summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcInstDcls.hs
blob: 9da27bfcd3b0f2433ccd16c14b40c0a1c8ef83ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


TcInstDecls: Typechecking instance declarations
-}

{-# LANGUAGE CPP #-}

module TcInstDcls ( tcInstDecls1, tcInstDecls2 ) where

#include "HsVersions.h"

import HsSyn
import TcBinds
import TcTyClsDecls
import TcClassDcl( tcClassDecl2, tcATDefault,
                   HsSigFun, lookupHsSig, mkHsSigFun,
                   findMethodBind, instantiateMethod )
import TcPat      ( addInlinePrags, lookupPragEnv, emptyPragEnv )
import TcRnMonad
import TcValidity
import TcHsSyn    ( zonkTcTypeToTypes, emptyZonkEnv )
import TcMType
import TcType
import BuildTyCl
import Inst
import InstEnv
import FamInst
import FamInstEnv
import TcDeriv
import TcEnv
import TcHsType
import TcUnify
import MkCore     ( nO_METHOD_BINDING_ERROR_ID )
import Type
import TcEvidence
import TyCon
import CoAxiom
import DataCon
import Class
import Var
import VarEnv
import VarSet
import PrelNames  ( typeableClassName, genericClassNames )
import Bag
import BasicTypes
import DynFlags
import ErrUtils
import FastString
import HscTypes ( isHsBootOrSig )
import Id
import MkId
import Name
import NameSet
import Outputable
import SrcLoc
import Util
import BooleanFormula ( isUnsatisfied, pprBooleanFormulaNice )
import qualified GHC.LanguageExtensions as LangExt

import Control.Monad
import Maybes
import Data.List  ( partition )



{-
Typechecking instance declarations is done in two passes. The first
pass, made by @tcInstDecls1@, collects information to be used in the
second pass.

This pre-processed info includes the as-yet-unprocessed bindings
inside the instance declaration.  These are type-checked in the second
pass, when the class-instance envs and GVE contain all the info from
all the instance and value decls.  Indeed that's the reason we need
two passes over the instance decls.


Note [How instance declarations are translated]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is how we translate instance declarations into Core

Running example:
        class C a where
           op1, op2 :: Ix b => a -> b -> b
           op2 = <dm-rhs>

        instance C a => C [a]
           {-# INLINE [2] op1 #-}
           op1 = <rhs>
===>
        -- Method selectors
        op1,op2 :: forall a. C a => forall b. Ix b => a -> b -> b
        op1 = ...
        op2 = ...

        -- Default methods get the 'self' dictionary as argument
        -- so they can call other methods at the same type
        -- Default methods get the same type as their method selector
        $dmop2 :: forall a. C a => forall b. Ix b => a -> b -> b
        $dmop2 = /\a. \(d:C a). /\b. \(d2: Ix b). <dm-rhs>
               -- NB: type variables 'a' and 'b' are *both* in scope in <dm-rhs>
               -- Note [Tricky type variable scoping]

        -- A top-level definition for each instance method
        -- Here op1_i, op2_i are the "instance method Ids"
        -- The INLINE pragma comes from the user pragma
        {-# INLINE [2] op1_i #-}  -- From the instance decl bindings
        op1_i, op2_i :: forall a. C a => forall b. Ix b => [a] -> b -> b
        op1_i = /\a. \(d:C a).
               let this :: C [a]
                   this = df_i a d
                     -- Note [Subtle interaction of recursion and overlap]

                   local_op1 :: forall b. Ix b => [a] -> b -> b
                   local_op1 = <rhs>
                     -- Source code; run the type checker on this
                     -- NB: Type variable 'a' (but not 'b') is in scope in <rhs>
                     -- Note [Tricky type variable scoping]

               in local_op1 a d

        op2_i = /\a \d:C a. $dmop2 [a] (df_i a d)

        -- The dictionary function itself
        {-# NOINLINE CONLIKE df_i #-}   -- Never inline dictionary functions
        df_i :: forall a. C a -> C [a]
        df_i = /\a. \d:C a. MkC (op1_i a d) (op2_i a d)
                -- But see Note [Default methods in instances]
                -- We can't apply the type checker to the default-method call

        -- Use a RULE to short-circuit applications of the class ops
        {-# RULE "op1@C[a]" forall a, d:C a.
                            op1 [a] (df_i d) = op1_i a d #-}

Note [Instances and loop breakers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Note that df_i may be mutually recursive with both op1_i and op2_i.
  It's crucial that df_i is not chosen as the loop breaker, even
  though op1_i has a (user-specified) INLINE pragma.

* Instead the idea is to inline df_i into op1_i, which may then select
  methods from the MkC record, and thereby break the recursion with
  df_i, leaving a *self*-recurisve op1_i.  (If op1_i doesn't call op at
  the same type, it won't mention df_i, so there won't be recursion in
  the first place.)

* If op1_i is marked INLINE by the user there's a danger that we won't
  inline df_i in it, and that in turn means that (since it'll be a
  loop-breaker because df_i isn't), op1_i will ironically never be
  inlined.  But this is OK: the recursion breaking happens by way of
  a RULE (the magic ClassOp rule above), and RULES work inside InlineRule
  unfoldings. See Note [RULEs enabled in SimplGently] in SimplUtils

Note [ClassOp/DFun selection]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
One thing we see a lot is stuff like
    op2 (df d1 d2)
where 'op2' is a ClassOp and 'df' is DFun.  Now, we could inline *both*
'op2' and 'df' to get
     case (MkD ($cop1 d1 d2) ($cop2 d1 d2) ... of
       MkD _ op2 _ _ _ -> op2
And that will reduce to ($cop2 d1 d2) which is what we wanted.

But it's tricky to make this work in practice, because it requires us to
inline both 'op2' and 'df'.  But neither is keen to inline without having
seen the other's result; and it's very easy to get code bloat (from the
big intermediate) if you inline a bit too much.

Instead we use a cunning trick.
 * We arrange that 'df' and 'op2' NEVER inline.

 * We arrange that 'df' is ALWAYS defined in the sylised form
      df d1 d2 = MkD ($cop1 d1 d2) ($cop2 d1 d2) ...

 * We give 'df' a magical unfolding (DFunUnfolding [$cop1, $cop2, ..])
   that lists its methods.

 * We make CoreUnfold.exprIsConApp_maybe spot a DFunUnfolding and return
   a suitable constructor application -- inlining df "on the fly" as it
   were.

 * ClassOp rules: We give the ClassOp 'op2' a BuiltinRule that
   extracts the right piece iff its argument satisfies
   exprIsConApp_maybe.  This is done in MkId mkDictSelId

 * We make 'df' CONLIKE, so that shared uses still match; eg
      let d = df d1 d2
      in ...(op2 d)...(op1 d)...

Note [Single-method classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the class has just one method (or, more accurately, just one element
of {superclasses + methods}), then we use a different strategy.

   class C a where op :: a -> a
   instance C a => C [a] where op = <blah>

We translate the class decl into a newtype, which just gives a
top-level axiom. The "constructor" MkC expands to a cast, as does the
class-op selector.

   axiom Co:C a :: C a ~ (a->a)

   op :: forall a. C a -> (a -> a)
   op a d = d |> (Co:C a)

   MkC :: forall a. (a->a) -> C a
   MkC = /\a.\op. op |> (sym Co:C a)

The clever RULE stuff doesn't work now, because ($df a d) isn't
a constructor application, so exprIsConApp_maybe won't return
Just <blah>.

Instead, we simply rely on the fact that casts are cheap:

   $df :: forall a. C a => C [a]
   {-# INLINE df #-}  -- NB: INLINE this
   $df = /\a. \d. MkC [a] ($cop_list a d)
       = $cop_list |> forall a. C a -> (sym (Co:C [a]))

   $cop_list :: forall a. C a => [a] -> [a]
   $cop_list = <blah>

So if we see
   (op ($df a d))
we'll inline 'op' and '$df', since both are simply casts, and
good things happen.

Why do we use this different strategy?  Because otherwise we
end up with non-inlined dictionaries that look like
    $df = $cop |> blah
which adds an extra indirection to every use, which seems stupid.  See
Trac #4138 for an example (although the regression reported there
wasn't due to the indirection).

There is an awkward wrinkle though: we want to be very
careful when we have
    instance C a => C [a] where
      {-# INLINE op #-}
      op = ...
then we'll get an INLINE pragma on $cop_list but it's important that
$cop_list only inlines when it's applied to *two* arguments (the
dictionary and the list argument).  So we must not eta-expand $df
above.  We ensure that this doesn't happen by putting an INLINE
pragma on the dfun itself; after all, it ends up being just a cast.

There is one more dark corner to the INLINE story, even more deeply
buried.  Consider this (Trac #3772):

    class DeepSeq a => C a where
      gen :: Int -> a

    instance C a => C [a] where
      gen n = ...

    class DeepSeq a where
      deepSeq :: a -> b -> b

    instance DeepSeq a => DeepSeq [a] where
      {-# INLINE deepSeq #-}
      deepSeq xs b = foldr deepSeq b xs

That gives rise to these defns:

    $cdeepSeq :: DeepSeq a -> [a] -> b -> b
    -- User INLINE( 3 args )!
    $cdeepSeq a (d:DS a) b (x:[a]) (y:b) = ...

    $fDeepSeq[] :: DeepSeq a -> DeepSeq [a]
    -- DFun (with auto INLINE pragma)
    $fDeepSeq[] a d = $cdeepSeq a d |> blah

    $cp1 a d :: C a => DeepSep [a]
    -- We don't want to eta-expand this, lest
    -- $cdeepSeq gets inlined in it!
    $cp1 a d = $fDeepSep[] a (scsel a d)

    $fC[] :: C a => C [a]
    -- Ordinary DFun
    $fC[] a d = MkC ($cp1 a d) ($cgen a d)

Here $cp1 is the code that generates the superclass for C [a].  The
issue is this: we must not eta-expand $cp1 either, or else $fDeepSeq[]
and then $cdeepSeq will inline there, which is definitely wrong.  Like
on the dfun, we solve this by adding an INLINE pragma to $cp1.

Note [Subtle interaction of recursion and overlap]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
  class C a where { op1,op2 :: a -> a }
  instance C a => C [a] where
    op1 x = op2 x ++ op2 x
    op2 x = ...
  instance C [Int] where
    ...

When type-checking the C [a] instance, we need a C [a] dictionary (for
the call of op2).  If we look up in the instance environment, we find
an overlap.  And in *general* the right thing is to complain (see Note
[Overlapping instances] in InstEnv).  But in *this* case it's wrong to
complain, because we just want to delegate to the op2 of this same
instance.

Why is this justified?  Because we generate a (C [a]) constraint in
a context in which 'a' cannot be instantiated to anything that matches
other overlapping instances, or else we would not be executing this
version of op1 in the first place.

It might even be a bit disguised:

  nullFail :: C [a] => [a] -> [a]
  nullFail x = op2 x ++ op2 x

  instance C a => C [a] where
    op1 x = nullFail x

Precisely this is used in package 'regex-base', module Context.hs.
See the overlapping instances for RegexContext, and the fact that they
call 'nullFail' just like the example above.  The DoCon package also
does the same thing; it shows up in module Fraction.hs.

Conclusion: when typechecking the methods in a C [a] instance, we want to
treat the 'a' as an *existential* type variable, in the sense described
by Note [Binding when looking up instances].  That is why isOverlappableTyVar
responds True to an InstSkol, which is the kind of skolem we use in
tcInstDecl2.


Note [Tricky type variable scoping]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In our example
        class C a where
           op1, op2 :: Ix b => a -> b -> b
           op2 = <dm-rhs>

        instance C a => C [a]
           {-# INLINE [2] op1 #-}
           op1 = <rhs>

note that 'a' and 'b' are *both* in scope in <dm-rhs>, but only 'a' is
in scope in <rhs>.  In particular, we must make sure that 'b' is in
scope when typechecking <dm-rhs>.  This is achieved by subFunTys,
which brings appropriate tyvars into scope. This happens for both
<dm-rhs> and for <rhs>, but that doesn't matter: the *renamer* will have
complained if 'b' is mentioned in <rhs>.



************************************************************************
*                                                                      *
\subsection{Extracting instance decls}
*                                                                      *
************************************************************************

Gather up the instance declarations from their various sources
-}

tcInstDecls1    -- Deal with both source-code and imported instance decls
   :: [TyClGroup Name]          -- For deriving stuff
   -> [LInstDecl Name]          -- Source code instance decls
   -> [LDerivDecl Name]         -- Source code stand-alone deriving decls
   -> TcM (TcGblEnv,            -- The full inst env
           [InstInfo Name],     -- Source-code instance decls to process;
                                -- contains all dfuns for this module
           HsValBinds Name)     -- Supporting bindings for derived instances

tcInstDecls1 tycl_decls inst_decls deriv_decls
  = checkNoErrs $
    do {    -- Stop if addInstInfos etc discovers any errors
            -- (they recover, so that we get more than one error each
            -- round)

            -- Do class and family instance declarations
       ; stuff <- mapAndRecoverM tcLocalInstDecl inst_decls
       ; let (local_infos_s, fam_insts_s, datafam_deriv_infos) = unzip3 stuff
             fam_insts    = concat fam_insts_s
             local_infos' = concat local_infos_s
             -- Handwritten instances of the poly-kinded Typeable class are
             -- forbidden, so we handle those separately
             (typeable_instances, local_infos)
                = partition bad_typeable_instance local_infos'

       ; addClsInsts local_infos $
         addFamInsts fam_insts   $
    do {    -- Compute instances from "deriving" clauses;
            -- This stuff computes a context for the derived instance
            -- decl, so it needs to know about all the instances possible
            -- NB: class instance declarations can contain derivings as
            --     part of associated data type declarations
         failIfErrsM    -- If the addInsts stuff gave any errors, don't
                        -- try the deriving stuff, because that may give
                        -- more errors still

       ; traceTc "tcDeriving" Outputable.empty
       ; th_stage <- getStage   -- See Note [Deriving inside TH brackets ]
       ; (gbl_env, deriv_inst_info, deriv_binds)
              <- if isBrackStage th_stage
                 then do { gbl_env <- getGblEnv
                         ; return (gbl_env, emptyBag, emptyValBindsOut) }
                 else do { data_deriv_infos <- mkDerivInfos tycl_decls
                         ; let deriv_infos = concat datafam_deriv_infos ++
                                             data_deriv_infos
                         ; tcDeriving deriv_infos deriv_decls }

       -- Fail if there are any handwritten instance of poly-kinded Typeable
       ; mapM_ typeable_err typeable_instances

       -- Check that if the module is compiled with -XSafe, there are no
       -- hand written instances of old Typeable as then unsafe casts could be
       -- performed. Derived instances are OK.
       ; dflags <- getDynFlags
       ; when (safeLanguageOn dflags) $ forM_ local_infos $ \x -> case x of
             _ | genInstCheck x -> addErrAt (getSrcSpan $ iSpec x) (genInstErr x)
             _ -> return ()

       -- As above but for Safe Inference mode.
       ; when (safeInferOn dflags) $ forM_ local_infos $ \x -> case x of
             _ | genInstCheck x -> recordUnsafeInfer emptyBag
             _ -> return ()

       ; return ( gbl_env
                , bagToList deriv_inst_info ++ local_infos
                , deriv_binds )
    }}
  where
    -- Separate the Typeable instances from the rest
    bad_typeable_instance i
      = typeableClassName == is_cls_nm (iSpec i)

    -- Check for hand-written Generic instances (disallowed in Safe Haskell)
    genInstCheck ty = is_cls_nm (iSpec ty) `elem` genericClassNames
    genInstErr i = hang (text ("Generic instances can only be "
                            ++ "derived in Safe Haskell.") $+$
                         text "Replace the following instance:")
                     2 (pprInstanceHdr (iSpec i))

    -- Report an error or a warning for a Typeable instances.
    -- If we are working on an .hs-boot file, we just report a warning,
    -- and ignore the instance.  We do this, to give users a chance to fix
    -- their code.
    typeable_err i =
      setSrcSpan (getSrcSpan (iSpec i)) $
        do env <- getGblEnv
           if isHsBootOrSig (tcg_src env)
             then
               do warn <- woptM Opt_WarnDerivingTypeable
                  when warn $ addWarnTc (Reason Opt_WarnDerivingTypeable) $ vcat
                    [ ppTypeable <+> text "instances in .hs-boot files are ignored"
                    , text "This warning will become an error in future versions of the compiler"
                    ]
             else addErrTc $ text "Class" <+> ppTypeable
                             <+> text "does not support user-specified instances"
    ppTypeable :: SDoc
    ppTypeable = quotes (ppr typeableClassName)

addClsInsts :: [InstInfo Name] -> TcM a -> TcM a
addClsInsts infos thing_inside
  = tcExtendLocalInstEnv (map iSpec infos) thing_inside

addFamInsts :: [FamInst] -> TcM a -> TcM a
-- Extend (a) the family instance envt
--        (b) the type envt with stuff from data type decls
addFamInsts fam_insts thing_inside
  = tcExtendLocalFamInstEnv fam_insts $
    tcExtendGlobalEnv axioms $
    tcExtendTyConEnv data_rep_tycons  $
    do { traceTc "addFamInsts" (pprFamInsts fam_insts)
       ; tcg_env <- tcAddImplicits data_rep_tycons
                    -- Does not add its axiom; that comes from
                    -- adding the 'axioms' above
       ; setGblEnv tcg_env thing_inside }
  where
    axioms = map (ACoAxiom . toBranchedAxiom . famInstAxiom) fam_insts
    data_rep_tycons = famInstsRepTyCons fam_insts
      -- The representation tycons for 'data instances' declarations

{-
Note [Deriving inside TH brackets]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given a declaration bracket
  [d| data T = A | B deriving( Show ) |]

there is really no point in generating the derived code for deriving(
Show) and then type-checking it. This will happen at the call site
anyway, and the type check should never fail!  Moreover (Trac #6005)
the scoping of the generated code inside the bracket does not seem to
work out.

The easy solution is simply not to generate the derived instances at
all.  (A less brutal solution would be to generate them with no
bindings.)  This will become moot when we shift to the new TH plan, so
the brutal solution will do.
-}

tcLocalInstDecl :: LInstDecl Name
                -> TcM ([InstInfo Name], [FamInst], [DerivInfo])
        -- A source-file instance declaration
        -- Type-check all the stuff before the "where"
        --
        -- We check for respectable instance type, and context
tcLocalInstDecl (L loc (TyFamInstD { tfid_inst = decl }))
  = do { fam_inst <- tcTyFamInstDecl Nothing (L loc decl)
       ; return ([], [fam_inst], []) }

tcLocalInstDecl (L loc (DataFamInstD { dfid_inst = decl }))
  = do { (fam_inst, m_deriv_info) <- tcDataFamInstDecl Nothing (L loc decl)
       ; return ([], [fam_inst], maybeToList m_deriv_info) }

tcLocalInstDecl (L loc (ClsInstD { cid_inst = decl }))
  = do { (insts, fam_insts, deriv_infos) <- tcClsInstDecl (L loc decl)
       ; return (insts, fam_insts, deriv_infos) }

tcClsInstDecl :: LClsInstDecl Name
              -> TcM ([InstInfo Name], [FamInst], [DerivInfo])
-- the returned DerivInfos are for any associated data families
tcClsInstDecl (L loc (ClsInstDecl { cid_poly_ty = poly_ty, cid_binds = binds
                                  , cid_sigs = uprags, cid_tyfam_insts = ats
                                  , cid_overlap_mode = overlap_mode
                                  , cid_datafam_insts = adts }))
  = setSrcSpan loc                      $
    addErrCtxt (instDeclCtxt1 poly_ty)  $
    do  { is_boot <- tcIsHsBootOrSig
        ; checkTc (not is_boot || (isEmptyLHsBinds binds && null uprags))
                  badBootDeclErr

        ; (tyvars, theta, clas, inst_tys) <- tcHsClsInstType InstDeclCtxt poly_ty
        ; let mini_env   = mkVarEnv (classTyVars clas `zip` inst_tys)
              mini_subst = mkTvSubst (mkInScopeSet (mkVarSet tyvars)) mini_env
              mb_info    = Just (clas, mini_env)

        -- Next, process any associated types.
        ; traceTc "tcLocalInstDecl" (ppr poly_ty)
        ; tyfam_insts0  <- tcExtendTyVarEnv tyvars $
                           mapAndRecoverM (tcTyFamInstDecl mb_info) ats
        ; datafam_stuff <- tcExtendTyVarEnv tyvars $
                           mapAndRecoverM (tcDataFamInstDecl mb_info) adts
        ; let (datafam_insts, m_deriv_infos) = unzip datafam_stuff
              deriv_infos                    = catMaybes m_deriv_infos

        -- Check for missing associated types and build them
        -- from their defaults (if available)
        ; let defined_ats = mkNameSet (map (tyFamInstDeclName . unLoc) ats)
                            `unionNameSet`
                            mkNameSet (map (unLoc . dfid_tycon . unLoc) adts)
        ; tyfam_insts1 <- mapM (tcATDefault True loc mini_subst defined_ats)
                               (classATItems clas)

        -- Finally, construct the Core representation of the instance.
        -- (This no longer includes the associated types.)
        ; dfun_name <- newDFunName clas inst_tys (getLoc (hsSigType poly_ty))
                -- Dfun location is that of instance *header*

        ; ispec <- newClsInst (fmap unLoc overlap_mode) dfun_name tyvars theta
                              clas inst_tys
        ; let inst_info = InstInfo { iSpec  = ispec
                                   , iBinds = InstBindings
                                     { ib_binds = binds
                                     , ib_tyvars = map Var.varName tyvars -- Scope over bindings
                                     , ib_pragmas = uprags
                                     , ib_extensions = []
                                     , ib_derived = False } }

        ; return ( [inst_info], tyfam_insts0 ++ concat tyfam_insts1 ++ datafam_insts
                 , deriv_infos ) }


{-
************************************************************************
*                                                                      *
               Type checking family instances
*                                                                      *
************************************************************************

Family instances are somewhat of a hybrid.  They are processed together with
class instance heads, but can contain data constructors and hence they share a
lot of kinding and type checking code with ordinary algebraic data types (and
GADTs).
-}

tcFamInstDeclCombined :: Maybe ClsInfo
                      -> Located Name -> TcM TyCon
tcFamInstDeclCombined mb_clsinfo fam_tc_lname
  = do { -- Type family instances require -XTypeFamilies
         -- and can't (currently) be in an hs-boot file
       ; traceTc "tcFamInstDecl" (ppr fam_tc_lname)
       ; type_families <- xoptM LangExt.TypeFamilies
       ; is_boot <- tcIsHsBootOrSig   -- Are we compiling an hs-boot file?
       ; checkTc type_families $ badFamInstDecl fam_tc_lname
       ; checkTc (not is_boot) $ badBootFamInstDeclErr

       -- Look up the family TyCon and check for validity including
       -- check that toplevel type instances are not for associated types.
       ; fam_tc <- tcLookupLocatedTyCon fam_tc_lname
       ; when (isNothing mb_clsinfo &&   -- Not in a class decl
               isTyConAssoc fam_tc)      -- but an associated type
              (addErr $ assocInClassErr fam_tc_lname)

       ; return fam_tc }

tcTyFamInstDecl :: Maybe ClsInfo
                -> LTyFamInstDecl Name -> TcM FamInst
  -- "type instance"
tcTyFamInstDecl mb_clsinfo (L loc decl@(TyFamInstDecl { tfid_eqn = eqn }))
  = setSrcSpan loc           $
    tcAddTyFamInstCtxt decl  $
    do { let fam_lname = tfe_tycon (unLoc eqn)
       ; fam_tc <- tcFamInstDeclCombined mb_clsinfo fam_lname

         -- (0) Check it's an open type family
       ; checkTc (isFamilyTyCon fam_tc)         (notFamily fam_tc)
       ; checkTc (isTypeFamilyTyCon fam_tc)     (wrongKindOfFamily fam_tc)
       ; checkTc (isOpenTypeFamilyTyCon fam_tc) (notOpenFamily fam_tc)

         -- (1) do the work of verifying the synonym group
       ; co_ax_branch <- tcTyFamInstEqn (famTyConShape fam_tc) mb_clsinfo eqn

         -- (2) check for validity
       ; checkValidCoAxBranch mb_clsinfo fam_tc co_ax_branch

         -- (3) construct coercion axiom
       ; rep_tc_name <- newFamInstAxiomName fam_lname [coAxBranchLHS co_ax_branch]
       ; let axiom = mkUnbranchedCoAxiom rep_tc_name fam_tc co_ax_branch
       ; newFamInst SynFamilyInst axiom }

tcDataFamInstDecl :: Maybe ClsInfo
                  -> LDataFamInstDecl Name -> TcM (FamInst, Maybe DerivInfo)
  -- "newtype instance" and "data instance"
tcDataFamInstDecl mb_clsinfo
    (L loc decl@(DataFamInstDecl
       { dfid_pats = pats
       , dfid_tycon = fam_tc_name
       , dfid_defn = defn@HsDataDefn { dd_ND = new_or_data, dd_cType = cType
                                     , dd_ctxt = ctxt, dd_cons = cons
                                     , dd_derivs = derivs } }))
  = setSrcSpan loc             $
    tcAddDataFamInstCtxt decl  $
    do { fam_tc <- tcFamInstDeclCombined mb_clsinfo fam_tc_name

         -- Check that the family declaration is for the right kind
       ; checkTc (isFamilyTyCon fam_tc) (notFamily fam_tc)
       ; checkTc (isDataFamilyTyCon fam_tc) (wrongKindOfFamily fam_tc)

         -- Kind check type patterns
       ; tcFamTyPats (famTyConShape fam_tc) mb_clsinfo pats
                     (kcDataDefn (unLoc fam_tc_name) pats defn) $
           \tvs' pats' res_kind -> do
       {
         -- Check that left-hand sides are ok (mono-types, no type families,
         -- consistent instantiations, etc)
       ; checkValidFamPats mb_clsinfo fam_tc tvs' [] pats'

         -- Result kind must be '*' (otherwise, we have too few patterns)
       ; checkTc (isLiftedTypeKind res_kind) $ tooFewParmsErr (tyConArity fam_tc)

       ; stupid_theta <- solveEqualities $ tcHsContext ctxt
       ; stupid_theta <- zonkTcTypeToTypes emptyZonkEnv stupid_theta
       ; gadt_syntax <- dataDeclChecks (tyConName fam_tc) new_or_data stupid_theta cons

         -- Construct representation tycon
       ; rep_tc_name <- newFamInstTyConName fam_tc_name pats'
       ; axiom_name  <- newFamInstAxiomName fam_tc_name [pats']
       ; let (eta_pats, etad_tvs) = eta_reduce pats'
             eta_tvs              = filterOut (`elem` etad_tvs) tvs'
             full_tvs             = eta_tvs ++ etad_tvs
                 -- Put the eta-removed tyvars at the end
                 -- Remember, tvs' is in arbitrary order (except kind vars are
                 -- first, so there is no reason to suppose that the etad_tvs
                 -- (obtained from the pats) are at the end (Trac #11148)
             orig_res_ty          = mkTyConApp fam_tc pats'

       ; (rep_tc, axiom) <- fixM $ \ ~(rec_rep_tc, _) ->
           do { data_cons <- tcConDecls new_or_data
                                        rec_rep_tc
                                        (full_tvs, orig_res_ty) cons
              ; tc_rhs <- case new_or_data of
                     DataType -> return (mkDataTyConRhs data_cons)
                     NewType  -> ASSERT( not (null data_cons) )
                                 mkNewTyConRhs rep_tc_name rec_rep_tc (head data_cons)
              -- freshen tyvars
              ; let axiom  = mkSingleCoAxiom Representational
                                             axiom_name eta_tvs [] fam_tc eta_pats
                                             (mkTyConApp rep_tc (mkTyVarTys eta_tvs))
                    parent = DataFamInstTyCon axiom fam_tc pats'
                    ty_binders = mkTyBindersPreferAnon full_tvs liftedTypeKind


                      -- NB: Use the full_tvs from the pats. See bullet toward
                      -- the end of Note [Data type families] in TyCon
                    rep_tc   = mkAlgTyCon rep_tc_name
                                          ty_binders liftedTypeKind
                                          full_tvs
                                          (map (const Nominal) full_tvs)
                                          (fmap unLoc cType) stupid_theta
                                          tc_rhs parent
                                          Recursive gadt_syntax
                 -- We always assume that indexed types are recursive.  Why?
                 -- (1) Due to their open nature, we can never be sure that a
                 -- further instance might not introduce a new recursive
                 -- dependency.  (2) They are always valid loop breakers as
                 -- they involve a coercion.
              ; return (rep_tc, axiom) }

         -- Remember to check validity; no recursion to worry about here
       ; checkValidTyCon rep_tc

       ; let m_deriv_info = case derivs of
               Nothing          -> Nothing
               Just (L _ preds) ->
                 Just $ DerivInfo { di_rep_tc = rep_tc
                                  , di_preds  = preds
                                  , di_ctxt   = tcMkDataFamInstCtxt decl }

       ; fam_inst <- newFamInst (DataFamilyInst rep_tc) axiom
       ; return (fam_inst, m_deriv_info) } }
  where
    eta_reduce :: [Type] -> ([Type], [TyVar])
    -- See Note [Eta reduction for data families] in FamInstEnv
    -- Splits the incoming patterns into two: the [TyVar]
    -- are the patterns that can be eta-reduced away.
    -- e.g.     T [a] Int a d c   ==>  (T [a] Int a, [d,c])
    --
    -- NB: quadratic algorithm, but types are small here
    eta_reduce pats
      = go (reverse pats) []
    go (pat:pats) etad_tvs
      | Just tv <- getTyVar_maybe pat
      , not (tv `elemVarSet` tyCoVarsOfTypes pats)
      = go pats (tv : etad_tvs)
    go pats etad_tvs = (reverse pats, etad_tvs)


{- *********************************************************************
*                                                                      *
      Type-checking instance declarations, pass 2
*                                                                      *
********************************************************************* -}

tcInstDecls2 :: [LTyClDecl Name] -> [InstInfo Name]
             -> TcM (LHsBinds Id)
-- (a) From each class declaration,
--      generate any default-method bindings
-- (b) From each instance decl
--      generate the dfun binding

tcInstDecls2 tycl_decls inst_decls
  = do  { -- (a) Default methods from class decls
          let class_decls = filter (isClassDecl . unLoc) tycl_decls
        ; dm_binds_s <- mapM tcClassDecl2 class_decls
        ; let dm_binds = unionManyBags dm_binds_s

          -- (b) instance declarations
        ; let dm_ids = collectHsBindsBinders dm_binds
              -- Add the default method Ids (again)
              -- See Note [Default methods and instances]
        ; inst_binds_s <- tcExtendLetEnv TopLevel dm_ids $
                          mapM tcInstDecl2 inst_decls

          -- Done
        ; return (dm_binds `unionBags` unionManyBags inst_binds_s) }

{-
See Note [Default methods and instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The default method Ids are already in the type environment (see Note
[Default method Ids and Template Haskell] in TcTyClsDcls), BUT they
don't have their InlinePragmas yet.  Usually that would not matter,
because the simplifier propagates information from binding site to
use.  But, unusually, when compiling instance decls we *copy* the
INLINE pragma from the default method to the method for that
particular operation (see Note [INLINE and default methods] below).

So right here in tcInstDecls2 we must re-extend the type envt with
the default method Ids replete with their INLINE pragmas.  Urk.
-}

tcInstDecl2 :: InstInfo Name -> TcM (LHsBinds Id)
            -- Returns a binding for the dfun
tcInstDecl2 (InstInfo { iSpec = ispec, iBinds = ibinds })
  = recoverM (return emptyLHsBinds)             $
    setSrcSpan loc                              $
    addErrCtxt (instDeclCtxt2 (idType dfun_id)) $
    do {  -- Instantiate the instance decl with skolem constants
       ; (inst_tyvars, dfun_theta, inst_head) <- tcSkolDFunType (idType dfun_id)
       ; dfun_ev_vars <- newEvVars dfun_theta
                     -- We instantiate the dfun_id with superSkolems.
                     -- See Note [Subtle interaction of recursion and overlap]
                     -- and Note [Binding when looking up instances]

       ; let (clas, inst_tys) = tcSplitDFunHead inst_head
             (class_tyvars, sc_theta, _, op_items) = classBigSig clas
             sc_theta' = substTheta (zipTvSubst class_tyvars inst_tys) sc_theta

       ; traceTc "tcInstDecl2" (vcat [ppr inst_tyvars, ppr inst_tys, ppr dfun_theta, ppr sc_theta'])

                      -- Deal with 'SPECIALISE instance' pragmas
                      -- See Note [SPECIALISE instance pragmas]
       ; spec_inst_info@(spec_inst_prags,_) <- tcSpecInstPrags dfun_id ibinds

         -- Typecheck superclasses and methods
         -- See Note [Typechecking plan for instance declarations]
       ; dfun_ev_binds_var <- newTcEvBinds
       ; let dfun_ev_binds = TcEvBinds dfun_ev_binds_var
       ; ((sc_meth_ids, sc_meth_binds, sc_meth_implics), tclvl)
             <- pushTcLevelM $
                do { fam_envs <- tcGetFamInstEnvs
                   ; (sc_ids, sc_binds, sc_implics)
                        <- tcSuperClasses dfun_id clas inst_tyvars dfun_ev_vars
                                          inst_tys dfun_ev_binds fam_envs
                                          sc_theta'

                      -- Typecheck the methods
                   ; (meth_ids, meth_binds, meth_implics)
                        <- tcMethods dfun_id clas inst_tyvars dfun_ev_vars
                                     inst_tys dfun_ev_binds spec_inst_info
                                     op_items ibinds

                   ; return ( sc_ids     ++          meth_ids
                            , sc_binds   `unionBags` meth_binds
                            , sc_implics `unionBags` meth_implics ) }

       ; env <- getLclEnv
       ; emitImplication $ Implic { ic_tclvl  = tclvl
                                  , ic_skols  = inst_tyvars
                                  , ic_no_eqs = False
                                  , ic_given  = dfun_ev_vars
                                  , ic_wanted = mkImplicWC sc_meth_implics
                                  , ic_status = IC_Unsolved
                                  , ic_binds  = Just dfun_ev_binds_var
                                  , ic_env    = env
                                  , ic_info   = InstSkol }

       -- Create the result bindings
       ; self_dict <- newDict clas inst_tys
       ; let class_tc      = classTyCon clas
             [dict_constr] = tyConDataCons class_tc
             dict_bind     = mkVarBind self_dict (L loc con_app_args)

                     -- We don't produce a binding for the dict_constr; instead we
                     -- rely on the simplifier to unfold this saturated application
                     -- We do this rather than generate an HsCon directly, because
                     -- it means that the special cases (e.g. dictionary with only one
                     -- member) are dealt with by the common MkId.mkDataConWrapId
                     -- code rather than needing to be repeated here.
                     --    con_app_tys  = MkD ty1 ty2
                     --    con_app_scs  = MkD ty1 ty2 sc1 sc2
                     --    con_app_args = MkD ty1 ty2 sc1 sc2 op1 op2
             con_app_tys  = wrapId (mkWpTyApps inst_tys)
                                   (dataConWrapId dict_constr)
                       -- NB: We *can* have covars in inst_tys, in the case of
                       -- promoted GADT constructors.

             con_app_args = foldl app_to_meth con_app_tys sc_meth_ids

             app_to_meth :: HsExpr Id -> Id -> HsExpr Id
             app_to_meth fun meth_id = L loc fun `HsApp` L loc (wrapId arg_wrapper meth_id)

             inst_tv_tys = mkTyVarTys inst_tyvars
             arg_wrapper = mkWpEvVarApps dfun_ev_vars <.> mkWpTyApps inst_tv_tys

                -- Do not inline the dfun; instead give it a magic DFunFunfolding
             dfun_spec_prags
                | isNewTyCon class_tc = SpecPrags []
                    -- Newtype dfuns just inline unconditionally,
                    -- so don't attempt to specialise them
                | otherwise
                = SpecPrags spec_inst_prags

             export = ABE { abe_wrap = idHsWrapper
                          , abe_poly = dfun_id
                          , abe_mono = self_dict, abe_prags = dfun_spec_prags }
                          -- NB: see Note [SPECIALISE instance pragmas]
             main_bind = AbsBinds { abs_tvs = inst_tyvars
                                  , abs_ev_vars = dfun_ev_vars
                                  , abs_exports = [export]
                                  , abs_ev_binds = []
                                  , abs_binds = unitBag dict_bind }

       ; return (unitBag (L loc main_bind) `unionBags` sc_meth_binds)
       }
 where
   dfun_id = instanceDFunId ispec
   loc     = getSrcSpan dfun_id

wrapId :: HsWrapper -> id -> HsExpr id
wrapId wrapper id = mkHsWrap wrapper (HsVar (noLoc id))

{- Note [Typechecking plan for instance declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For intance declarations we generate the following bindings and implication
constraints.  Example:

   instance Ord a => Ord [a] where compare = <compare-rhs>

generates this:

   Bindings:
      -- Method bindings
      $ccompare :: forall a. Ord a => a -> a -> Ordering
      $ccompare = /\a \(d:Ord a). let <meth-ev-binds> in ...

      -- Superclass bindings
      $cp1Ord :: forall a. Ord a => Eq [a]
      $cp1Ord = /\a \(d:Ord a). let <sc-ev-binds>
               in dfEqList (dw :: Eq a)

   Constraints:
      forall a. Ord a =>
                -- Method constraint
             (forall. (empty) => <constraints from compare-rhs>)
                -- Superclass constraint
          /\ (forall. (empty) => dw :: Eq a)

Notice that

 * Per-meth/sc implication.  There is one inner implication per
   superclass or method, with no skolem variables or givens.  The only
   reason for this one is to gather the evidence bindings privately
   for this superclass or method.  This implication is generated
   by checkInstConstraints.

 * Overall instance implication. There is an overall enclosing
   implication for the whole instance declaratation, with the expected
   skolems and givens.  We need this to get the correct "redundant
   constraint" warnings, gathering all the uses from all the methods
   and superclasses.  See TcSimplify Note [Tracking redundant
   constraints]

 * The given constraints in the outer implication may generate
   evidence, notably by superclass selection.  Since the method and
   superclass bindings are top-level, we want that evidence copied
   into *every* method or superclass definition.  (Some of it will
   be usused in some, but dead-code elimination will drop it.)

   We achieve this by putting the the evidence variable for the overall
   instance implicaiton into the AbsBinds for each method/superclass.
   Hence the 'dfun_ev_binds' passed into tcMethods and tcSuperClasses.
   (And that in turn is why the abs_ev_binds field of AbBinds is a
   [TcEvBinds] rather than simply TcEvBinds.

   This is a bit of a hack, but works very nicely in practice.

 * Note that if a method has a locally-polymorphic binding, there will
   be yet another implication for that, generated by tcPolyCheck
   in tcMethodBody. E.g.
          class C a where
            foo :: forall b. Ord b => blah


************************************************************************
*                                                                      *
      Type-checking superclases
*                                                                      *
************************************************************************
-}

tcSuperClasses :: DFunId -> Class -> [TcTyVar] -> [EvVar] -> [TcType]
               -> TcEvBinds -> FamInstEnvs
               -> TcThetaType
               -> TcM ([EvVar], LHsBinds Id, Bag Implication)
-- Make a new top-level function binding for each superclass,
-- something like
--    $Ordp1 :: forall a. Ord a => Eq [a]
--    $Ordp1 = /\a \(d:Ord a). dfunEqList a (sc_sel d)
--
-- See Note [Recursive superclasses] for why this is so hard!
-- In effect, be build a special-purpose solver for the first step
-- of solving each superclass constraint
tcSuperClasses dfun_id cls tyvars dfun_evs inst_tys dfun_ev_binds _fam_envs sc_theta
  = do { (ids, binds, implics) <- mapAndUnzip3M tc_super (zip sc_theta [fIRST_TAG..])
       ; return (ids, listToBag binds, listToBag implics) }
  where
    loc = getSrcSpan dfun_id
    size = sizeTypes inst_tys
    tc_super (sc_pred, n)
      = do { (sc_implic, ev_binds_var, sc_ev_tm)
                <- checkInstConstraints $ emitWanted (ScOrigin size) sc_pred

           ; sc_top_name  <- newName (mkSuperDictAuxOcc n (getOccName cls))
           ; sc_ev_id     <- newEvVar sc_pred
           ; addTcEvBind ev_binds_var $ mkWantedEvBind sc_ev_id sc_ev_tm
           ; let sc_top_ty = mkInvForAllTys tyvars (mkPiTypes dfun_evs sc_pred)
                 sc_top_id = mkLocalId sc_top_name sc_top_ty
                 export = ABE { abe_wrap = idHsWrapper
                              , abe_poly = sc_top_id
                              , abe_mono = sc_ev_id
                              , abe_prags = noSpecPrags }
                 local_ev_binds = TcEvBinds ev_binds_var
                 bind = AbsBinds { abs_tvs      = tyvars
                                 , abs_ev_vars  = dfun_evs
                                 , abs_exports  = [export]
                                 , abs_ev_binds = [dfun_ev_binds, local_ev_binds]
                                 , abs_binds    = emptyBag }
           ; return (sc_top_id, L loc bind, sc_implic) }

-------------------
checkInstConstraints :: TcM result
                     -> TcM (Implication, EvBindsVar, result)
-- See Note [Typechecking plan for instance declarations]
checkInstConstraints thing_inside
  = do { (tclvl, wanted, result) <- pushLevelAndCaptureConstraints  $
                                    thing_inside

       ; ev_binds_var <- newTcEvBinds
       ; env <- getLclEnv
       ; let implic = Implic { ic_tclvl  = tclvl
                             , ic_skols  = []
                             , ic_no_eqs = False
                             , ic_given  = []
                             , ic_wanted = wanted
                             , ic_status = IC_Unsolved
                             , ic_binds  = Just ev_binds_var
                             , ic_env    = env
                             , ic_info   = InstSkol }

       ; return (implic, ev_binds_var, result) }

{-
Note [Recursive superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See Trac #3731, #4809, #5751, #5913, #6117, #6161, which all
describe somewhat more complicated situations, but ones
encountered in practice.

See also tests tcrun020, tcrun021, tcrun033, and Trac #11427.

----- THE PROBLEM --------
The problem is that it is all too easy to create a class whose
superclass is bottom when it should not be.

Consider the following (extreme) situation:
        class C a => D a where ...
        instance D [a] => D [a] where ...   (dfunD)
        instance C [a] => C [a] where ...   (dfunC)
Although this looks wrong (assume D [a] to prove D [a]), it is only a
more extreme case of what happens with recursive dictionaries, and it
can, just about, make sense because the methods do some work before
recursing.

To implement the dfunD we must generate code for the superclass C [a],
which we had better not get by superclass selection from the supplied
argument:
       dfunD :: forall a. D [a] -> D [a]
       dfunD = \d::D [a] -> MkD (scsel d) ..

Otherwise if we later encounter a situation where
we have a [Wanted] dw::D [a] we might solve it thus:
     dw := dfunD dw
Which is all fine except that now ** the superclass C is bottom **!

The instance we want is:
       dfunD :: forall a. D [a] -> D [a]
       dfunD = \d::D [a] -> MkD (dfunC (scsel d)) ...

----- THE SOLUTION --------
The basic solution is simple: be very careful about using superclass
selection to generate a superclass witness in a dictionary function
definition.  More precisely:

  Superclass Invariant: in every class dictionary,
                        every superclass dictionary field
                        is non-bottom

To achieve the Superclass Invariant, in a dfun definition we can
generate a guaranteed-non-bottom superclass witness from:
  (sc1) one of the dictionary arguments itself (all non-bottom)
  (sc2) an immediate superclass of a smaller dictionary
  (sc3) a call of a dfun (always returns a dictionary constructor)

The tricky case is (sc2).  We proceed by induction on the size of
the (type of) the dictionary, defined by TcValidity.sizeTypes.
Let's suppose we are building a dictionary of size 3, and
suppose the Superclass Invariant holds of smaller dictionaries.
Then if we have a smaller dictionary, its immediate superclasses
will be non-bottom by induction.

What does "we have a smaller dictionary" mean?  It might be
one of the arguments of the instance, or one of its superclasses.
Here is an example, taken from CmmExpr:
       class Ord r => UserOfRegs r a where ...
(i1)   instance UserOfRegs r a => UserOfRegs r (Maybe a) where
(i2)   instance (Ord r, UserOfRegs r CmmReg) => UserOfRegs r CmmExpr where

For (i1) we can get the (Ord r) superclass by selection from (UserOfRegs r a),
since it is smaller than the thing we are building (UserOfRegs r (Maybe a).

But for (i2) that isn't the case, so we must add an explicit, and
perhaps surprising, (Ord r) argument to the instance declaration.

Here's another example from Trac #6161:

       class       Super a => Duper a  where ...
       class Duper (Fam a) => Foo a    where ...
(i3)   instance Foo a => Duper (Fam a) where ...
(i4)   instance              Foo Float where ...

It would be horribly wrong to define
   dfDuperFam :: Foo a -> Duper (Fam a)  -- from (i3)
   dfDuperFam d = MkDuper (sc_sel1 (sc_sel2 d)) ...

   dfFooFloat :: Foo Float               -- from (i4)
   dfFooFloat = MkFoo (dfDuperFam dfFooFloat) ...

Now the Super superclass of Duper is definitely bottom!

This won't happen because when processing (i3) we can use the
superclasses of (Foo a), which is smaller, namely Duper (Fam a).  But
that is *not* smaller than the target so we can't take *its*
superclasses.  As a result the program is rightly rejected, unless you
add (Super (Fam a)) to the context of (i3).

Note [Solving superclass constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
How do we ensure that every superclass witness is generated by
one of (sc1) (sc2) or (sc3) in Note [Recursive superclases].
Answer:

  * Superclass "wanted" constraints have CtOrigin of (ScOrigin size)
    where 'size' is the size of the instance declaration. e.g.
          class C a => D a where...
          instance blah => D [a] where ...
    The wanted superclass constraint for C [a] has origin
    ScOrigin size, where size = size( D [a] ).

  * (sc1) When we rewrite such a wanted constraint, it retains its
    origin.  But if we apply an instance declaration, we can set the
    origin to (ScOrigin infinity), thus lifting any restrictions by
    making prohibitedSuperClassSolve return False.

  * (sc2) ScOrigin wanted constraints can't be solved from a
    superclass selection, except at a smaller type.  This test is
    implemented by TcInteract.prohibitedSuperClassSolve

  * The "given" constraints of an instance decl have CtOrigin
    GivenOrigin InstSkol.

  * When we make a superclass selection from InstSkol we use
    a SkolemInfo of (InstSC size), where 'size' is the size of
    the constraint whose superclass we are taking.  An similarly
    when taking the superclass of an InstSC.  This is implemented
    in TcCanonical.newSCWorkFromFlavored

Note [Silent superclass arguments] (historical interest only)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NB1: this note describes our *old* solution to the
     recursive-superclass problem. I'm keeping the Note
     for now, just as institutional memory.
     However, the code for silent superclass arguments
     was removed in late Dec 2014

NB2: the silent-superclass solution introduced new problems
     of its own, in the form of instance overlap.  Tests
     SilentParametersOverlapping, T5051, and T7862 are examples

NB3: the silent-superclass solution also generated tons of
     extra dictionaries.  For example, in monad-transformer
     code, when constructing a Monad dictionary you had to pass
     an Applicative dictionary; and to construct that you neede
     a Functor dictionary. Yet these extra dictionaries were
     often never used.  Test T3064 compiled *far* faster after
     silent superclasses were eliminated.

Our solution to this problem "silent superclass arguments".  We pass
to each dfun some ``silent superclass arguments’’, which are the
immediate superclasses of the dictionary we are trying to
construct. In our example:
       dfun :: forall a. C [a] -> D [a] -> D [a]
       dfun = \(dc::C [a]) (dd::D [a]) -> DOrd dc ...
Notice the extra (dc :: C [a]) argument compared to the previous version.

This gives us:

     -----------------------------------------------------------
     DFun Superclass Invariant
     ~~~~~~~~~~~~~~~~~~~~~~~~
     In the body of a DFun, every superclass argument to the
     returned dictionary is
       either   * one of the arguments of the DFun,
       or       * constant, bound at top level
     -----------------------------------------------------------

This net effect is that it is safe to treat a dfun application as
wrapping a dictionary constructor around its arguments (in particular,
a dfun never picks superclasses from the arguments under the
dictionary constructor). No superclass is hidden inside a dfun
application.

The extra arguments required to satisfy the DFun Superclass Invariant
always come first, and are called the "silent" arguments.  You can
find out how many silent arguments there are using Id.dfunNSilent;
and then you can just drop that number of arguments to see the ones
that were in the original instance declaration.

DFun types are built (only) by MkId.mkDictFunId, so that is where we
decide what silent arguments are to be added.
-}

{-
************************************************************************
*                                                                      *
      Type-checking an instance method
*                                                                      *
************************************************************************

tcMethod
- Make the method bindings, as a [(NonRec, HsBinds)], one per method
- Remembering to use fresh Name (the instance method Name) as the binder
- Bring the instance method Ids into scope, for the benefit of tcInstSig
- Use sig_fn mapping instance method Name -> instance tyvars
- Ditto prag_fn
- Use tcValBinds to do the checking
-}

tcMethods :: DFunId -> Class
          -> [TcTyVar] -> [EvVar]
          -> [TcType]
          -> TcEvBinds
          -> ([Located TcSpecPrag], TcPragEnv)
          -> [ClassOpItem]
          -> InstBindings Name
          -> TcM ([Id], LHsBinds Id, Bag Implication)
        -- The returned inst_meth_ids all have types starting
        --      forall tvs. theta => ...
tcMethods dfun_id clas tyvars dfun_ev_vars inst_tys
                  dfun_ev_binds prags@(spec_inst_prags,_) op_items
                  (InstBindings { ib_binds      = binds
                                , ib_tyvars     = lexical_tvs
                                , ib_pragmas    = sigs
                                , ib_extensions = exts
                                , ib_derived    = is_derived })
  = tcExtendTyVarEnv2 (lexical_tvs `zip` tyvars) $
       -- The lexical_tvs scope over the 'where' part
    do { traceTc "tcInstMeth" (ppr sigs $$ ppr binds)
       ; checkMinimalDefinition
       ; (ids, binds, mb_implics) <- set_exts exts $
                                     mapAndUnzip3M tc_item op_items
       ; return (ids, listToBag binds, listToBag (catMaybes mb_implics)) }
  where
    set_exts :: [LangExt.Extension] -> TcM a -> TcM a
    set_exts es thing = foldr setXOptM thing es

    hs_sig_fn = mkHsSigFun sigs
    inst_loc  = getSrcSpan dfun_id

    ----------------------
    tc_item :: ClassOpItem -> TcM (Id, LHsBind Id, Maybe Implication)
    tc_item (sel_id, dm_info)
      | Just (user_bind, bndr_loc) <- findMethodBind (idName sel_id) binds
      = tcMethodBody clas tyvars dfun_ev_vars inst_tys
                              dfun_ev_binds is_derived hs_sig_fn prags
                              sel_id user_bind bndr_loc
      | otherwise
      = do { traceTc "tc_def" (ppr sel_id)
           ; tc_default sel_id dm_info }

    ----------------------
    tc_default :: Id -> DefMethInfo -> TcM (TcId, LHsBind Id, Maybe Implication)

    tc_default sel_id (Just (dm_name, GenericDM {}))
      = do { meth_bind <- mkGenericDefMethBind clas inst_tys sel_id dm_name
           ; tcMethodBody clas tyvars dfun_ev_vars inst_tys
                                  dfun_ev_binds is_derived hs_sig_fn prags
                                  sel_id meth_bind inst_loc }

    tc_default sel_id Nothing     -- No default method at all
      = do { traceTc "tc_def: warn" (ppr sel_id)
           ; (meth_id, _) <- mkMethIds clas tyvars dfun_ev_vars
                                       inst_tys sel_id
           ; dflags <- getDynFlags
           ; let meth_bind = mkVarBind meth_id $
                             mkLHsWrap lam_wrapper (error_rhs dflags)
           ; return (meth_id, meth_bind, Nothing) }
      where
        error_rhs dflags = L inst_loc $ HsApp error_fun (error_msg dflags)
        error_fun    = L inst_loc $
                       wrapId (mkWpTyApps
                                [ getRuntimeRep "tcInstanceMethods.tc_default" meth_tau
                                , meth_tau])
                              nO_METHOD_BINDING_ERROR_ID
        error_msg dflags = L inst_loc (HsLit (HsStringPrim ""
                                              (unsafeMkByteString (error_string dflags))))
        meth_tau     = funResultTy (piResultTys (idType sel_id) inst_tys)
        error_string dflags = showSDoc dflags
                              (hcat [ppr inst_loc, vbar, ppr sel_id ])
        lam_wrapper  = mkWpTyLams tyvars <.> mkWpLams dfun_ev_vars

    tc_default sel_id (Just (dm_name, VanillaDM)) -- A polymorphic default method
      = do {     -- Build the typechecked version directly,
                 -- without calling typecheck_method;
                 -- see Note [Default methods in instances]
                 -- Generate   /\as.\ds. let self = df as ds
                 --                      in $dm inst_tys self
                 -- The 'let' is necessary only because HsSyn doesn't allow
                 -- you to apply a function to a dictionary *expression*.

           ; self_dict <- newDict clas inst_tys
           ; let ev_term = EvDFunApp dfun_id (mkTyVarTys tyvars)
                                     (map EvId dfun_ev_vars)
                 self_ev_bind = mkWantedEvBind self_dict ev_term

           ; (meth_id, local_meth_id)
                   <- mkMethIds clas tyvars dfun_ev_vars inst_tys sel_id
           ; dm_id <- tcLookupId dm_name
           ; let dm_inline_prag = idInlinePragma dm_id
                 rhs = HsWrap (mkWpEvVarApps [self_dict] <.> mkWpTyApps inst_tys) $
                       HsVar (noLoc dm_id)

                 meth_bind = mkVarBind local_meth_id (L inst_loc rhs)
                 meth_id1 = meth_id `setInlinePragma` dm_inline_prag
                        -- Copy the inline pragma (if any) from the default
                        -- method to this version. Note [INLINE and default methods]

                 export = ABE { abe_wrap = idHsWrapper
                              , abe_poly = meth_id1
                              , abe_mono = local_meth_id
                              , abe_prags = mk_meth_spec_prags meth_id1 spec_inst_prags [] }
                 bind = AbsBinds { abs_tvs = tyvars, abs_ev_vars = dfun_ev_vars
                                 , abs_exports = [export]
                                 , abs_ev_binds = [EvBinds (unitBag self_ev_bind)]
                                 , abs_binds    = unitBag meth_bind }
             -- Default methods in an instance declaration can't have their own
             -- INLINE or SPECIALISE pragmas. It'd be possible to allow them, but
             -- currently they are rejected with
             --           "INLINE pragma lacks an accompanying binding"

           ; return (meth_id1, L inst_loc bind, Nothing) }

    ----------------------
    -- Check if one of the minimal complete definitions is satisfied
    checkMinimalDefinition
      = whenIsJust (isUnsatisfied methodExists (classMinimalDef clas)) $
          warnUnsatisfiedMinimalDefinition
      where
      methodExists meth = isJust (findMethodBind meth binds)

------------------------
tcMethodBody :: Class -> [TcTyVar] -> [EvVar] -> [TcType]
             -> TcEvBinds -> Bool
             -> HsSigFun
             -> ([LTcSpecPrag], TcPragEnv)
             -> Id -> LHsBind Name -> SrcSpan
             -> TcM (TcId, LHsBind Id, Maybe Implication)
tcMethodBody clas tyvars dfun_ev_vars inst_tys
                     dfun_ev_binds is_derived
                     sig_fn (spec_inst_prags, prag_fn)
                     sel_id (L bind_loc meth_bind) bndr_loc
  = add_meth_ctxt $
    do { traceTc "tcMethodBody" (ppr sel_id <+> ppr (idType sel_id))
       ; (global_meth_id, local_meth_id) <- setSrcSpan bndr_loc $
                                            mkMethIds clas tyvars dfun_ev_vars
                                                      inst_tys sel_id

       ; let prags   = lookupPragEnv prag_fn (idName sel_id)
             lm_bind = meth_bind { fun_id = L bndr_loc (idName local_meth_id) }
                       -- Substitute the local_meth_name for the binder
                       -- NB: the binding is always a FunBind

       ; global_meth_id <- addInlinePrags global_meth_id prags
       ; spec_prags     <- tcSpecPrags global_meth_id prags

            -- taking instance signature into account might change the type of
            -- the local_meth_id
       ; (meth_implic, ev_binds_var, tc_bind)
             <- checkInstConstraints $
                tcMethodBodyHelp sig_fn sel_id local_meth_id (L bind_loc lm_bind)

        ; let specs  = mk_meth_spec_prags global_meth_id spec_inst_prags spec_prags
              export = ABE { abe_poly      = global_meth_id
                           , abe_mono      = local_meth_id
                           , abe_wrap      = idHsWrapper
                           , abe_prags     = specs }

              local_ev_binds = TcEvBinds ev_binds_var
              full_bind = AbsBinds { abs_tvs      = tyvars
                                   , abs_ev_vars  = dfun_ev_vars
                                   , abs_exports  = [export]
                                   , abs_ev_binds = [dfun_ev_binds, local_ev_binds]
                                   , abs_binds    = tc_bind }

        ; return (global_meth_id, L bind_loc full_bind, Just meth_implic) }
  where
        -- For instance decls that come from deriving clauses
        -- we want to print out the full source code if there's an error
        -- because otherwise the user won't see the code at all
    add_meth_ctxt thing
      | is_derived = addLandmarkErrCtxt (derivBindCtxt sel_id clas inst_tys) thing
      | otherwise  = thing

tcMethodBodyHelp :: HsSigFun -> Id -> TcId
                 -> LHsBind Name -> TcM (LHsBinds TcId)
tcMethodBodyHelp sig_fn sel_id local_meth_id meth_bind
  | Just hs_sig_ty <- lookupHsSig sig_fn sel_name
              -- There is a signature in the instance
              -- See Note [Instance method signatures]
  = do { (sig_ty, hs_wrap)
             <- setSrcSpan (getLoc (hsSigType hs_sig_ty)) $
                do { inst_sigs <- xoptM LangExt.InstanceSigs
                   ; checkTc inst_sigs (misplacedInstSig sel_name hs_sig_ty)
                   ; sig_ty  <- tcHsSigType (FunSigCtxt sel_name False) hs_sig_ty
                   ; let local_meth_ty = idType local_meth_id
                   ; hs_wrap <- addErrCtxtM (methSigCtxt sel_name sig_ty local_meth_ty) $
                                tcSubType ctxt (Just sel_id) sig_ty
                                          (mkCheckExpType local_meth_ty)
                   ; return (sig_ty, hs_wrap) }

       ; inner_meth_name <- newName (nameOccName sel_name)
       ; tc_sig  <- instTcTySig ctxt hs_sig_ty sig_ty inner_meth_name
       ; (tc_bind, [inner_id]) <- tcPolyCheck NonRecursive no_prag_fn tc_sig meth_bind

       ; let export = ABE { abe_poly  = local_meth_id
                          , abe_mono  = inner_id
                          , abe_wrap  = hs_wrap
                          , abe_prags = noSpecPrags }

       ; return (unitBag $ L (getLoc meth_bind) $
                 AbsBinds { abs_tvs = [], abs_ev_vars = []
                          , abs_exports = [export]
                          , abs_binds = tc_bind, abs_ev_binds = [] }) }

  | otherwise  -- No instance signature
  = do { tc_sig <- instTcTySigFromId local_meth_id
              -- Absent a type sig, there are no new scoped type variables here
              -- Only the ones from the instance decl itself, which are already
              -- in scope.  Example:
              --      class C a where { op :: forall b. Eq b => ... }
              --      instance C [c] where { op = <rhs> }
              -- In <rhs>, 'c' is scope but 'b' is not!

       ; (tc_bind, _) <- tcPolyCheck NonRecursive no_prag_fn tc_sig meth_bind
       ; return tc_bind }

  where
    ctxt       = FunSigCtxt sel_name True
    sel_name   = idName sel_id
    no_prag_fn = emptyPragEnv   -- No pragmas for local_meth_id;
                                -- they are all for meth_id


------------------------
mkMethIds :: Class -> [TcTyVar] -> [EvVar]
          -> [TcType] -> Id -> TcM (TcId, TcId)
             -- returns (poly_id, local_id), but ignoring any instance signature
             -- See Note [Instance method signatures]
mkMethIds clas tyvars dfun_ev_vars inst_tys sel_id
  = do  { poly_meth_name  <- newName (mkClassOpAuxOcc sel_occ)
        ; local_meth_name <- newName sel_occ
                  -- Base the local_meth_name on the selector name, because
                  -- type errors from tcMethodBody come from here
        ; let poly_meth_id  = mkLocalId poly_meth_name  poly_meth_ty
              local_meth_id = mkLocalId local_meth_name local_meth_ty

        ; return (poly_meth_id, local_meth_id) }
  where
    sel_name      = idName sel_id
    sel_occ       = nameOccName sel_name
    local_meth_ty = instantiateMethod clas sel_id inst_tys
    poly_meth_ty  = mkSpecSigmaTy tyvars theta local_meth_ty
    theta         = map idType dfun_ev_vars

methSigCtxt :: Name -> TcType -> TcType -> TidyEnv -> TcM (TidyEnv, MsgDoc)
methSigCtxt sel_name sig_ty meth_ty env0
  = do { (env1, sig_ty)  <- zonkTidyTcType env0 sig_ty
       ; (env2, meth_ty) <- zonkTidyTcType env1 meth_ty
       ; let msg = hang (text "When checking that instance signature for" <+> quotes (ppr sel_name))
                      2 (vcat [ text "is more general than its signature in the class"
                              , text "Instance sig:" <+> ppr sig_ty
                              , text "   Class sig:" <+> ppr meth_ty ])
       ; return (env2, msg) }

misplacedInstSig :: Name -> LHsSigType Name -> SDoc
misplacedInstSig name hs_ty
  = vcat [ hang (text "Illegal type signature in instance declaration:")
              2 (hang (pprPrefixName name)
                    2 (dcolon <+> ppr hs_ty))
         , text "(Use InstanceSigs to allow this)" ]

{- Note [Instance method signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With -XInstanceSigs we allow the user to supply a signature for the
method in an instance declaration.  Here is an artificial example:

       data T a = MkT a
       instance Ord a => Ord (T a) where
         (>) :: forall b. b -> b -> Bool
         (>) = error "You can't compare Ts"

The instance signature can be *more* polymorphic than the instantiated
class method (in this case: Age -> Age -> Bool), but it cannot be less
polymorphic.  Moreover, if a signature is given, the implementation
code should match the signature, and type variables bound in the
singature should scope over the method body.

We achieve this by building a TcSigInfo for the method, whether or not
there is an instance method signature, and using that to typecheck
the declaration (in tcMethodBody).  That means, conveniently,
that the type variables bound in the signature will scope over the body.

What about the check that the instance method signature is more
polymorphic than the instantiated class method type?  We just do a
tcSubType call in tcMethodBodyHelp, and generate a nested AbsBind, like
this (for the example above

 AbsBind { abs_tvs = [a], abs_ev_vars = [d:Ord a]
         , abs_exports
             = ABExport { (>) :: forall a. Ord a => T a -> T a -> Bool
                        , gr_lcl :: T a -> T a -> Bool }
         , abs_binds
             = AbsBind { abs_tvs = [], abs_ev_vars = []
                       , abs_exports = ABExport { gr_lcl :: T a -> T a -> Bool
                                                , gr_inner :: forall b. b -> b -> Bool }
                       , abs_binds = AbsBind { abs_tvs = [b], abs_ev_vars = []
                                             , ..etc.. }
               } }

Wow!  Three nested AbsBinds!
 * The outer one abstracts over the tyvars and dicts for the instance
 * The middle one is only present if there is an instance signature,
   and does the impedance matching for that signature
 * The inner one is for the method binding itself against either the
   signature from the class, or the the instance signature.
-}

----------------------
mk_meth_spec_prags :: Id -> [LTcSpecPrag] -> [LTcSpecPrag] -> TcSpecPrags
        -- Adapt the 'SPECIALISE instance' pragmas to work for this method Id
        -- There are two sources:
        --   * spec_prags_for_me: {-# SPECIALISE op :: <blah> #-}
        --   * spec_prags_from_inst: derived from {-# SPECIALISE instance :: <blah> #-}
        --     These ones have the dfun inside, but [perhaps surprisingly]
        --     the correct wrapper.
        -- See Note [Handling SPECIALISE pragmas] in TcBinds
mk_meth_spec_prags meth_id spec_inst_prags spec_prags_for_me
  = SpecPrags (spec_prags_for_me ++ spec_prags_from_inst)
  where
    spec_prags_from_inst
       | isInlinePragma (idInlinePragma meth_id)
       = []  -- Do not inherit SPECIALISE from the instance if the
             -- method is marked INLINE, because then it'll be inlined
             -- and the specialisation would do nothing. (Indeed it'll provoke
             -- a warning from the desugarer
       | otherwise
       = [ L inst_loc (SpecPrag meth_id wrap inl)
         | L inst_loc (SpecPrag _ wrap inl) <- spec_inst_prags]


mkGenericDefMethBind :: Class -> [Type] -> Id -> Name -> TcM (LHsBind Name)
mkGenericDefMethBind clas inst_tys sel_id dm_name
  =     -- A generic default method
        -- If the method is defined generically, we only have to call the
        -- dm_name.
    do  { dflags <- getDynFlags
        ; liftIO (dumpIfSet_dyn dflags Opt_D_dump_deriv "Filling in method body"
                   (vcat [ppr clas <+> ppr inst_tys,
                          nest 2 (ppr sel_id <+> equals <+> ppr rhs)]))

        ; return (noLoc $ mkTopFunBind Generated (noLoc (idName sel_id))
                                       [mkSimpleMatch [] rhs]) }
  where
    rhs = nlHsVar dm_name

----------------------
derivBindCtxt :: Id -> Class -> [Type ] -> SDoc
derivBindCtxt sel_id clas tys
   = vcat [ text "When typechecking the code for" <+> quotes (ppr sel_id)
          , nest 2 (text "in a derived instance for"
                    <+> quotes (pprClassPred clas tys) <> colon)
          , nest 2 $ text "To see the code I am typechecking, use -ddump-deriv" ]

warnUnsatisfiedMinimalDefinition :: ClassMinimalDef -> TcM ()
warnUnsatisfiedMinimalDefinition mindef
  = do { warn <- woptM Opt_WarnMissingMethods
       ; warnTc (Reason Opt_WarnMissingMethods) warn message
       }
  where
    message = vcat [text "No explicit implementation for"
                   ,nest 2 $ pprBooleanFormulaNice mindef
                   ]

{-
Note [Export helper functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We arrange to export the "helper functions" of an instance declaration,
so that they are not subject to preInlineUnconditionally, even if their
RHS is trivial.  Reason: they are mentioned in the DFunUnfolding of
the dict fun as Ids, not as CoreExprs, so we can't substitute a
non-variable for them.

We could change this by making DFunUnfoldings have CoreExprs, but it
seems a bit simpler this way.

Note [Default methods in instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this

   class Baz v x where
      foo :: x -> x
      foo y = <blah>

   instance Baz Int Int

From the class decl we get

   $dmfoo :: forall v x. Baz v x => x -> x
   $dmfoo y = <blah>

Notice that the type is ambiguous.  That's fine, though. The instance
decl generates

   $dBazIntInt = MkBaz fooIntInt
   fooIntInt = $dmfoo Int Int $dBazIntInt

BUT this does mean we must generate the dictionary translation of
fooIntInt directly, rather than generating source-code and
type-checking it.  That was the bug in Trac #1061. In any case it's
less work to generate the translated version!

Note [INLINE and default methods]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Default methods need special case.  They are supposed to behave rather like
macros.  For exmample

  class Foo a where
    op1, op2 :: Bool -> a -> a

    {-# INLINE op1 #-}
    op1 b x = op2 (not b) x

  instance Foo Int where
    -- op1 via default method
    op2 b x = <blah>

The instance declaration should behave

   just as if 'op1' had been defined with the
   code, and INLINE pragma, from its original
   definition.

That is, just as if you'd written

  instance Foo Int where
    op2 b x = <blah>

    {-# INLINE op1 #-}
    op1 b x = op2 (not b) x

So for the above example we generate:

  {-# INLINE $dmop1 #-}
  -- $dmop1 has an InlineCompulsory unfolding
  $dmop1 d b x = op2 d (not b) x

  $fFooInt = MkD $cop1 $cop2

  {-# INLINE $cop1 #-}
  $cop1 = $dmop1 $fFooInt

  $cop2 = <blah>

Note carefully:

* We *copy* any INLINE pragma from the default method $dmop1 to the
  instance $cop1.  Otherwise we'll just inline the former in the
  latter and stop, which isn't what the user expected

* Regardless of its pragma, we give the default method an
  unfolding with an InlineCompulsory source. That means
  that it'll be inlined at every use site, notably in
  each instance declaration, such as $cop1.  This inlining
  must happen even though
    a) $dmop1 is not saturated in $cop1
    b) $cop1 itself has an INLINE pragma

  It's vital that $dmop1 *is* inlined in this way, to allow the mutual
  recursion between $fooInt and $cop1 to be broken

* To communicate the need for an InlineCompulsory to the desugarer
  (which makes the Unfoldings), we use the IsDefaultMethod constructor
  in TcSpecPrags.


************************************************************************
*                                                                      *
        Specialise instance pragmas
*                                                                      *
************************************************************************

Note [SPECIALISE instance pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

   instance (Ix a, Ix b) => Ix (a,b) where
     {-# SPECIALISE instance Ix (Int,Int) #-}
     range (x,y) = ...

We make a specialised version of the dictionary function, AND
specialised versions of each *method*.  Thus we should generate
something like this:

  $dfIxPair :: (Ix a, Ix b) => Ix (a,b)
  {-# DFUN [$crangePair, ...] #-}
  {-# SPECIALISE $dfIxPair :: Ix (Int,Int) #-}
  $dfIxPair da db = Ix ($crangePair da db) (...other methods...)

  $crange :: (Ix a, Ix b) -> ((a,b),(a,b)) -> [(a,b)]
  {-# SPECIALISE $crange :: ((Int,Int),(Int,Int)) -> [(Int,Int)] #-}
  $crange da db = <blah>

The SPECIALISE pragmas are acted upon by the desugarer, which generate

  dii :: Ix Int
  dii = ...

  $s$dfIxPair :: Ix ((Int,Int),(Int,Int))
  {-# DFUN [$crangePair di di, ...] #-}
  $s$dfIxPair = Ix ($crangePair di di) (...)

  {-# RULE forall (d1,d2:Ix Int). $dfIxPair Int Int d1 d2 = $s$dfIxPair #-}

  $s$crangePair :: ((Int,Int),(Int,Int)) -> [(Int,Int)]
  $c$crangePair = ...specialised RHS of $crangePair...

  {-# RULE forall (d1,d2:Ix Int). $crangePair Int Int d1 d2 = $s$crangePair #-}

Note that

  * The specialised dictionary $s$dfIxPair is very much needed, in case we
    call a function that takes a dictionary, but in a context where the
    specialised dictionary can be used.  See Trac #7797.

  * The ClassOp rule for 'range' works equally well on $s$dfIxPair, because
    it still has a DFunUnfolding.  See Note [ClassOp/DFun selection]

  * A call (range ($dfIxPair Int Int d1 d2)) might simplify two ways:
       --> {ClassOp rule for range}     $crangePair Int Int d1 d2
       --> {SPEC rule for $crangePair}  $s$crangePair
    or thus:
       --> {SPEC rule for $dfIxPair}    range $s$dfIxPair
       --> {ClassOpRule for range}      $s$crangePair
    It doesn't matter which way.

  * We want to specialise the RHS of both $dfIxPair and $crangePair,
    but the SAME HsWrapper will do for both!  We can call tcSpecPrag
    just once, and pass the result (in spec_inst_info) to tcMethods.
-}

tcSpecInstPrags :: DFunId -> InstBindings Name
                -> TcM ([Located TcSpecPrag], TcPragEnv)
tcSpecInstPrags dfun_id (InstBindings { ib_binds = binds, ib_pragmas = uprags })
  = do { spec_inst_prags <- mapM (wrapLocM (tcSpecInst dfun_id)) $
                            filter isSpecInstLSig uprags
             -- The filter removes the pragmas for methods
       ; return (spec_inst_prags, mkPragEnv uprags binds) }

------------------------------
tcSpecInst :: Id -> Sig Name -> TcM TcSpecPrag
tcSpecInst dfun_id prag@(SpecInstSig _ hs_ty)
  = addErrCtxt (spec_ctxt prag) $
    do  { (tyvars, theta, clas, tys) <- tcHsClsInstType SpecInstCtxt hs_ty
        ; let spec_dfun_ty = mkDictFunTy tyvars theta clas tys
        ; co_fn <- tcSpecWrapper SpecInstCtxt (idType dfun_id) spec_dfun_ty
        ; return (SpecPrag dfun_id co_fn defaultInlinePragma) }
  where
    spec_ctxt prag = hang (text "In the SPECIALISE pragma") 2 (ppr prag)

tcSpecInst _  _ = panic "tcSpecInst"

{-
************************************************************************
*                                                                      *
\subsection{Error messages}
*                                                                      *
************************************************************************
-}

instDeclCtxt1 :: LHsSigType Name -> SDoc
instDeclCtxt1 hs_inst_ty
  = inst_decl_ctxt (ppr (getLHsInstDeclHead hs_inst_ty))

instDeclCtxt2 :: Type -> SDoc
instDeclCtxt2 dfun_ty
  = inst_decl_ctxt (ppr (mkClassPred cls tys))
  where
    (_,_,cls,tys) = tcSplitDFunTy dfun_ty

inst_decl_ctxt :: SDoc -> SDoc
inst_decl_ctxt doc = hang (text "In the instance declaration for")
                        2 (quotes doc)

badBootFamInstDeclErr :: SDoc
badBootFamInstDeclErr
  = text "Illegal family instance in hs-boot file"

notFamily :: TyCon -> SDoc
notFamily tycon
  = vcat [ text "Illegal family instance for" <+> quotes (ppr tycon)
         , nest 2 $ parens (ppr tycon <+> text "is not an indexed type family")]

tooFewParmsErr :: Arity -> SDoc
tooFewParmsErr arity
  = text "Family instance has too few parameters; expected" <+>
    ppr arity

assocInClassErr :: Located Name -> SDoc
assocInClassErr name
 = text "Associated type" <+> quotes (ppr name) <+>
   text "must be inside a class instance"

badFamInstDecl :: Located Name -> SDoc
badFamInstDecl tc_name
  = vcat [ text "Illegal family instance for" <+>
           quotes (ppr tc_name)
         , nest 2 (parens $ text "Use TypeFamilies to allow indexed type families") ]

notOpenFamily :: TyCon -> SDoc
notOpenFamily tc
  = text "Illegal instance for closed family" <+> quotes (ppr tc)