , inert_insols   = insols_in
                       , inert_count    = n - workListWantedCount kicked_out
                       , inert_model    = model }
                     -- Leave the model unchanged

    kicked_out = WL { wl_eqs    = tv_eqs_out
                    , wl_funeqs = feqs_out
                    , wl_deriv  = []
                    , wl_rest   = bagToList (dicts_out `andCts` irs_out
                                             `andCts` insols_out)
                    , wl_implics = emptyBag }

    (tv_eqs_out, tv_eqs_in) = foldVarEnv kick_out_eqs ([], emptyVarEnv) tv_eqs
    (feqs_out,   feqs_in)   = partitionFunEqs  kick_out_fe funeqmap
    (dicts_out,  dicts_in)  = partitionDicts   kick_out_ct dictmap
    (irs_out,    irs_in)    = partitionBag     kick_out_ct irreds
    (insols_out, insols_in) = partitionBag     kick_out_ct insols
      -- Kick out even insolubles; see Note [Kick out insolubles]

    fr_can_rewrite :: CtEvidence -> Bool
    fr_can_rewrite ev = new_fr `eqCanRewriteFR` (ctEvFlavourRole ev)

    kick_out_ct :: Ct -> Bool
    -- Kick it out if the new CTyEqCan can rewrite the inert
    -- one. See Note [kickOutRewritable]
    kick_out_ct ct
      = fr_can_rewrite ev
        && new_tv `elemVarSet` tyCoVarsOfType (ctEvPred ev)
      where
        ev = ctEvidence ct

    kick_out_fe :: Ct -> Bool
    kick_out_fe (CFunEqCan { cc_ev = ev, cc_tyargs = tys, cc_fsk = fsk })
      = new_tv == fsk  -- If RHS is new_tvs, kick out /regardless of flavour/
                       -- See Note [Kicking out CFunEqCan for fundeps]
        || (fr_can_rewrite ev
            && new_tv `elemVarSet` tyCoVarsOfTypes tys)
    kick_out_fe ct = pprPanic "kick_out_fe" (ppr ct)

    kick_out_eqs :: EqualCtList -> ([Ct], TyVarEnv EqualCtList)
                 -> ([Ct], TyVarEnv EqualCtList)
    kick_out_eqs eqs (acc_out, acc_in)
      = (eqs_out ++ acc_out, case eqs_in of
                               []      -> acc_in
                               (eq1:_) -> extendVarEnv acc_in (cc_tyvar eq1) eqs_in)
      where
        (eqs_in, eqs_out) = partition keep_eq eqs

    -- Implements criteria K1-K3 in Note [Extending the inert equalities]
    keep_eq (CTyEqCan { cc_tyvar = tv, cc_rhs = rhs_ty, cc_ev = ev
                      , cc_eq_rel = eq_rel })
      | tv == new_tv
      = not (fr_can_rewrite ev)  -- (K1)

      | otherwise
      = check_k2 && check_k3
      where
        fs = ctEvFlavourRole ev
        check_k2 = not (fs  `eqCanRewriteFR` fs)                   -- (K2a)
                ||     (fs  `eqCanRewriteFR` new_fr)               -- (K2b)
                || not (new_fr `eqCanRewriteFR` fs)                -- (K2c)
                || not (new_tv `elemVarSet` tyCoVarsOfType rhs_ty) -- (K2d)

        check_k3
          | new_fr `eqCanRewriteFR` fs
          = case eq_rel of
              NomEq  -> not (rhs_ty `eqType` mkTyVarTy new_tv)
              ReprEq -> not (isTyVarExposed new_tv rhs_ty)

          | otherwise
          = True

    keep_eq ct = pprPanic "keep_eq" (ppr ct)

kickOutAfterUnification :: TcTyVar -> TcS Int
kickOutAfterUnification new_tv
  = do { ics <- getInertCans
       ; let (kicked_out1, ics1) = kickOutModel new_tv ics
             (kicked_out2, ics2) = kickOutRewritable (Given,NomEq)
                                                     new_tv ics1
                     -- Given because the tv := xi is given; NomEq because
                     -- only nominal equalities are solved by unification
             kicked_out = appendWorkList kicked_out1 kicked_out2
       ; setInertCans ics2
       ; updWorkListTcS (appendWorkList kicked_out)

       ; unless (isEmptyWorkList kicked_out) $
         csTraceTcS $
         hang (text "Kick out (unify), tv =" <+> ppr new_tv)
            2 (vcat [ text "n-kicked =" <+> int (workListSize kicked_out)
                    , text "kicked_out =" <+> ppr kicked_out
                    , text "Residual inerts =" <+> ppr ics2 ])
       ; return (workListSize kicked_out) }

kickOutModel :: TcTyVar -> InertCans -> (WorkList, InertCans)
kickOutModel new_tv ics@(IC { inert_model = model, inert_eqs = eqs })
  = (foldVarEnv add emptyWorkList der_out, ics { inert_model = new_model })
  where
    (der_out, new_model) = partitionVarEnv kick_out_der model

    kick_out_der :: Ct -> Bool
    kick_out_der (CTyEqCan { cc_tyvar = tv, cc_rhs = rhs })
      = new_tv == tv || new_tv `elemVarSet` tyCoVarsOfType rhs
    kick_out_der _ = False

    add :: Ct -> WorkList -> WorkList
    -- Don't kick out a Derived if there is a Given or Wanted with
    -- the same predicate.  The model is just a shadow copy, and the
    -- Given/Wanted will serve the purpose.
    add (CTyEqCan { cc_ev = ev, cc_tyvar = tv, cc_rhs = rhs }) wl
      | not (isInInertEqs eqs tv rhs) = extendWorkListDerived (ctEvLoc ev) ev wl
    add _ wl                          = wl


{- Note [kickOutRewritable]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also Note [inert_eqs: the inert equalities].

When we add a new inert equality (a ~N ty) to the inert set,
we must kick out any inert items that could be rewritten by the
new equality, to maintain the inert-set invariants.

  - We want to kick out an existing inert constraint if
    a) the new constraint can rewrite the inert one
    b) 'a' is free in the inert constraint (so that it *will*)
       rewrite it if we kick it out.

    For (b) we use tyCoVarsOfCt, which returns the type variables /and
    the kind variables/ that are directly visible in the type. Hence
    we will have exposed all the rewriting we care about to make the
    most precise kinds visible for matching classes etc. No need to
    kick out constraints that mention type variables whose kinds
    contain this variable!

  - We do not need to kick anything out from the model; we only
    add [D] constraints to the model (in effect) and they are
    fully rewritten by the model, so (K2b) holds

  - A Derived equality can kick out [D] constraints in inert_dicts,
    inert_irreds etc.  Nothing in inert_eqs because there are no
    Derived constraints in inert_eqs (they are in the model)

  - We don't kick out constraints from inert_solved_dicts, and
    inert_solved_funeqs optimistically. But when we lookup we have to
    take the substitution into account


Note [Kick out insolubles]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have an insoluble alpha ~ [alpha], which is insoluble
because an occurs check.  And then we unify alpha := [Int].
Then we really want to rewrite the insoluble to [Int] ~ [[Int]].
Now it can be decomposed.  Otherwise we end up with a "Can't match
[Int] ~ [[Int]]" which is true, but a bit confusing because the
outer type constructors match.
-}



--------------
addInertSafehask :: InertCans -> Ct -> InertCans
addInertSafehask ics item@(CDictCan { cc_class = cls, cc_tyargs = tys })
  = ics { inert_safehask = addDict (inert_dicts ics) cls tys item }

addInertSafehask _ item
  = pprPanic "addInertSafehask: can't happen! Inserting " $ ppr item

insertSafeOverlapFailureTcS :: Ct -> TcS ()
-- See Note [Safe Haskell Overlapping Instances Implementation] in TcSimplify
insertSafeOverlapFailureTcS item
  = updInertCans (\ics -> addInertSafehask ics item)

getSafeOverlapFailures :: TcS Cts
-- See Note [Safe Haskell Overlapping Instances Implementation] in TcSimplify
getSafeOverlapFailures
 = do { IC { inert_safehask = safehask } <- getInertCans
      ; return $ foldDicts consCts safehask emptyCts }

--------------
addSolvedDict :: CtEvidence -> Class -> [Type] -> TcS ()
-- Add a new item in the solved set of the monad
-- See Note [Solved dictionaries]
addSolvedDict item cls tys
  | isIPPred (ctEvPred item)    -- Never cache "solved" implicit parameters (not sure why!)
  = return ()
  | otherwise
  = do { traceTcS "updSolvedSetTcs:" $ ppr item
       ; updInertTcS $ \ ics ->
             ics { inert_solved_dicts = addDict (inert_solved_dicts ics) cls tys item } }

{- *********************************************************************
*                                                                      *
                  Other inert-set operations
*                                                                      *
********************************************************************* -}

updInertTcS :: (InertSet -> InertSet) -> TcS ()
-- Modify the inert set with the supplied function
updInertTcS upd_fn
  = do { is_var <- getTcSInertsRef
       ; wrapTcS (do { curr_inert <- TcM.readTcRef is_var
                     ; TcM.writeTcRef is_var (upd_fn curr_inert) }) }

getInertCans :: TcS InertCans
getInertCans = do { inerts <- getTcSInerts; return (inert_cans inerts) }

setInertCans :: InertCans -> TcS ()
setInertCans ics = updInertTcS $ \ inerts -> inerts { inert_cans = ics }

takeGivenInsolubles :: TcS Cts
-- See Note [The inert set after solving Givens]
takeGivenInsolubles
  = updRetInertCans $ \ cans ->
    ( inert_insols cans
    , cans { inert_insols = emptyBag
           , inert_funeqs = filterFunEqs isGivenCt (inert_funeqs cans) } )

{- Note [The inert set after solving Givens]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After solving the Givens we take two things out of the inert set

  a) The insolubles; we return these to report inaccessible code
     We return these separately.  We don't want to leave them in
     the inert set, lest we confuse them with insolubles arising from
     solving wanteds

  b) Any Derived CFunEqCans.  Derived CTyEqCans are in the
     inert_model and do no harm.  In contrast, Derived CFunEqCans
     get mixed up with the Wanteds later and confuse the
     post-solve-wanted unflattening (Trac #10507).
     E.g.  From   [G] 1 <= m, [G] m <= n
           We get [D] 1 <= n, and we must remove it!
         Otherwise we unflatten it more then once, and assign
         to its fmv more than once...disaster.
     It's ok to remove them because they turned not not to
     yield an insoluble, and hence have now done their work.
-}

updRetInertCans :: (InertCans -> (a, InertCans)) -> TcS a
-- Modify the inert set with the supplied function
updRetInertCans upd_fn
  = do { is_var <- getTcSInertsRef
       ; wrapTcS (do { inerts <- TcM.readTcRef is_var
                     ; let (res, cans') = upd_fn (inert_cans inerts)
                     ; TcM.writeTcRef is_var (inerts { inert_cans = cans' })
                     ; return res }) }

updInertCans :: (InertCans -> InertCans) -> TcS ()
-- Modify the inert set with the supplied function
updInertCans upd_fn
  = updInertTcS $ \ inerts -> inerts { inert_cans = upd_fn (inert_cans inerts) }

updInertDicts :: (DictMap Ct -> DictMap Ct) -> TcS ()
-- Modify the inert set with the supplied function
updInertDicts upd_fn
  = updInertCans $ \ ics -> ics { inert_dicts = upd_fn (inert_dicts ics) }

updInertSafehask :: (DictMap Ct -> DictMap Ct) -> TcS ()
-- Modify the inert set with the supplied function
updInertSafehask upd_fn
  = updInertCans $ \ ics -> ics { inert_safehask = upd_fn (inert_safehask ics) }

updInertFunEqs :: (FunEqMap Ct -> FunEqMap Ct) -> TcS ()
-- Modify the inert set with the supplied function
updInertFunEqs upd_fn
  = updInertCans $ \ ics -> ics { inert_funeqs = upd_fn (inert_funeqs ics) }

updInertIrreds :: (Cts -> Cts) -> TcS ()
-- Modify the inert set with the supplied function
updInertIrreds upd_fn
  = updInertCans $ \ ics -> ics { inert_irreds = upd_fn (inert_irreds ics) }

getInertEqs :: TcS (TyVarEnv EqualCtList)
getInertEqs = do { inert <- getInertCans; return (inert_eqs inert) }

getInertModel :: TcS InertModel
getInertModel = do { inert <- getInertCans; return (inert_model inert) }

getInertGivens :: TcS [Ct]
-- Returns the Given constraints in the inert set,
-- with type functions *not* unflattened
getInertGivens
  = do { inerts <- getInertCans
       ; let all_cts = foldDicts (:) (inert_dicts inerts)
                     $ foldFunEqs (:) (inert_funeqs inerts)
                     $ concat (varEnvElts (inert_eqs inerts))
       ; return (filter isGivenCt all_cts) }

getPendingScDicts :: TcS [Ct]
-- Find all inert Given dictionaries whose cc_pend_sc flag is True
-- Set the flag to False in the inert set, and return that Ct
getPendingScDicts = updRetInertCans get_sc_dicts
  where
    get_sc_dicts ic@(IC { inert_dicts = dicts })
      = (sc_pend_dicts, ic')
      where
        ic' = ic { inert_dicts = foldr add dicts sc_pend_dicts }

        sc_pend_dicts :: [Ct]
        sc_pend_dicts = foldDicts get_pending dicts []

    get_pending :: Ct -> [Ct] -> [Ct]  -- Get dicts with cc_pend_sc = True
                                       -- but flipping the flag
    get_pending dict dicts
        | Just dict' <- isPendingScDict dict = dict' : dicts
        | otherwise                          = dicts

    add :: Ct -> DictMap Ct -> DictMap Ct
    add ct@(CDictCan { cc_class = cls, cc_tyargs = tys }) dicts
        = addDict dicts cls tys ct
    add ct _ = pprPanic "getPendingScDicts" (ppr ct)

getUnsolvedInerts :: TcS ( Bag Implication
                         , Cts     -- Tyvar eqs: a ~ ty
                         , Cts     -- Fun eqs:   F a ~ ty
                         , Cts     -- Insoluble
                         , Cts )   -- All others
-- Return all the unsolved [Wanted] or [Derived] constraints
--
-- Post-condition: the returned simple constraints are all fully zonked
--                     (because they come from the inert set)
--                 the unsolved implics may not be
getUnsolvedInerts
 = do { IC { inert_eqs    = tv_eqs
           , inert_funeqs = fun_eqs
           , inert_irreds = irreds
           , inert_dicts  = idicts
           , inert_insols = insols
           , inert_model  = model } <- getInertCans
      ; keep_derived <- keepSolvingDeriveds

      ; let der_tv_eqs       = foldVarEnv (add_der_eq keep_derived tv_eqs)
                                          emptyCts model
            unsolved_tv_eqs  = foldTyEqs add_if_unsolved tv_eqs der_tv_eqs
            unsolved_fun_eqs = foldFunEqs add_if_unsolved fun_eqs emptyCts
            unsolved_irreds  = Bag.filterBag is_unsolved irreds
            unsolved_dicts   = foldDicts add_if_unsolved idicts emptyCts
            others           = unsolved_irreds `unionBags` unsolved_dicts

      ; implics <- getWorkListImplics

      ; traceTcS "getUnsolvedInerts" $
        vcat [ text " tv eqs =" <+> ppr unsolved_tv_eqs
             , text "fun eqs =" <+> ppr unsolved_fun_eqs
             , text "insols =" <+> ppr insols
             , text "others =" <+> ppr others
             , text "implics =" <+> ppr implics ]

      ; return ( implics, unsolved_tv_eqs, unsolved_fun_eqs, insols, others) }
              -- Keep even the given insolubles
              -- so that we can report dead GADT pattern match branches
  where
    add_der_eq keep_derived tv_eqs ct cts
       -- See Note [Unsolved Derived equalities]
       | CTyEqCan { cc_tyvar = tv, cc_rhs = rhs } <- ct
       , isMetaTyVar tv || keep_derived
       , not (isInInertEqs tv_eqs tv rhs) = ct `consBag` cts
       | otherwise                        = cts
    add_if_unsolved :: Ct -> Cts -> Cts
    add_if_unsolved ct cts | is_unsolved ct = ct `consCts` cts
                           | otherwise      = cts

    is_unsolved ct = not (isGivenCt ct)   -- Wanted or Derived

isInInertEqs :: TyVarEnv EqualCtList -> TcTyVar -> TcType -> Bool
-- True if (a ~N ty) is in the inert set, in either Given or Wanted
isInInertEqs eqs tv rhs
  = case lookupVarEnv eqs tv of
      Nothing  -> False
      Just cts -> any (same_pred rhs) cts
  where
    same_pred rhs ct
      | CTyEqCan { cc_rhs = rhs2, cc_eq_rel = eq_rel } <- ct
      , NomEq <- eq_rel
      , rhs `eqType` rhs2 = True
      | otherwise         = False

getNoGivenEqs :: TcLevel     -- TcLevel of this implication
               -> [TcTyVar]       -- Skolems of this implication
               -> TcS Bool        -- True <=> definitely no residual given equalities
-- See Note [When does an implication have given equalities?]
getNoGivenEqs tclvl skol_tvs
  = do { inerts@(IC { inert_eqs = ieqs, inert_irreds = iirreds, inert_funeqs = funeqs })
             <- getInertCans
       ; let local_fsks = foldFunEqs add_fsk funeqs emptyVarSet

             has_given_eqs = foldrBag ((||) . ev_given_here . ctEvidence)  False iirreds
                          || foldVarEnv ((||) . eqs_given_here local_fsks) False ieqs

       ; traceTcS "getNoGivenEqs" (vcat [ppr has_given_eqs, ppr inerts])
       ; return (not has_given_eqs) }
  where
    eqs_given_here :: VarSet -> EqualCtList -> Bool
    eqs_given_here local_fsks [CTyEqCan { cc_tyvar = tv, cc_ev = ev }]
                              -- Givens are always a sigleton
      = not (skolem_bound_here local_fsks tv) && ev_given_here ev
    eqs_given_here _ _ = False

    ev_given_here :: CtEvidence -> Bool
    -- True for a Given bound by the curent implication,
    -- i.e. the current level
    ev_given_here ev
      =  isGiven ev
      && tclvl == ctLocLevel (ctEvLoc ev)

    add_fsk :: Ct -> VarSet -> VarSet
    add_fsk ct fsks | CFunEqCan { cc_fsk = tv, cc_ev = ev } <- ct
                    , isGiven ev = extendVarSet fsks tv
                    | otherwise  = fsks

    skol_tv_set = mkVarSet skol_tvs
    skolem_bound_here local_fsks tv -- See Note [Let-bound skolems]
      = case tcTyVarDetails tv of
          SkolemTv {} -> tv `elemVarSet` skol_tv_set
          FlatSkol {} -> not (tv `elemVarSet` local_fsks)
          _           -> False

-- | Returns Given constraints that might,
-- potentially, match the given pred. This is used when checking to see if a
-- Given might overlap with an instance. See Note [Instance and Given overlap]
-- in TcInteract.
matchableGivens :: CtLoc -> PredType -> InertSet -> Cts
matchableGivens loc_w pred (IS { inert_cans = inert_cans })
  = filterBag matchable_given all_relevant_givens
  where
    -- just look in class constraints and irreds. matchableGivens does get called
    -- for ~R constraints, but we don't need to look through equalities, because
    -- canonical equalities are used for rewriting. We'll only get caught by
    -- non-canonical -- that is, irreducible -- equalities.
    all_relevant_givens :: Cts
    all_relevant_givens
      | Just (clas, _) <- getClassPredTys_maybe pred
      = findDictsByClass (inert_dicts inert_cans) clas
        `unionBags` inert_irreds inert_cans
      | otherwise
      = inert_irreds inert_cans

    matchable_given :: Ct -> Bool
    matchable_given ct
      | CtGiven { ctev_loc = loc_g } <- ctev
      , Just _ <- tcUnifyTys bind_meta_tv [ctEvPred ctev] [pred]
      , not (prohibitedSuperClassSolve loc_g loc_w)
      = True

      | otherwise
      = False
      where
        ctev = cc_ev ct

    bind_meta_tv :: TcTyVar -> BindFlag
    -- Any meta tyvar may be unified later, so we treat it as
    -- bindable when unifying with givens. That ensures that we
    -- conservatively assume that a meta tyvar might get unified with
    -- something that matches the 'given', until demonstrated
    -- otherwise.
    bind_meta_tv tv | isMetaTyVar tv = BindMe
                    | otherwise      = Skolem

prohibitedSuperClassSolve :: CtLoc -> CtLoc -> Bool
-- See Note [Solving superclass constraints] in TcInstDcls
prohibitedSuperClassSolve from_loc solve_loc
  | GivenOrigin (InstSC given_size) <- ctLocOrigin from_loc
  , ScOrigin wanted_size <- ctLocOrigin solve_loc
  = given_size >= wanted_size
  | otherwise
  = False

{- Note [Unsolved Derived equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In getUnsolvedInerts, we return a derived equality from the model
for two possible reasons:

  * Because it is a candidate for floating out of this implication.
    We only float equalities with a meta-tyvar on the left, so we only
    pull those out here.

  * If we are only solving derived constraints (i.e. tcs_need_derived
    is true; see Note [Solving for Derived constraints]), then we
    those Derived constraints are effectively unsolved, and we need
    them!

Note [When does an implication have given equalities?]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider an implication
   beta => alpha ~ Int
where beta is a unification variable that has already been unified
to () in an outer scope.  Then we can float the (alpha ~ Int) out
just fine. So when deciding whether the givens contain an equality,
we should canonicalise first, rather than just looking at the original
givens (Trac #8644).

So we simply look at the inert, canonical Givens and see if there are
any equalities among them, the calculation of has_given_eqs.  There
are some wrinkles:

 * We must know which ones are bound in *this* implication and which
   are bound further out.  We can find that out from the TcLevel
   of the Given, which is itself recorded in the tcl_tclvl field
   of the TcLclEnv stored in the Given (ev_given_here).

   What about interactions between inner and outer givens?
      - Outer given is rewritten by an inner given, then there must
        have been an inner given equality, hence the “given-eq” flag
        will be true anyway.

      - Inner given rewritten by outer, retains its level (ie. The inner one)

 * We must take account of *potential* equalities, like the one above:
      beta => ...blah...
   If we still don't know what beta is, we conservatively treat it as potentially
   becoming an equality. Hence including 'irreds' in the calculation or has_given_eqs.

 * When flattening givens, we generate Given equalities like
     <F [a]> : F [a] ~ f,
   with Refl evidence, and we *don't* want those to count as an equality
   in the givens!  After all, the entire flattening business is just an
   internal matter, and the evidence does not mention any of the 'givens'
   of this implication.  So we do not treat inert_funeqs as a 'given equality'.

 * See Note [Let-bound skolems] for another wrinkle

 * We do *not* need to worry about representational equalities, because
   these do not affect the ability to float constraints.

Note [Let-bound skolems]
~~~~~~~~~~~~~~~~~~~~~~~~
If   * the inert set contains a canonical Given CTyEqCan (a ~ ty)
and  * 'a' is a skolem bound in this very implication, b

then:
a) The Given is pretty much a let-binding, like
      f :: (a ~ b->c) => a -> a
   Here the equality constraint is like saying
      let a = b->c in ...
   It is not adding any new, local equality  information,
   and hence can be ignored by has_given_eqs

b) 'a' will have been completely substituted out in the inert set,
   so we can safely discard it.  Notably, it doesn't need to be
   returned as part of 'fsks'

For an example, see Trac #9211.
-}

removeInertCts :: [Ct] -> InertCans -> InertCans
-- ^ Remove inert constraints from the 'InertCans', for use when a
-- typechecker plugin wishes to discard a given.
removeInertCts cts icans = foldl' removeInertCt icans cts

removeInertCt :: InertCans -> Ct -> InertCans
removeInertCt is ct =
  case ct of

    CDictCan  { cc_class = cl, cc_tyargs = tys } ->
      is { inert_dicts = delDict (inert_dicts is) cl tys }

    CFunEqCan { cc_fun  = tf,  cc_tyargs = tys } ->
      is { inert_funeqs = delFunEq (inert_funeqs is) tf tys }

    CTyEqCan  { cc_tyvar = x,  cc_rhs    = ty } ->
      is { inert_eqs    = delTyEq (inert_eqs is) x ty }

    CIrredEvCan {}   -> panic "removeInertCt: CIrredEvCan"
    CNonCanonical {} -> panic "removeInertCt: CNonCanonical"
    CHoleCan {}      -> panic "removeInertCt: CHoleCan"


lookupFlatCache :: TyCon -> [Type] -> TcS (Maybe (TcCoercion, TcType, CtFlavour))
lookupFlatCache fam_tc tys
  = do { IS { inert_flat_cache = flat_cache
            , inert_cans = IC { inert_funeqs = inert_funeqs } } <- getTcSInerts
       ; return (firstJusts [lookup_inerts inert_funeqs,
                             lookup_flats flat_cache]) }
  where
    lookup_inerts inert_funeqs
      | Just (CFunEqCan { cc_ev = ctev, cc_fsk = fsk, cc_tyargs = xis })
           <- findFunEq inert_funeqs fam_tc tys
      , tys `eqTypes` xis   -- the lookup might find a near-match; see
                            -- Note [Use loose types in inert set]
      = Just (ctEvCoercion ctev, mkTyVarTy fsk, ctEvFlavour ctev)
      | otherwise = Nothing

    lookup_flats flat_cache = findExactFunEq flat_cache fam_tc tys


lookupInInerts :: TcPredType -> TcS (Maybe CtEvidence)
-- Is this exact predicate type cached in the solved or canonicals of the InertSet?
lookupInInerts pty
  | ClassPred cls tys <- classifyPredType pty
  = do { inerts <- getTcSInerts
       ; return (lookupSolvedDict inerts cls tys `mplus`
                 lookupInertDict (inert_cans inerts) cls tys) }
  | otherwise -- NB: No caching for equalities, IPs, holes, or errors
  = return Nothing

-- | Look up a dictionary inert. NB: the returned 'CtEvidence' might not
-- match the input exactly. Note [Use loose types in inert set].
lookupInertDict :: InertCans -> Class -> [Type] -> Maybe CtEvidence
lookupInertDict (IC { inert_dicts = dicts }) cls tys
  = case findDict dicts cls tys of
      Just ct -> Just (ctEvidence ct)
      _       -> Nothing

-- | Look up a solved inert. NB: the returned 'CtEvidence' might not
-- match the input exactly. See Note [Use loose types in inert set].
lookupSolvedDict :: InertSet -> Class -> [Type] -> Maybe CtEvidence
-- Returns just if exactly this predicate type exists in the solved.
lookupSolvedDict (IS { inert_solved_dicts = solved }) cls tys
  = case findDict solved cls tys of
      Just ev -> Just ev
      _       -> Nothing

{- *********************************************************************
*                                                                      *
                   Irreds
*                                                                      *
********************************************************************* -}

foldIrreds :: (Ct -> b -> b) -> Cts -> b -> b
foldIrreds k irreds z = foldrBag k z irreds


{- *********************************************************************
*                                                                      *
                   Type equalities
*                                                                      *
********************************************************************* -}

type EqualCtList = [Ct]

{- Note [EqualCtList invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    * All are equalities
    * All these equalities have the same LHS
    * The list is never empty
    * No element of the list can rewrite any other

 From the fourth invariant it follows that the list is
   - A single Given, or
   - Any number of Wanteds and/or Deriveds
-}

addTyEq :: TyVarEnv EqualCtList -> TcTyVar -> Ct -> TyVarEnv EqualCtList
addTyEq old_list tv it = extendVarEnv_C (\old_eqs _new_eqs -> it : old_eqs)
                                        old_list tv [it]

foldTyEqs :: (Ct -> b -> b) -> TyVarEnv EqualCtList -> b -> b
foldTyEqs k eqs z
  = foldVarEnv (\cts z -> foldr k z cts) z eqs

findTyEqs :: InertCans -> TyVar -> EqualCtList
findTyEqs icans tv = lookupVarEnv (inert_eqs icans) tv `orElse` []

delTyEq :: TyVarEnv EqualCtList -> TcTyVar -> TcType -> TyVarEnv EqualCtList
delTyEq m tv t = modifyVarEnv (filter (not . isThisOne)) m tv
  where isThisOne (CTyEqCan { cc_rhs = t1 }) = eqType t t1
        isThisOne _                          = False

{- *********************************************************************
*                                                                      *
                   TcAppMap
*                                                                      *
************************************************************************

Note [Use loose types in inert set]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Say we know (Eq (a |> c1)) and we need (Eq (a |> c2)). One is clearly
solvable from the other. So, we do lookup in the inert set using
loose types, which omit the kind-check.

We must be careful when using the result of a lookup because it may
not match the requsted info exactly!

-}

type TcAppMap a = UniqFM (ListMap LooseTypeMap a)
    -- Indexed by tycon then the arg types, using "loose" matching, where
    -- we don't require kind equality. This allows, for example, (a |> co)
    -- to match (a).
    -- See Note [Use loose types in inert set]
    -- Used for types and classes; hence UniqFM

isEmptyTcAppMap :: TcAppMap a -> Bool
isEmptyTcAppMap m = isNullUFM m

emptyTcAppMap :: TcAppMap a
emptyTcAppMap = emptyUFM

findTcApp :: TcAppMap a -> Unique -> [Type] -> Maybe a
findTcApp m u tys = do { tys_map <- lookupUFM m u
                       ; lookupTM tys tys_map }

delTcApp :: TcAppMap a -> Unique -> [Type] -> TcAppMap a
delTcApp m cls tys = adjustUFM (deleteTM tys) m cls

insertTcApp :: TcAppMap a -> Unique -> [Type] -> a -> TcAppMap a
insertTcApp m cls tys ct = alterUFM alter_tm m cls
  where
    alter_tm mb_tm = Just (insertTM tys ct (mb_tm `orElse` emptyTM))

-- mapTcApp :: (a->b) -> TcAppMap a -> TcAppMap b
-- mapTcApp f = mapUFM (mapTM f)

filterTcAppMap :: (Ct -> Bool) -> TcAppMap Ct -> TcAppMap Ct
filterTcAppMap f m
  = mapUFM do_tm m
  where
    do_tm tm = foldTM insert_mb tm emptyTM
    insert_mb ct tm
       | f ct      = insertTM tys ct tm
       | otherwise = tm
       where
         tys = case ct of
                CFunEqCan { cc_tyargs = tys } -> tys
                CDictCan  { cc_tyargs = tys } -> tys
                _ -> pprPanic "filterTcAppMap" (ppr ct)

tcAppMapToBag :: TcAppMap a -> Bag a
tcAppMapToBag m = foldTcAppMap consBag m emptyBag

foldTcAppMap :: (a -> b -> b) -> TcAppMap a -> b -> b
foldTcAppMap k m z = foldUFM (foldTM k) z m


{- *********************************************************************
*                                                                      *
                   DictMap
*                                                                      *
********************************************************************* -}

type DictMap a = TcAppMap a

emptyDictMap :: DictMap a
emptyDictMap = emptyTcAppMap

-- sizeDictMap :: DictMap a -> Int
-- sizeDictMap m = foldDicts (\ _ x -> x+1) m 0

findDict :: DictMap a -> Class -> [Type] -> Maybe a
findDict m cls tys = findTcApp m (getUnique cls) tys

findDictsByClass :: DictMap a -> Class -> Bag a
findDictsByClass m cls
  | Just tm <- lookupUFM m cls = foldTM consBag tm emptyBag
  | otherwise                  = emptyBag

delDict :: DictMap a -> Class -> [Type] -> DictMap a
delDict m cls tys = delTcApp m (getUnique cls) tys

addDict :: DictMap a -> Class -> [Type] -> a -> DictMap a
addDict m cls tys item = insertTcApp m (getUnique cls) tys item

addDictsByClass :: DictMap Ct -> Class -> Bag Ct -> DictMap Ct
addDictsByClass m cls items
  = addToUFM m cls (foldrBag add emptyTM items)
  where
    add ct@(CDictCan { cc_tyargs = tys }) tm = insertTM tys ct tm
    add ct _ = pprPanic "addDictsByClass" (ppr ct)

filterDicts :: (Ct -> Bool) -> DictMap Ct -> DictMap Ct
filterDicts f m = filterTcAppMap f m

partitionDicts :: (Ct -> Bool) -> DictMap Ct -> (Bag Ct, DictMap Ct)
partitionDicts f m = foldTcAppMap k m (emptyBag, emptyDicts)
  where
    k ct (yeses, noes) | f ct      = (ct `consBag` yeses, noes)
                       | otherwise = (yeses,              add ct noes)
    add ct@(CDictCan { cc_class = cls, cc_tyargs = tys }) m
      = addDict m cls tys ct
    add ct _ = pprPanic "partitionDicts" (ppr ct)

dictsToBag :: DictMap a -> Bag a
dictsToBag = tcAppMapToBag

foldDicts :: (a -> b -> b) -> DictMap a -> b -> b
foldDicts = foldTcAppMap

emptyDicts :: DictMap a
emptyDicts = emptyTcAppMap


{- *********************************************************************
*                                                                      *
                   FunEqMap
*                                                                      *
********************************************************************* -}

type FunEqMap a = TcAppMap a  -- A map whose key is a (TyCon, [Type]) pair

emptyFunEqs :: TcAppMap a
emptyFunEqs = emptyTcAppMap

sizeFunEqMap :: FunEqMap a -> Int
sizeFunEqMap m = foldFunEqs (\ _ x -> x+1) m 0

findFunEq :: FunEqMap a -> TyCon -> [Type] -> Maybe a
findFunEq m tc tys = findTcApp m (getUnique tc) tys

funEqsToBag :: FunEqMap a -> Bag a
funEqsToBag m = foldTcAppMap consBag m emptyBag

findFunEqsByTyCon :: FunEqMap a -> TyCon -> [a]
-- Get inert function equation constraints that have the given tycon
-- in their head.  Not that the constraints remain in the inert set.
-- We use this to check for derived interactions with built-in type-function
-- constructors.
findFunEqsByTyCon m tc
  | Just tm <- lookupUFM m tc = foldTM (:) tm []
  | otherwise                 = []

foldFunEqs :: (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs = foldTcAppMap

-- mapFunEqs :: (a -> b) -> FunEqMap a -> FunEqMap b
-- mapFunEqs = mapTcApp

filterFunEqs :: (Ct -> Bool) -> FunEqMap Ct -> FunEqMap Ct
filterFunEqs = filterTcAppMap

insertFunEq :: FunEqMap a -> TyCon -> [Type] -> a -> FunEqMap a
insertFunEq m tc tys val = insertTcApp m (getUnique tc) tys val

-- insertFunEqCt :: FunEqMap Ct -> Ct -> FunEqMap Ct
-- insertFunEqCt m ct@(CFunEqCan { cc_fun = tc, cc_tyargs = tys })
--  = insertFunEq m tc tys ct
-- insertFunEqCt _ ct = pprPanic "insertFunEqCt" (ppr ct)

partitionFunEqs :: (Ct -> Bool) -> FunEqMap Ct -> ([Ct], FunEqMap Ct)
-- Optimise for the case where the predicate is false
-- partitionFunEqs is called only from kick-out, and kick-out usually
-- kicks out very few equalities, so we want to optimise for that case
partitionFunEqs f m = (yeses, foldr del m yeses)
  where
    yeses = foldTcAppMap k m []
    k ct yeses | f ct      = ct : yeses
               | otherwise = yeses
    del (CFunEqCan { cc_fun = tc, cc_tyargs = tys }) m
        = delFunEq m tc tys
    del ct _ = pprPanic "partitionFunEqs" (ppr ct)

delFunEq :: FunEqMap a -> TyCon -> [Type] -> FunEqMap a
delFunEq m tc tys = delTcApp m (getUnique tc) tys

------------------------------
type ExactFunEqMap a = UniqFM (ListMap TypeMap a)

emptyExactFunEqs :: ExactFunEqMap a
emptyExactFunEqs = emptyUFM

findExactFunEq :: ExactFunEqMap a -> TyCon -> [Type] -> Maybe a
findExactFunEq m tc tys = do { tys_map <- lookupUFM m (getUnique tc)
                             ; lookupTM tys tys_map }

insertExactFunEq :: ExactFunEqMap a -> TyCon -> [Type] -> a -> ExactFunEqMap a
insertExactFunEq m tc tys val = alterUFM alter_tm m (getUnique tc)
  where alter_tm mb_tm = Just (insertTM tys val (mb_tm `orElse` emptyTM))

{-
************************************************************************
*                                                                      *
*              The TcS solver monad                                    *
*                                                                      *
************************************************************************

Note [The TcS monad]
~~~~~~~~~~~~~~~~~~~~
The TcS monad is a weak form of the main Tc monad

All you can do is
    * fail
    * allocate new variables
    * fill in evidence variables

Filling in a dictionary evidence variable means to create a binding
for it, so TcS carries a mutable location where the binding can be
added.  This is initialised from the innermost implication constraint.

Note [Solving for Derived constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sometimes we invoke the solver on a bunch of Derived constraints, not to
generate any evidence, but just to cause unification side effects or to
produce a simpler set of constraints.  If that is what we are doing, we
should do two things differently:
  a) Don't stop when you've solved all the Wanteds; instead keep going
     if there are any Deriveds in the work queue.
  b) In getInertUnsolved, include Derived ones
-}

data TcSEnv
  = TcSEnv {
      tcs_ev_binds    :: Maybe EvBindsVar,
          -- this could be Nothing if we can't deal with non-equality
          -- constraints, because, say, we're in a top-level type signature

      tcs_unified     :: IORef Int,
         -- The number of unification variables we have filled
         -- The important thing is whether it is non-zero

      tcs_count     :: IORef Int, -- Global step count

      tcs_inerts    :: IORef InertSet, -- Current inert set

      -- The main work-list and the flattening worklist
      -- See Note [Work list priorities] and
      tcs_worklist  :: IORef WorkList, -- Current worklist

      tcs_used_tcvs :: IORef TyCoVarSet,
        -- these variables were used when filling holes. Don't discard!
        -- See also Note [Tracking redundant constraints] in TcSimplify

      tcs_need_deriveds :: Bool
        -- Keep solving, even if all the unsolved constraints are Derived
        -- See Note [Solving for Derived constraints]
    }

---------------
newtype TcS a = TcS { unTcS :: TcSEnv -> TcM a }

instance Functor TcS where
  fmap f m = TcS $ fmap f . unTcS m

instance Applicative TcS where
  pure x = TcS (\_ -> return x)
  (<*>) = ap

instance Monad TcS where
  fail err  = TcS (\_ -> fail err)
  m >>= k   = TcS (\ebs -> unTcS m ebs >>= \r -> unTcS (k r) ebs)

#if __GLASGOW_HASKELL__ > 710
instance MonadFail.MonadFail TcS where
  fail err  = TcS (\_ -> fail err)
#endif

instance MonadUnique TcS where
   getUniqueSupplyM = wrapTcS getUniqueSupplyM

-- Basic functionality
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
wrapTcS :: TcM a -> TcS a
-- Do not export wrapTcS, because it promotes an arbitrary TcM to TcS,
-- and TcS is supposed to have limited functionality
wrapTcS = TcS . const -- a TcM action will not use the TcEvBinds

wrapErrTcS :: TcM a -> TcS a
-- The thing wrapped should just fail
-- There's no static check; it's up to the user
-- Having a variant for each error message is too painful
wrapErrTcS = wrapTcS

wrapWarnTcS :: TcM a -> TcS a
-- The thing wrapped should just add a warning, or no-op
-- There's no static check; it's up to the user
wrapWarnTcS = wrapTcS

failTcS, panicTcS  :: SDoc -> TcS a
warnTcS   :: WarningFlag -> SDoc -> TcS ()
addErrTcS :: SDoc -> TcS ()
failTcS      = wrapTcS . TcM.failWith
warnTcS flag = wrapTcS . TcM.addWarn (Reason flag)
addErrTcS    = wrapTcS . TcM.addErr
panicTcS doc = pprPanic "TcCanonical" doc

traceTcS :: String -> SDoc -> TcS ()
traceTcS herald doc = wrapTcS (TcM.traceTc herald doc)

runTcPluginTcS :: TcPluginM a -> TcS a
runTcPluginTcS m = wrapTcS . runTcPluginM m =<< getTcEvBinds

instance HasDynFlags TcS where
    getDynFlags = wrapTcS getDynFlags

getGlobalRdrEnvTcS :: TcS GlobalRdrEnv
getGlobalRdrEnvTcS = wrapTcS TcM.getGlobalRdrEnv

bumpStepCountTcS :: TcS ()
bumpStepCountTcS = TcS $ \env -> do { let ref = tcs_count env
                                    ; n <- TcM.readTcRef ref
                                    ; TcM.writeTcRef ref (n+1) }

-- | Mark variables as used filling a coercion hole
useVars :: TyCoVarSet -> TcS ()
useVars vars = TcS $ \env -> do { let ref = tcs_used_tcvs env
                                ; TcM.updTcRef ref (`unionVarSet` vars) }

csTraceTcS :: SDoc -> TcS ()
csTraceTcS doc
  = wrapTcS $ csTraceTcM 1 (return doc)

traceFireTcS :: CtEvidence -> SDoc -> TcS ()
-- Dump a rule-firing trace
traceFireTcS ev doc
  = TcS $ \env -> csTraceTcM 1 $
    do { n <- TcM.readTcRef (tcs_count env)
       ; tclvl <- TcM.getTcLevel
       ; return (hang (int n <> brackets (text "U:" <> ppr tclvl
                                          <> ppr (ctLocDepth (ctEvLoc ev)))
                       <+> doc <> colon)
                     4 (ppr ev)) }

csTraceTcM :: Int -> TcM SDoc -> TcM ()
-- Constraint-solver tracing, -ddump-cs-trace
csTraceTcM trace_level mk_doc
  = do { dflags <- getDynFlags
       ; when (  (dopt Opt_D_dump_cs_trace dflags || dopt Opt_D_dump_tc_trace dflags)
              && trace_level <= traceLevel dflags ) $
         do { msg <- mk_doc
            ; TcM.traceTcRn Opt_D_dump_cs_trace msg } }

runTcS :: TcS a                -- What to run
       -> TcM (a, EvBindMap)
runTcS tcs
  = do { ev_binds_var <- TcM.newTcEvBinds
       ; res <- runTcSWithEvBinds False (Just ev_binds_var) tcs
       ; ev_binds <- TcM.getTcEvBindsMap ev_binds_var
       ; return (res, ev_binds) }

-- | This variant of 'runTcS' will keep solving, even when only Deriveds
-- are left around. It also doesn't return any evidence, as callers won't
-- need it.
runTcSDeriveds :: TcS a -> TcM a
runTcSDeriveds tcs
  = do { ev_binds_var <- TcM.newTcEvBinds
       ; runTcSWithEvBinds True (Just ev_binds_var) tcs }

-- | This can deal only with equality constraints.
runTcSEqualities :: TcS a -> TcM a
runTcSEqualities = runTcSWithEvBinds False Nothing

runTcSWithEvBinds :: Bool  -- ^ keep running even if only Deriveds are left?
                  -> Maybe EvBindsVar
                  -> TcS a
                  -> TcM a
runTcSWithEvBinds solve_deriveds ev_binds_var tcs
  = do { unified_var <- TcM.newTcRef 0
       ; step_count <- TcM.newTcRef 0
       ; inert_var <- TcM.newTcRef emptyInert
       ; wl_var <- TcM.newTcRef emptyWorkList
       ; used_var <- TcM.newTcRef emptyVarSet -- never read from, but see
                                              -- nestImplicTcS

       ; let env = TcSEnv { tcs_ev_binds      = ev_binds_var
                          , tcs_unified       = unified_var
                          , tcs_count         = step_count
                          , tcs_inerts        = inert_var
                          , tcs_worklist      = wl_var
                          , tcs_used_tcvs     = used_var
                          , tcs_need_deriveds = solve_deriveds }

             -- Run the computation
       ; res <- unTcS tcs env

       ; count <- TcM.readTcRef step_count
       ; when (count > 0) $
         csTraceTcM 0 $ return (text "Constraint solver steps =" <+> int count)

#ifdef DEBUG
       ; whenIsJust ev_binds_var $ \ebv ->
         do { ev_binds <- TcM.getTcEvBinds ebv
            ; checkForCyclicBinds ev_binds }
#endif

       ; return res }

#ifdef DEBUG
checkForCyclicBinds :: Bag EvBind -> TcM ()
checkForCyclicBinds ev_binds
  | null cycles
  = return ()
  | null coercion_cycles
  = TcM.traceTc "Cycle in evidence binds" $ ppr cycles
  | otherwise
  = pprPanic "Cycle in coercion bindings" $ ppr coercion_cycles
  where
    cycles :: [[EvBind]]
    cycles = [c | CyclicSCC c <- stronglyConnCompFromEdgedVertices edges]

    coercion_cycles = [c | c <- cycles, any is_co_bind c]
    is_co_bind (EvBind { eb_lhs = b }) = isEqPred (varType b)

    edges :: [(EvBind, EvVar, [EvVar])]
    edges = [ (bind, bndr, varSetElems (evVarsOfTerm rhs))
            | bind@(EvBind { eb_lhs = bndr, eb_rhs = rhs}) <- bagToList ev_binds ]
#endif

nestImplicTcS :: Maybe EvBindsVar -> TyCoVarSet -- bound in this implication
              -> TcLevel -> TcS a
              -> TcS (a, TyCoVarSet)  -- also returns any vars used when filling
                                      -- coercion holes (for redundant-constraint
                                      -- tracking)
nestImplicTcS m_ref bound_tcvs inner_tclvl (TcS thing_inside)
  = do { (res, used_tcvs) <-
         TcS $ \ TcSEnv { tcs_unified       = unified_var
                        , tcs_inerts        = old_inert_var
                        , tcs_count         = count
                        , tcs_need_deriveds = solve_deriveds
                        } ->
      do { inerts <- TcM.readTcRef old_inert_var
         ; let nest_inert = inerts { inert_flat_cache = emptyExactFunEqs }
                                     -- See Note [Do not inherit the flat cache]
         ; new_inert_var <- TcM.newTcRef nest_inert
         ; new_wl_var    <- TcM.newTcRef emptyWorkList
         ; new_used_var  <- TcM.newTcRef emptyVarSet
         ; let nest_env = TcSEnv { tcs_ev_binds      = m_ref
                                 , tcs_unified       = unified_var
                                 , tcs_count         = count
                                 , tcs_inerts        = new_inert_var
                                 , tcs_worklist      = new_wl_var
                                 , tcs_used_tcvs     = new_used_var
                                 , tcs_need_deriveds = solve_deriveds }
         ; res <- TcM.setTcLevel inner_tclvl $
                  thing_inside nest_env

#ifdef DEBUG
         -- Perform a check that the thing_inside did not cause cycles
         ; whenIsJust m_ref $ \ ref ->
           do { ev_binds <- TcM.getTcEvBinds ref
              ; checkForCyclicBinds ev_binds }
#endif
         ; used_tcvs <- TcM.readTcRef new_used_var
         ; return (res, used_tcvs) }

       ; local_ev_vars <- case m_ref of
           Nothing  -> return emptyVarSet
           Just ref -> do { binds <- wrapTcS $ TcM.getTcEvBinds ref
                          ; return $ mkVarSet $ map evBindVar $ bagToList binds }
       ; let all_locals = bound_tcvs `unionVarSet` local_ev_vars
             (inner_used_tcvs, outer_used_tcvs)
               = partitionVarSet (`elemVarSet` all_locals) used_tcvs
       ; useVars outer_used_tcvs

       ; return (res, inner_used_tcvs) }

{- Note [Do not inherit the flat cache]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We do not want to inherit the flat cache when processing nested
implications.  Consider
   a ~ F b, forall c. b~Int => blah
If we have F b ~ fsk in the flat-cache, and we push that into the
nested implication, we might miss that F b can be rewritten to F Int,
and hence perhpas solve it.  Moreover, the fsk from outside is
flattened out after solving the outer level, but and we don't
do that flattening recursively.
-}

nestTcS ::  TcS a -> TcS a
-- Use the current untouchables, augmenting the current
-- evidence bindings, and solved dictionaries
-- But have no effect on the InertCans, or on the inert_flat_cache
--  (the latter because the thing inside a nestTcS does unflattening)
nestTcS (TcS thing_inside)
  = TcS $ \ env@(TcSEnv { tcs_inerts = inerts_var }) ->
    do { inerts <- TcM.readTcRef inerts_var
       ; new_inert_var <- TcM.newTcRef inerts
       ; new_wl_var    <- TcM.newTcRef emptyWorkList
       ; let nest_env = env { tcs_inerts   = new_inert_var
                            , tcs_worklist = new_wl_var }

       ; res <- thing_inside nest_env

       ; new_inerts <- TcM.readTcRef new_inert_var

       -- we want to propogate the safe haskell failures
       ; let old_ic = inert_cans inerts
             new_ic = inert_cans new_inerts
             nxt_ic = old_ic { inert_safehask = inert_safehask new_ic }

       ; TcM.writeTcRef inerts_var  -- See Note [Propagate the solved dictionaries]
                        (inerts { inert_solved_dicts = inert_solved_dicts new_inerts
                                , inert_cans = nxt_ic })

       ; return res }

{-
Note [Propagate the solved dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's really quite important that nestTcS does not discard the solved
dictionaries from the thing_inside.
Consider
   Eq [a]
   forall b. empty =>  Eq [a]
We solve the simple (Eq [a]), under nestTcS, and then turn our attention to
the implications.  It's definitely fine to use the solved dictionaries on
the inner implications, and it can make a signficant performance difference
if you do so.
-}

-- Getters and setters of TcEnv fields
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- Getter of inerts and worklist
getTcSInertsRef :: TcS (IORef InertSet)
getTcSInertsRef = TcS (return . tcs_inerts)

getTcSWorkListRef :: TcS (IORef WorkList)
getTcSWorkListRef = TcS (return . tcs_worklist)

getTcSInerts :: TcS InertSet
getTcSInerts = getTcSInertsRef >>= wrapTcS . (TcM.readTcRef)

setTcSInerts :: InertSet -> TcS ()
setTcSInerts ics = do { r <- getTcSInertsRef; wrapTcS (TcM.writeTcRef r ics) }

getWorkListImplics :: TcS (Bag Implication)
getWorkListImplics
  = do { wl_var <- getTcSWorkListRef
       ; wl_curr <- wrapTcS (TcM.readTcRef wl_var)
       ; return (wl_implics wl_curr) }

updWorkListTcS :: (WorkList -> WorkList) -> TcS ()
updWorkListTcS f
  = do { wl_var <- getTcSWorkListRef
       ; wl_curr <- wrapTcS (TcM.readTcRef wl_var)
       ; let new_work = f wl_curr
       ; wrapTcS (TcM.writeTcRef wl_var new_work) }

-- | Should we keep solving even only deriveds are left?
keepSolvingDeriveds :: TcS Bool
keepSolvingDeriveds = TcS (return . tcs_need_deriveds)

emitWorkNC :: [CtEvidence] -> TcS ()
emitWorkNC evs
  | null evs
  = return ()
  | otherwise
  = emitWork (map mkNonCanonical evs)

emitWork :: [Ct] -> TcS ()
emitWork cts
  = do { traceTcS "Emitting fresh work" (vcat (map ppr cts))
       ; updWorkListTcS (extendWorkListCts cts) }

emitInsoluble :: Ct -> TcS ()
-- Emits a non-canonical constraint that will stand for a frozen error in the inerts.
emitInsoluble ct
  = do { traceTcS "Emit insoluble" (ppr ct $$ pprCtLoc (ctLoc ct))
       ; updInertTcS add_insol }
  where
    this_pred = ctPred ct
    add_insol is@(IS { inert_cans = ics@(IC { inert_insols = old_insols }) })
      | already_there = is
      | otherwise     = is { inert_cans = ics { inert_insols = old_insols `snocCts` ct } }
      where
        already_there = not (isWantedCt ct) && anyBag (tcEqType this_pred . ctPred) old_insols
             -- See Note [Do not add duplicate derived insolubles]

newTcRef :: a -> TcS (TcRef a)
newTcRef x = wrapTcS (TcM.newTcRef x)

readTcRef :: TcRef a -> TcS a
readTcRef ref = wrapTcS (TcM.readTcRef ref)

updTcRef :: TcRef a -> (a->a) -> TcS ()
updTcRef ref upd_fn = wrapTcS (TcM.updTcRef ref upd_fn)

getTcEvBinds :: TcS (Maybe EvBindsVar)
getTcEvBinds = TcS (return . tcs_ev_binds)

getTcEvBindsFromVar :: EvBindsVar -> TcS (Bag EvBind)
getTcEvBindsFromVar = wrapTcS . TcM.getTcEvBinds

getTcLevel :: TcS TcLevel
getTcLevel = wrapTcS TcM.getTcLevel

getTcEvBindsMap :: TcS EvBindMap
getTcEvBindsMap
  = do { ev_binds <- getTcEvBinds
       ; case ev_binds of
           Just (EvBindsVar ev_ref _) -> wrapTcS $ TcM.readTcRef ev_ref
           Nothing                    -> return emptyEvBindMap }

unifyTyVar :: TcTyVar -> TcType -> TcS ()
-- Unify a meta-tyvar with a type
-- We keep track of how many unifications have happened in tcs_unified,
--
-- We should never unify the same variable twice!
unifyTyVar tv ty
  = ASSERT2( isMetaTyVar tv, ppr tv )
    TcS $ \ env ->
    do { TcM.traceTc "unifyTyVar" (ppr tv <+> text ":=" <+> ppr ty)
       ; TcM.writeMetaTyVar tv ty
       ; TcM.updTcRef (tcs_unified env) (+1) }

unflattenFmv :: TcTyVar -> TcType -> TcS ()
-- Fill a flatten-meta-var, simply by unifying it.
-- This does NOT count as a unification in tcs_unified.
unflattenFmv tv ty
  = ASSERT2( isMetaTyVar tv, ppr tv )
    TcS $ \ _ ->
    do { TcM.traceTc "unflattenFmv" (ppr tv <+> text ":=" <+> ppr ty)
       ; TcM.writeMetaTyVar tv ty }

reportUnifications :: TcS a -> TcS (Int, a)
reportUnifications (TcS thing_inside)
  = TcS $ \ env ->
    do { inner_unified <- TcM.newTcRef 0
       ; res <- thing_inside (env { tcs_unified = inner_unified })
       ; n_unifs <- TcM.readTcRef inner_unified
       ; TcM.updTcRef (tcs_unified env) (+ n_unifs)
       ; return (n_unifs, res) }

getDefaultInfo ::  TcS ([Type], (Bool, Bool))
getDefaultInfo = wrapTcS TcM.tcGetDefaultTys

-- Just get some environments needed for instance looking up and matching
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

getInstEnvs :: TcS InstEnvs
getInstEnvs = wrapTcS $ TcM.tcGetInstEnvs

getFamInstEnvs :: TcS (FamInstEnv, FamInstEnv)
getFamInstEnvs = wrapTcS $ FamInst.tcGetFamInstEnvs

getTopEnv :: TcS HscEnv
getTopEnv = wrapTcS $ TcM.getTopEnv

getGblEnv :: TcS TcGblEnv
getGblEnv = wrapTcS $ TcM.getGblEnv

getLclEnv :: TcS TcLclEnv
getLclEnv = wrapTcS $ TcM.getLclEnv

tcLookupClass :: Name -> TcS Class
tcLookupClass c = wrapTcS $ TcM.tcLookupClass c

-- Setting names as used (used in the deriving of Coercible evidence)
-- Too hackish to expose it to TcS? In that case somehow extract the used
-- constructors from the result of solveInteract
addUsedDataCons :: GlobalRdrEnv -> TyCon -> TcS ()
addUsedDataCons rdr_env tycon = wrapTcS  $ TcM.addUsedDataCons rdr_env tycon

-- Various smaller utilities [TODO, maybe will be absorbed in the instance matcher]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

checkWellStagedDFun :: PredType -> DFunId -> CtLoc -> TcS ()
checkWellStagedDFun pred dfun_id loc
  = wrapTcS $ TcM.setCtLocM loc $
    do { use_stage <- TcM.getStage
       ; TcM.checkWellStaged pp_thing bind_lvl (thLevel use_stage) }
  where
    pp_thing = text "instance for" <+> quotes (ppr pred)
    bind_lvl = TcM.topIdLvl dfun_id

pprEq :: TcType -> TcType -> SDoc
pprEq ty1 ty2 = pprParendType ty1 <+> char '~' <+> pprParendType ty2

isTouchableMetaTyVarTcS :: TcTyVar -> TcS Bool
isTouchableMetaTyVarTcS tv
  = do { tclvl <- getTcLevel
       ; return $ isTouchableMetaTyVar tclvl tv }

isFilledMetaTyVar_maybe :: TcTyVar -> TcS (Maybe Type)
isFilledMetaTyVar_maybe tv
 = case tcTyVarDetails tv of
     MetaTv { mtv_ref = ref }
        -> do { cts <- wrapTcS (TcM.readTcRef ref)
              ; case cts of
                  Indirect ty -> return (Just ty)
                  Flexi       -> return Nothing }
     _ -> return Nothing

isFilledMetaTyVar :: TcTyVar -> TcS Bool
isFilledMetaTyVar tv = wrapTcS (TcM.isFilledMetaTyVar tv)

zonkTyCoVarsAndFV :: TcTyCoVarSet -> TcS TcTyCoVarSet
zonkTyCoVarsAndFV tvs = wrapTcS (TcM.zonkTyCoVarsAndFV tvs)

zonkCo :: Coercion -> TcS Coercion
zonkCo = wrapTcS . TcM.zonkCo

zonkTcType :: TcType -> TcS TcType
zonkTcType ty = wrapTcS (TcM.zonkTcType ty)

zonkTcTypes :: [TcType] -> TcS [TcType]
zonkTcTypes tys = wrapTcS (TcM.zonkTcTypes tys)

zonkTcTyVar :: TcTyVar -> TcS TcType
zonkTcTyVar tv = wrapTcS (TcM.zonkTcTyVar tv)

zonkSimples :: Cts -> TcS Cts
zonkSimples cts = wrapTcS (TcM.zonkSimples cts)

zonkWC :: WantedConstraints -> TcS WantedConstraints
zonkWC wc = wrapTcS (TcM.zonkWC wc)

{-
Note [Do not add duplicate derived insolubles]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general we *must* add an insoluble (Int ~ Bool) even if there is
one such there already, because they may come from distinct call
sites.  Not only do we want an error message for each, but with
-fdefer-type-errors we must generate evidence for each.  But for
*derived* insolubles, we only want to report each one once.  Why?

(a) A constraint (C r s t) where r -> s, say, may generate the same fundep
    equality many times, as the original constraint is successively rewritten.

(b) Ditto the successive iterations of the main solver itself, as it traverses
    the constraint tree. See example below.

Also for *given* insolubles we may get repeated errors, as we
repeatedly traverse the constraint tree.  These are relatively rare
anyway, so removing duplicates seems ok.  (Alternatively we could take
the SrcLoc into account.)

Note that the test does not need to be particularly efficient because
it is only used if the program has a type error anyway.

Example of (b): assume a top-level class and instance declaration:

  class D a b | a -> b
  instance D [a] [a]

Assume we have started with an implication:

  forall c. Eq c => { wc_simple = D [c] c [W] }

which we have simplified to:

  forall c. Eq c => { wc_simple = D [c] c [W]
                    , wc_insols = (c ~ [c]) [D] }

For some reason, e.g. because we floated an equality somewhere else,
we might try to re-solve this implication. If we do not do a
dropDerivedWC, then we will end up trying to solve the following
constraints the second time:

  (D [c] c) [W]
  (c ~ [c]) [D]

which will result in two Deriveds to end up in the insoluble set:

  wc_simple   = D [c] c [W]
  wc_insols = (c ~ [c]) [D], (c ~ [c]) [D]
-}

-- Flatten skolems
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
newFlattenSkolem :: CtFlavour -> CtLoc
                 -> TcType         -- F xis
                 -> TcS (CtEvidence, Coercion, TcTyVar)    -- [W] x:: F xis ~ fsk
newFlattenSkolem Given loc fam_ty
  = do { fsk <- newFsk fam_ty
       ; let co = mkNomReflCo fam_ty
       ; ev  <- newGivenEvVar loc (mkPrimEqPred fam_ty (mkTyVarTy fsk),
                                   EvCoercion co)
       ; return (ev, co, fsk) }

newFlattenSkolem Wanted loc fam_ty
  = do { fmv <- newFmv fam_ty
       ; (ev, hole_co) <- newWantedEq loc Nominal fam_ty (mkTyVarTy fmv)
       ; return (ev, hole_co, fmv) }

newFlattenSkolem Derived loc fam_ty
  = do { fmv <- newFmv fam_ty
       ; ev <- newDerivedNC loc (mkPrimEqPred fam_ty (mkTyVarTy fmv))
       ; return (ev, pprPanic "newFlattenSkolem [D]" (ppr fam_ty), fmv) }

newFsk, newFmv :: TcType -> TcS TcTyVar
newFsk fam_ty = wrapTcS (TcM.newFskTyVar fam_ty)
newFmv fam_ty = wrapTcS (TcM.newFmvTyVar fam_ty)

extendFlatCache :: TyCon -> [Type] -> (TcCoercion, TcType, CtFlavour) -> TcS ()
extendFlatCache tc xi_args stuff
  = do { dflags <- getDynFlags
       ; when (gopt Opt_FlatCache dflags) $
         updInertTcS $ \ is@(IS { inert_flat_cache = fc }) ->
            is { inert_flat_cache = insertExactFunEq fc tc xi_args stuff } }

-- Instantiations
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

instDFunType :: DFunId -> [DFunInstType] -> TcS ([TcType], TcThetaType)
instDFunType dfun_id inst_tys
  = wrapTcS $ TcM.instDFunType dfun_id inst_tys

newFlexiTcSTy :: Kind -> TcS TcType
newFlexiTcSTy knd = wrapTcS (TcM.newFlexiTyVarTy knd)

cloneMetaTyVar :: TcTyVar -> TcS TcTyVar
cloneMetaTyVar tv = wrapTcS (TcM.cloneMetaTyVar tv)

demoteUnfilledFmv :: TcTyVar -> TcS ()
-- If a flatten-meta-var is still un-filled,
-- turn it into an ordinary meta-var
demoteUnfilledFmv fmv
  = wrapTcS $ do { is_filled <- TcM.isFilledMetaTyVar fmv
                 ; unless is_filled $
                   do { tv_ty <- TcM.newFlexiTyVarTy (tyVarKind fmv)
                      ; TcM.writeMetaTyVar fmv tv_ty } }

instFlexiTcS :: [TKVar] -> TcS (TCvSubst, [TcType])
instFlexiTcS tvs = wrapTcS (mapAccumLM inst_one emptyTCvSubst tvs)
  where
     inst_one subst tv
         = do { ty' <- instFlexiTcSHelper (tyVarName tv)
                                          (substTyUnchecked subst (tyVarKind tv))
              ; return (extendTvSubst subst tv ty', ty') }

instFlexiTcSHelper :: Name -> Kind -> TcM TcType
instFlexiTcSHelper tvname kind
  = do { uniq <- TcM.newUnique
       ; details <- TcM.newMetaDetails TauTv
       ; let name = setNameUnique tvname uniq
       ; return (mkTyVarTy (mkTcTyVar name kind details)) }



-- Creating and setting evidence variables and CtFlavors
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

data MaybeNew = Fresh CtEvidence | Cached EvTerm

isFresh :: MaybeNew -> Bool
isFresh (Fresh {})  = True
isFresh (Cached {}) = False

freshGoals :: [MaybeNew] -> [CtEvidence]
freshGoals mns = [ ctev | Fresh ctev <- mns ]

getEvTerm :: MaybeNew -> EvTerm
getEvTerm (Fresh ctev) = ctEvTerm ctev
getEvTerm (Cached evt) = evt

setEvBind :: EvBind -> TcS ()
setEvBind ev_bind
  = do { tc_evbinds <- getTcEvBinds
       ; case tc_evbinds of
           Just evb -> wrapTcS $ TcM.addTcEvBind evb ev_bind
           Nothing  -> pprPanic "setEvBind" (ppr ev_bind) }

-- | Equalities only
setWantedEq :: TcEvDest -> Coercion -> TcS ()
setWantedEq (HoleDest hole) co
  = do { useVars (tyCoVarsOfCo co)
       ; wrapTcS $ TcM.fillCoercionHole hole co }
setWantedEq (EvVarDest ev) _ = pprPanic "setWantedEq" (ppr ev)

-- | Equalities only
setEqIfWanted :: CtEvidence -> Coercion -> TcS ()
setEqIfWanted (CtWanted { ctev_dest = dest }) co = setWantedEq dest co
setEqIfWanted _ _ = return ()

-- | Good for equalities and non-equalities
setWantedEvTerm :: TcEvDest -> EvTerm -> TcS ()
setWantedEvTerm (HoleDest hole) tm
  = do { let co = evTermCoercion tm
       ; useVars (tyCoVarsOfCo co)
       ; wrapTcS $ TcM.fillCoercionHole hole co }
setWantedEvTerm (EvVarDest ev) tm = setWantedEvBind ev tm

setWantedEvBind :: EvVar -> EvTerm -> TcS ()
setWantedEvBind ev_id tm = setEvBind (mkWantedEvBind ev_id tm)

setEvBindIfWanted :: CtEvidence -> EvTerm -> TcS ()
setEvBindIfWanted ev tm
  = case ev of
      CtWanted { ctev_dest = dest }
        -> setWantedEvTerm dest tm
      _ -> return ()

newTcEvBinds :: TcS EvBindsVar
newTcEvBinds = wrapTcS TcM.newTcEvBinds

newEvVar :: TcPredType -> TcS EvVar
newEvVar pred = wrapTcS (TcM.newEvVar pred)

newGivenEvVar :: CtLoc -> (TcPredType, EvTerm) -> TcS CtEvidence
-- Make a new variable of the given PredType,
-- immediately bind it to the given term
-- and return its CtEvidence
-- See Note [Bind new Givens immediately] in TcRnTypes
newGivenEvVar loc (pred, rhs)
  = do { new_ev <- newBoundEvVarId pred rhs
       ; return (CtGiven { ctev_pred = pred, ctev_evar = new_ev, ctev_loc = loc }) }

-- | Make a new 'Id' of the given type, bound (in the monad's EvBinds) to the
-- given term
newBoundEvVarId :: TcPredType -> EvTerm -> TcS EvVar
newBoundEvVarId pred rhs
  = do { new_ev <- newEvVar pred
       ; setEvBind (mkGivenEvBind new_ev rhs)
       ; return new_ev }

newGivenEvVars :: CtLoc -> [(TcPredType, EvTerm)] -> TcS [CtEvidence]
newGivenEvVars loc pts = mapM (newGivenEvVar loc) pts

-- | Make a new equality CtEvidence
newWantedEq :: CtLoc -> Role -> TcType -> TcType -> TcS (CtEvidence, Coercion)
newWantedEq loc role ty1 ty2
  = do { hole <- wrapTcS $ TcM.newCoercionHole
       ; traceTcS "Emitting new coercion hole" (ppr hole <+> dcolon <+> ppr pty)
       ; return ( CtWanted { ctev_pred = pty, ctev_dest = HoleDest hole
                           , ctev_loc = loc}
                , mkHoleCo hole role ty1 ty2 ) }
  where
    pty = mkPrimEqPredRole role ty1 ty2

-- no equalities here. Use newWantedEqNC instead
newWantedEvVarNC :: CtLoc -> TcPredType -> TcS CtEvidence
-- Don't look up in the solved/inerts; we know it's not there
newWantedEvVarNC loc pty
  = do { -- checkReductionDepth loc pty
       ; new_ev <- newEvVar pty
       ; traceTcS "Emitting new wanted" (ppr new_ev <+> dcolon <+> ppr pty $$
                                         pprCtLoc loc)
       ; return (CtWanted { ctev_pred = pty, ctev_dest = EvVarDest new_ev
                          , ctev_loc = loc })}

newWantedEvVar :: CtLoc -> TcPredType -> TcS MaybeNew
-- For anything except ClassPred, this is the same as newWantedEvVarNC
newWantedEvVar loc pty
  = do { mb_ct <- lookupInInerts pty
       ; case mb_ct of
            Just ctev
              | not (isDerived ctev)
              -> do { traceTcS "newWantedEvVar/cache hit" $ ppr ctev
                    ; return $ Cached (ctEvTerm ctev) }
            _ -> do { ctev <- newWantedEvVarNC loc pty
                    ; return (Fresh ctev) } }

-- deals with both equalities and non equalities. Tries to look
-- up non-equalities in the cache
newWanted :: CtLoc -> PredType -> TcS MaybeNew
newWanted loc pty
  | Just (role, ty1, ty2) <- getEqPredTys_maybe pty
  = Fresh . fst <$> newWantedEq loc role ty1 ty2
  | otherwise
  = newWantedEvVar loc pty

emitNewDerived :: CtLoc -> TcPredType -> TcS ()
emitNewDerived loc pred
  = do { ev <- newDerivedNC loc pred
       ; traceTcS "Emitting new derived" (ppr ev)
       ; updWorkListTcS (extendWorkListDerived loc ev) }

emitNewDeriveds :: CtLoc -> [TcPredType] -> TcS ()
emitNewDeriveds loc preds
  | null preds
  = return ()
  | otherwise
  = do { evs <- mapM (newDerivedNC loc) preds
       ; traceTcS "Emitting new deriveds" (ppr evs)
       ; updWorkListTcS (extendWorkListDeriveds loc evs) }

emitNewDerivedEq :: CtLoc -> Role -> TcType -> TcType -> TcS ()
-- Create new equality Derived and put it in the work list
-- There's no caching, no lookupInInerts
emitNewDerivedEq loc role ty1 ty2
  = do { ev <- newDerivedNC loc (mkPrimEqPredRole role ty1 ty2)
       ; traceTcS "Emitting new derived equality" (ppr ev $$ pprCtLoc loc)
       ; updWorkListTcS (extendWorkListDerived loc ev) }

newDerivedNC :: CtLoc -> TcPredType -> TcS CtEvidence
newDerivedNC loc pred
  = do { -- checkReductionDepth loc pred
       ; return (CtDerived { ctev_pred = pred, ctev_loc = loc }) }

-- --------- Check done in TcInteract.selectNewWorkItem???? ---------
-- | Checks if the depth of the given location is too much. Fails if
-- it's too big, with an appropriate error message.
checkReductionDepth :: CtLoc -> TcType   -- ^ type being reduced
                    -> TcS ()
checkReductionDepth loc ty
  = do { dflags <- getDynFlags
       ; when (subGoalDepthExceeded dflags (ctLocDepth loc)) $
         wrapErrTcS $
         solverDepthErrorTcS loc ty }

matchFam :: TyCon -> [Type] -> TcS (Maybe (Coercion, TcType))
matchFam tycon args = wrapTcS $ matchFamTcM tycon args

matchFamTcM :: TyCon -> [Type] -> TcM (Maybe (Coercion, TcType))
-- Given (F tys) return (ty, co), where co :: F tys ~ ty
matchFamTcM tycon args
  = do { fam_envs <- FamInst.tcGetFamInstEnvs
       ; return $ reduceTyFamApp_maybe fam_envs Nominal tycon args }

{-
Note [Residual implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The wl_implics in the WorkList are the residual implication
constraints that are generated while solving or canonicalising the
current worklist.  Specifically, when canonicalising
   (forall a. t1 ~ forall a. t2)
from which we get the implication
   (forall a. t1 ~ t2)
See TcSMonad.deferTcSForAllEq
-}

-- Deferring forall equalities as implications
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

deferTcSForAllEq :: Role -- Nominal or Representational
                 -> CtLoc  -- Original wanted equality flavor
                 -> [Coercion]        -- among the kinds of the binders
                 -> ([TyBinder],TcType)   -- ForAll tvs1 body1
                 -> ([TyBinder],TcType)   -- ForAll tvs2 body2
                 -> TcS Coercion
deferTcSForAllEq role loc kind_cos (bndrs1,body1) (bndrs2,body2)
 = do { let tvs1'  = zipWithEqual "deferTcSForAllEq"
                       mkCastTy (mkTyVarTys tvs1) kind_cos
            body2' = substTyWithUnchecked tvs2 tvs1' body2
      ; (subst, skol_tvs) <- wrapTcS $ TcM.tcInstSkolTyVars tvs1
      ; let phi1  = Type.substTyUnchecked subst body1
            phi2  = Type.substTyUnchecked subst body2'
            skol_info = UnifyForAllSkol phi1

      ; (ctev, hole_co) <- newWantedEq loc role phi1 phi2
      ; env <- getLclEnv
      ; let new_tclvl = pushTcLevel (tcl_tclvl env)
            wc        = WC { wc_simple = singleCt (mkNonCanonical ctev)
                           , wc_impl   = emptyBag
                           , wc_insol  = emptyCts }
            imp       = Implic { ic_tclvl  = new_tclvl
                               , ic_skols  = skol_tvs
                               , ic_no_eqs = True
                               , ic_given  = []
                               , ic_wanted = wc
                               , ic_status = IC_Unsolved
                               , ic_binds  = Nothing -- no place to put binds
                               , ic_env    = env
                               , ic_info   = skol_info }
      ; updWorkListTcS (extendWorkListImplic imp)
      ; let cobndrs    = zip skol_tvs kind_cos
      ; return $ mkForAllCos cobndrs hole_co }
   where
     tvs1 = map (binderVar "deferTcSForAllEq") bndrs1
     tvs2 = map (binderVar "deferTcSForAllEq") bndrs2