1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[ConFold]{Constant Folder}
Conceptually, constant folding should be parameterized with the kind
of target machine to get identical behaviour during compilation time
and runtime. We cheat a little bit here...
ToDo:
check boundaries before folding, e.g. we can fold the Float addition
(i1 + i2) only if it results in a valid Float.
-}
{-# LANGUAGE CPP, RankNTypes #-}
{-# OPTIONS_GHC -optc-DNON_POSIX_SOURCE #-}
module PrelRules ( primOpRules, builtinRules ) where
#include "HsVersions.h"
#include "../includes/MachDeps.h"
import {-# SOURCE #-} MkId ( mkPrimOpId, magicDictId )
import CoreSyn
import MkCore
import Id
import Literal
import CoreSubst ( exprIsLiteral_maybe )
import PrimOp ( PrimOp(..), tagToEnumKey )
import TysWiredIn
import TysPrim
import TyCon ( tyConDataCons_maybe, isEnumerationTyCon, isNewTyCon, unwrapNewTyCon_maybe )
import DataCon ( dataConTag, dataConTyCon, dataConWorkId )
import CoreUtils ( cheapEqExpr, exprIsHNF )
import CoreUnfold ( exprIsConApp_maybe )
import Type
import OccName ( occNameFS )
import PrelNames
import Maybes ( orElse )
import Name ( Name, nameOccName )
import Outputable
import FastString
import BasicTypes
import DynFlags
import Platform
import Util
import Coercion (mkUnbranchedAxInstCo,mkSymCo,Role(..))
import Control.Applicative ( Alternative(..) )
import Control.Monad
#if __GLASGOW_HASKELL__ > 710
import qualified Control.Monad.Fail as MonadFail
#endif
import Data.Bits as Bits
import qualified Data.ByteString as BS
import Data.Int
import Data.Ratio
import Data.Word
{-
Note [Constant folding]
~~~~~~~~~~~~~~~~~~~~~~~
primOpRules generates a rewrite rule for each primop
These rules do what is often called "constant folding"
E.g. the rules for +# might say
4 +# 5 = 9
Well, of course you'd need a lot of rules if you did it
like that, so we use a BuiltinRule instead, so that we
can match in any two literal values. So the rule is really
more like
(Lit x) +# (Lit y) = Lit (x+#y)
where the (+#) on the rhs is done at compile time
That is why these rules are built in here.
-}
primOpRules :: Name -> PrimOp -> Maybe CoreRule
-- ToDo: something for integer-shift ops?
-- NotOp
primOpRules nm TagToEnumOp = mkPrimOpRule nm 2 [ tagToEnumRule ]
primOpRules nm DataToTagOp = mkPrimOpRule nm 2 [ dataToTagRule ]
-- Int operations
primOpRules nm IntAddOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (+))
, identityDynFlags zeroi ]
primOpRules nm IntSubOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (-))
, rightIdentityDynFlags zeroi
, equalArgs >> retLit zeroi ]
primOpRules nm IntMulOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (*))
, zeroElem zeroi
, identityDynFlags onei ]
primOpRules nm IntQuotOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (intOp2 quot)
, leftZero zeroi
, rightIdentityDynFlags onei
, equalArgs >> retLit onei ]
primOpRules nm IntRemOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (intOp2 rem)
, leftZero zeroi
, do l <- getLiteral 1
dflags <- getDynFlags
guard (l == onei dflags)
retLit zeroi
, equalArgs >> retLit zeroi
, equalArgs >> retLit zeroi ]
primOpRules nm AndIOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (.&.))
, idempotent
, zeroElem zeroi ]
primOpRules nm OrIOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (.|.))
, idempotent
, identityDynFlags zeroi ]
primOpRules nm XorIOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 xor)
, identityDynFlags zeroi
, equalArgs >> retLit zeroi ]
primOpRules nm NotIOp = mkPrimOpRule nm 1 [ unaryLit complementOp
, inversePrimOp NotIOp ]
primOpRules nm IntNegOp = mkPrimOpRule nm 1 [ unaryLit negOp
, inversePrimOp IntNegOp ]
primOpRules nm ISllOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 Bits.shiftL)
, rightIdentityDynFlags zeroi ]
primOpRules nm ISraOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 Bits.shiftR)
, rightIdentityDynFlags zeroi ]
primOpRules nm ISrlOp = mkPrimOpRule nm 2 [ binaryLit (intOp2' shiftRightLogical)
, rightIdentityDynFlags zeroi ]
-- Word operations
primOpRules nm WordAddOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (+))
, identityDynFlags zerow ]
primOpRules nm WordSubOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (-))
, rightIdentityDynFlags zerow
, equalArgs >> retLit zerow ]
primOpRules nm WordMulOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (*))
, identityDynFlags onew ]
primOpRules nm WordQuotOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (wordOp2 quot)
, rightIdentityDynFlags onew ]
primOpRules nm WordRemOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (wordOp2 rem)
, rightIdentityDynFlags onew ]
primOpRules nm AndOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (.&.))
, idempotent
, zeroElem zerow ]
primOpRules nm OrOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (.|.))
, idempotent
, identityDynFlags zerow ]
primOpRules nm XorOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 xor)
, identityDynFlags zerow
, equalArgs >> retLit zerow ]
primOpRules nm NotOp = mkPrimOpRule nm 1 [ unaryLit complementOp
, inversePrimOp NotOp ]
primOpRules nm SllOp = mkPrimOpRule nm 2 [ wordShiftRule (const Bits.shiftL) ]
primOpRules nm SrlOp = mkPrimOpRule nm 2 [ wordShiftRule shiftRightLogical ]
-- coercions
primOpRules nm Word2IntOp = mkPrimOpRule nm 1 [ liftLitDynFlags word2IntLit
, inversePrimOp Int2WordOp ]
primOpRules nm Int2WordOp = mkPrimOpRule nm 1 [ liftLitDynFlags int2WordLit
, inversePrimOp Word2IntOp ]
primOpRules nm Narrow8IntOp = mkPrimOpRule nm 1 [ liftLit narrow8IntLit
, subsumedByPrimOp Narrow8IntOp
, Narrow8IntOp `subsumesPrimOp` Narrow16IntOp
, Narrow8IntOp `subsumesPrimOp` Narrow32IntOp ]
primOpRules nm Narrow16IntOp = mkPrimOpRule nm 1 [ liftLit narrow16IntLit
, subsumedByPrimOp Narrow8IntOp
, subsumedByPrimOp Narrow16IntOp
, Narrow16IntOp `subsumesPrimOp` Narrow32IntOp ]
primOpRules nm Narrow32IntOp = mkPrimOpRule nm 1 [ liftLit narrow32IntLit
, subsumedByPrimOp Narrow8IntOp
, subsumedByPrimOp Narrow16IntOp
, subsumedByPrimOp Narrow32IntOp
, removeOp32 ]
primOpRules nm Narrow8WordOp = mkPrimOpRule nm 1 [ liftLit narrow8WordLit
, subsumedByPrimOp Narrow8WordOp
, Narrow8WordOp `subsumesPrimOp` Narrow16WordOp
, Narrow8WordOp `subsumesPrimOp` Narrow32WordOp ]
primOpRules nm Narrow16WordOp = mkPrimOpRule nm 1 [ liftLit narrow16WordLit
, subsumedByPrimOp Narrow8WordOp
, subsumedByPrimOp Narrow16WordOp
, Narrow16WordOp `subsumesPrimOp` Narrow32WordOp ]
primOpRules nm Narrow32WordOp = mkPrimOpRule nm 1 [ liftLit narrow32WordLit
, subsumedByPrimOp Narrow8WordOp
, subsumedByPrimOp Narrow16WordOp
, subsumedByPrimOp Narrow32WordOp
, removeOp32 ]
primOpRules nm OrdOp = mkPrimOpRule nm 1 [ liftLit char2IntLit
, inversePrimOp ChrOp ]
primOpRules nm ChrOp = mkPrimOpRule nm 1 [ do [Lit lit] <- getArgs
guard (litFitsInChar lit)
liftLit int2CharLit
, inversePrimOp OrdOp ]
primOpRules nm Float2IntOp = mkPrimOpRule nm 1 [ liftLit float2IntLit ]
primOpRules nm Int2FloatOp = mkPrimOpRule nm 1 [ liftLit int2FloatLit ]
primOpRules nm Double2IntOp = mkPrimOpRule nm 1 [ liftLit double2IntLit ]
primOpRules nm Int2DoubleOp = mkPrimOpRule nm 1 [ liftLit int2DoubleLit ]
-- SUP: Not sure what the standard says about precision in the following 2 cases
primOpRules nm Float2DoubleOp = mkPrimOpRule nm 1 [ liftLit float2DoubleLit ]
primOpRules nm Double2FloatOp = mkPrimOpRule nm 1 [ liftLit double2FloatLit ]
-- Float
primOpRules nm FloatAddOp = mkPrimOpRule nm 2 [ binaryLit (floatOp2 (+))
, identity zerof ]
primOpRules nm FloatSubOp = mkPrimOpRule nm 2 [ binaryLit (floatOp2 (-))
, rightIdentity zerof ]
primOpRules nm FloatMulOp = mkPrimOpRule nm 2 [ binaryLit (floatOp2 (*))
, identity onef
, strengthReduction twof FloatAddOp ]
-- zeroElem zerof doesn't hold because of NaN
primOpRules nm FloatDivOp = mkPrimOpRule nm 2 [ guardFloatDiv >> binaryLit (floatOp2 (/))
, rightIdentity onef ]
primOpRules nm FloatNegOp = mkPrimOpRule nm 1 [ unaryLit negOp
, inversePrimOp FloatNegOp ]
-- Double
primOpRules nm DoubleAddOp = mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (+))
, identity zerod ]
primOpRules nm DoubleSubOp = mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (-))
, rightIdentity zerod ]
primOpRules nm DoubleMulOp = mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (*))
, identity oned
, strengthReduction twod DoubleAddOp ]
-- zeroElem zerod doesn't hold because of NaN
primOpRules nm DoubleDivOp = mkPrimOpRule nm 2 [ guardDoubleDiv >> binaryLit (doubleOp2 (/))
, rightIdentity oned ]
primOpRules nm DoubleNegOp = mkPrimOpRule nm 1 [ unaryLit negOp
, inversePrimOp DoubleNegOp ]
-- Relational operators
primOpRules nm IntEqOp = mkRelOpRule nm (==) [ litEq True ]
primOpRules nm IntNeOp = mkRelOpRule nm (/=) [ litEq False ]
primOpRules nm CharEqOp = mkRelOpRule nm (==) [ litEq True ]
primOpRules nm CharNeOp = mkRelOpRule nm (/=) [ litEq False ]
primOpRules nm IntGtOp = mkRelOpRule nm (>) [ boundsCmp Gt ]
primOpRules nm IntGeOp = mkRelOpRule nm (>=) [ boundsCmp Ge ]
primOpRules nm IntLeOp = mkRelOpRule nm (<=) [ boundsCmp Le ]
primOpRules nm IntLtOp = mkRelOpRule nm (<) [ boundsCmp Lt ]
primOpRules nm CharGtOp = mkRelOpRule nm (>) [ boundsCmp Gt ]
primOpRules nm CharGeOp = mkRelOpRule nm (>=) [ boundsCmp Ge ]
primOpRules nm CharLeOp = mkRelOpRule nm (<=) [ boundsCmp Le ]
primOpRules nm CharLtOp = mkRelOpRule nm (<) [ boundsCmp Lt ]
primOpRules nm FloatGtOp = mkFloatingRelOpRule nm (>)
primOpRules nm FloatGeOp = mkFloatingRelOpRule nm (>=)
primOpRules nm FloatLeOp = mkFloatingRelOpRule nm (<=)
primOpRules nm FloatLtOp = mkFloatingRelOpRule nm (<)
primOpRules nm FloatEqOp = mkFloatingRelOpRule nm (==)
primOpRules nm FloatNeOp = mkFloatingRelOpRule nm (/=)
primOpRules nm DoubleGtOp = mkFloatingRelOpRule nm (>)
primOpRules nm DoubleGeOp = mkFloatingRelOpRule nm (>=)
primOpRules nm DoubleLeOp = mkFloatingRelOpRule nm (<=)
primOpRules nm DoubleLtOp = mkFloatingRelOpRule nm (<)
primOpRules nm DoubleEqOp = mkFloatingRelOpRule nm (==)
primOpRules nm DoubleNeOp = mkFloatingRelOpRule nm (/=)
primOpRules nm WordGtOp = mkRelOpRule nm (>) [ boundsCmp Gt ]
primOpRules nm WordGeOp = mkRelOpRule nm (>=) [ boundsCmp Ge ]
primOpRules nm WordLeOp = mkRelOpRule nm (<=) [ boundsCmp Le ]
primOpRules nm WordLtOp = mkRelOpRule nm (<) [ boundsCmp Lt ]
primOpRules nm WordEqOp = mkRelOpRule nm (==) [ litEq True ]
primOpRules nm WordNeOp = mkRelOpRule nm (/=) [ litEq False ]
primOpRules nm AddrAddOp = mkPrimOpRule nm 2 [ rightIdentityDynFlags zeroi ]
primOpRules nm SeqOp = mkPrimOpRule nm 4 [ seqRule ]
primOpRules nm SparkOp = mkPrimOpRule nm 4 [ sparkRule ]
primOpRules _ _ = Nothing
{-
************************************************************************
* *
\subsection{Doing the business}
* *
************************************************************************
-}
-- useful shorthands
mkPrimOpRule :: Name -> Int -> [RuleM CoreExpr] -> Maybe CoreRule
mkPrimOpRule nm arity rules = Just $ mkBasicRule nm arity (msum rules)
mkRelOpRule :: Name -> (forall a . Ord a => a -> a -> Bool)
-> [RuleM CoreExpr] -> Maybe CoreRule
mkRelOpRule nm cmp extra
= mkPrimOpRule nm 2 $
binaryCmpLit cmp : equal_rule : extra
where
-- x `cmp` x does not depend on x, so
-- compute it for the arbitrary value 'True'
-- and use that result
equal_rule = do { equalArgs
; dflags <- getDynFlags
; return (if cmp True True
then trueValInt dflags
else falseValInt dflags) }
{- Note [Rules for floating-point comparisons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need different rules for floating-point values because for floats
it is not true that x = x (for NaNs); so we do not want the equal_rule
rule that mkRelOpRule uses.
Note also that, in the case of equality/inequality, we do /not/
want to switch to a case-expression. For example, we do not want
to convert
case (eqFloat# x 3.8#) of
True -> this
False -> that
to
case x of
3.8#::Float# -> this
_ -> that
See Trac #9238. Reason: comparing floating-point values for equality
delicate, and we don't want to implement that delicacy in the code for
case expressions. So we make it an invariant of Core that a case
expression never scrutinises a Float# or Double#.
This transformation is what the litEq rule does;
see Note [The litEq rule: converting equality to case].
So we /refrain/ from using litEq for mkFloatingRelOpRule.
-}
mkFloatingRelOpRule :: Name -> (forall a . Ord a => a -> a -> Bool)
-> Maybe CoreRule
-- See Note [Rules for floating-point comparisons]
mkFloatingRelOpRule nm cmp
= mkPrimOpRule nm 2 [binaryCmpLit cmp]
-- common constants
zeroi, onei, zerow, onew :: DynFlags -> Literal
zeroi dflags = mkMachInt dflags 0
onei dflags = mkMachInt dflags 1
zerow dflags = mkMachWord dflags 0
onew dflags = mkMachWord dflags 1
zerof, onef, twof, zerod, oned, twod :: Literal
zerof = mkMachFloat 0.0
onef = mkMachFloat 1.0
twof = mkMachFloat 2.0
zerod = mkMachDouble 0.0
oned = mkMachDouble 1.0
twod = mkMachDouble 2.0
cmpOp :: DynFlags -> (forall a . Ord a => a -> a -> Bool)
-> Literal -> Literal -> Maybe CoreExpr
cmpOp dflags cmp = go
where
done True = Just $ trueValInt dflags
done False = Just $ falseValInt dflags
-- These compares are at different types
go (MachChar i1) (MachChar i2) = done (i1 `cmp` i2)
go (MachInt i1) (MachInt i2) = done (i1 `cmp` i2)
go (MachInt64 i1) (MachInt64 i2) = done (i1 `cmp` i2)
go (MachWord i1) (MachWord i2) = done (i1 `cmp` i2)
go (MachWord64 i1) (MachWord64 i2) = done (i1 `cmp` i2)
go (MachFloat i1) (MachFloat i2) = done (i1 `cmp` i2)
go (MachDouble i1) (MachDouble i2) = done (i1 `cmp` i2)
go _ _ = Nothing
--------------------------
negOp :: DynFlags -> Literal -> Maybe CoreExpr -- Negate
negOp _ (MachFloat 0.0) = Nothing -- can't represent -0.0 as a Rational
negOp dflags (MachFloat f) = Just (mkFloatVal dflags (-f))
negOp _ (MachDouble 0.0) = Nothing
negOp dflags (MachDouble d) = Just (mkDoubleVal dflags (-d))
negOp dflags (MachInt i) = intResult dflags (-i)
negOp _ _ = Nothing
complementOp :: DynFlags -> Literal -> Maybe CoreExpr -- Binary complement
complementOp dflags (MachWord i) = wordResult dflags (complement i)
complementOp dflags (MachInt i) = intResult dflags (complement i)
complementOp _ _ = Nothing
--------------------------
intOp2 :: (Integral a, Integral b)
=> (a -> b -> Integer)
-> DynFlags -> Literal -> Literal -> Maybe CoreExpr
intOp2 = intOp2' . const
intOp2' :: (Integral a, Integral b)
=> (DynFlags -> a -> b -> Integer)
-> DynFlags -> Literal -> Literal -> Maybe CoreExpr
intOp2' op dflags (MachInt i1) (MachInt i2) =
let o = op dflags
in intResult dflags (fromInteger i1 `o` fromInteger i2)
intOp2' _ _ _ _ = Nothing -- Could find LitLit
shiftRightLogical :: DynFlags -> Integer -> Int -> Integer
-- Shift right, putting zeros in rather than sign-propagating as Bits.shiftR would do
-- Do this by converting to Word and back. Obviously this won't work for big
-- values, but its ok as we use it here
shiftRightLogical dflags x n
| wordSizeInBits dflags == 32 = fromIntegral (fromInteger x `shiftR` n :: Word32)
| wordSizeInBits dflags == 64 = fromIntegral (fromInteger x `shiftR` n :: Word64)
| otherwise = panic "shiftRightLogical: unsupported word size"
--------------------------
retLit :: (DynFlags -> Literal) -> RuleM CoreExpr
retLit l = do dflags <- getDynFlags
return $ Lit $ l dflags
wordOp2 :: (Integral a, Integral b)
=> (a -> b -> Integer)
-> DynFlags -> Literal -> Literal -> Maybe CoreExpr
wordOp2 op dflags (MachWord w1) (MachWord w2)
= wordResult dflags (fromInteger w1 `op` fromInteger w2)
wordOp2 _ _ _ _ = Nothing -- Could find LitLit
wordShiftRule :: (DynFlags -> Integer -> Int -> Integer) -> RuleM CoreExpr
-- Shifts take an Int; hence third arg of op is Int
-- See Note [Guarding against silly shifts]
wordShiftRule shift_op
= do { dflags <- getDynFlags
; [e1, Lit (MachInt shift_len)] <- getArgs
; case e1 of
_ | shift_len == 0
-> return e1
| shift_len < 0 || wordSizeInBits dflags < shift_len
-> return (mkRuntimeErrorApp rUNTIME_ERROR_ID wordPrimTy
("Bad shift length" ++ show shift_len))
Lit (MachWord x)
-> let op = shift_op dflags
in liftMaybe $ wordResult dflags (x `op` fromInteger shift_len)
-- Do the shift at type Integer, but shift length is Int
_ -> mzero }
wordSizeInBits :: DynFlags -> Integer
wordSizeInBits dflags = toInteger (platformWordSize (targetPlatform dflags) `shiftL` 3)
--------------------------
floatOp2 :: (Rational -> Rational -> Rational)
-> DynFlags -> Literal -> Literal
-> Maybe (Expr CoreBndr)
floatOp2 op dflags (MachFloat f1) (MachFloat f2)
= Just (mkFloatVal dflags (f1 `op` f2))
floatOp2 _ _ _ _ = Nothing
--------------------------
doubleOp2 :: (Rational -> Rational -> Rational)
-> DynFlags -> Literal -> Literal
-> Maybe (Expr CoreBndr)
doubleOp2 op dflags (MachDouble f1) (MachDouble f2)
= Just (mkDoubleVal dflags (f1 `op` f2))
doubleOp2 _ _ _ _ = Nothing
--------------------------
{- Note [The litEq rule: converting equality to case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This stuff turns
n ==# 3#
into
case n of
3# -> True
m -> False
This is a Good Thing, because it allows case-of case things
to happen, and case-default absorption to happen. For
example:
if (n ==# 3#) || (n ==# 4#) then e1 else e2
will transform to
case n of
3# -> e1
4# -> e1
m -> e2
(modulo the usual precautions to avoid duplicating e1)
-}
litEq :: Bool -- True <=> equality, False <=> inequality
-> RuleM CoreExpr
litEq is_eq = msum
[ do [Lit lit, expr] <- getArgs
dflags <- getDynFlags
do_lit_eq dflags lit expr
, do [expr, Lit lit] <- getArgs
dflags <- getDynFlags
do_lit_eq dflags lit expr ]
where
do_lit_eq dflags lit expr = do
guard (not (litIsLifted lit))
return (mkWildCase expr (literalType lit) intPrimTy
[(DEFAULT, [], val_if_neq),
(LitAlt lit, [], val_if_eq)])
where
val_if_eq | is_eq = trueValInt dflags
| otherwise = falseValInt dflags
val_if_neq | is_eq = falseValInt dflags
| otherwise = trueValInt dflags
-- | Check if there is comparison with minBound or maxBound, that is
-- always true or false. For instance, an Int cannot be smaller than its
-- minBound, so we can replace such comparison with False.
boundsCmp :: Comparison -> RuleM CoreExpr
boundsCmp op = do
dflags <- getDynFlags
[a, b] <- getArgs
liftMaybe $ mkRuleFn dflags op a b
data Comparison = Gt | Ge | Lt | Le
mkRuleFn :: DynFlags -> Comparison -> CoreExpr -> CoreExpr -> Maybe CoreExpr
mkRuleFn dflags Gt (Lit lit) _ | isMinBound dflags lit = Just $ falseValInt dflags
mkRuleFn dflags Le (Lit lit) _ | isMinBound dflags lit = Just $ trueValInt dflags
mkRuleFn dflags Ge _ (Lit lit) | isMinBound dflags lit = Just $ trueValInt dflags
mkRuleFn dflags Lt _ (Lit lit) | isMinBound dflags lit = Just $ falseValInt dflags
mkRuleFn dflags Ge (Lit lit) _ | isMaxBound dflags lit = Just $ trueValInt dflags
mkRuleFn dflags Lt (Lit lit) _ | isMaxBound dflags lit = Just $ falseValInt dflags
mkRuleFn dflags Gt _ (Lit lit) | isMaxBound dflags lit = Just $ falseValInt dflags
mkRuleFn dflags Le _ (Lit lit) | isMaxBound dflags lit = Just $ trueValInt dflags
mkRuleFn _ _ _ _ = Nothing
isMinBound :: DynFlags -> Literal -> Bool
isMinBound _ (MachChar c) = c == minBound
isMinBound dflags (MachInt i) = i == tARGET_MIN_INT dflags
isMinBound _ (MachInt64 i) = i == toInteger (minBound :: Int64)
isMinBound _ (MachWord i) = i == 0
isMinBound _ (MachWord64 i) = i == 0
isMinBound _ _ = False
isMaxBound :: DynFlags -> Literal -> Bool
isMaxBound _ (MachChar c) = c == maxBound
isMaxBound dflags (MachInt i) = i == tARGET_MAX_INT dflags
isMaxBound _ (MachInt64 i) = i == toInteger (maxBound :: Int64)
isMaxBound dflags (MachWord i) = i == tARGET_MAX_WORD dflags
isMaxBound _ (MachWord64 i) = i == toInteger (maxBound :: Word64)
isMaxBound _ _ = False
-- Note that we *don't* warn the user about overflow. It's not done at
-- runtime either, and compilation of completely harmless things like
-- ((124076834 :: Word32) + (2147483647 :: Word32))
-- would yield a warning. Instead we simply squash the value into the
-- *target* Int/Word range.
intResult :: DynFlags -> Integer -> Maybe CoreExpr
intResult dflags result = Just (mkIntVal dflags result')
where result' = case platformWordSize (targetPlatform dflags) of
4 -> toInteger (fromInteger result :: Int32)
8 -> toInteger (fromInteger result :: Int64)
w -> panic ("intResult: Unknown platformWordSize: " ++ show w)
wordResult :: DynFlags -> Integer -> Maybe CoreExpr
wordResult dflags result = Just (mkWordVal dflags result')
where result' = case platformWordSize (targetPlatform dflags) of
4 -> toInteger (fromInteger result :: Word32)
8 -> toInteger (fromInteger result :: Word64)
w -> panic ("wordResult: Unknown platformWordSize: " ++ show w)
inversePrimOp :: PrimOp -> RuleM CoreExpr
inversePrimOp primop = do
[Var primop_id `App` e] <- getArgs
matchPrimOpId primop primop_id
return e
subsumesPrimOp :: PrimOp -> PrimOp -> RuleM CoreExpr
this `subsumesPrimOp` that = do
[Var primop_id `App` e] <- getArgs
matchPrimOpId that primop_id
return (Var (mkPrimOpId this) `App` e)
subsumedByPrimOp :: PrimOp -> RuleM CoreExpr
subsumedByPrimOp primop = do
[e@(Var primop_id `App` _)] <- getArgs
matchPrimOpId primop primop_id
return e
idempotent :: RuleM CoreExpr
idempotent = do [e1, e2] <- getArgs
guard $ cheapEqExpr e1 e2
return e1
{-
Note [Guarding against silly shifts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this code:
import Data.Bits( (.|.), shiftL )
chunkToBitmap :: [Bool] -> Word32
chunkToBitmap chunk = foldr (.|.) 0 [ 1 `shiftL` n | (True,n) <- zip chunk [0..] ]
This optimises to:
Shift.$wgo = \ (w_sCS :: GHC.Prim.Int#) (w1_sCT :: [GHC.Types.Bool]) ->
case w1_sCT of _ {
[] -> 0##;
: x_aAW xs_aAX ->
case x_aAW of _ {
GHC.Types.False ->
case w_sCS of wild2_Xh {
__DEFAULT -> Shift.$wgo (GHC.Prim.+# wild2_Xh 1) xs_aAX;
9223372036854775807 -> 0## };
GHC.Types.True ->
case GHC.Prim.>=# w_sCS 64 of _ {
GHC.Types.False ->
case w_sCS of wild3_Xh {
__DEFAULT ->
case Shift.$wgo (GHC.Prim.+# wild3_Xh 1) xs_aAX of ww_sCW { __DEFAULT ->
GHC.Prim.or# (GHC.Prim.narrow32Word#
(GHC.Prim.uncheckedShiftL# 1## wild3_Xh))
ww_sCW
};
9223372036854775807 ->
GHC.Prim.narrow32Word#
!!!!--> (GHC.Prim.uncheckedShiftL# 1## 9223372036854775807)
};
GHC.Types.True ->
case w_sCS of wild3_Xh {
__DEFAULT -> Shift.$wgo (GHC.Prim.+# wild3_Xh 1) xs_aAX;
9223372036854775807 -> 0##
} } } }
Note the massive shift on line "!!!!". It can't happen, because we've checked
that w < 64, but the optimiser didn't spot that. We DO NO want to constant-fold this!
Moreover, if the programmer writes (n `uncheckedShiftL` 9223372036854775807), we
can't constant fold it, but if it gets to the assember we get
Error: operand type mismatch for `shl'
So the best thing to do is to rewrite the shift with a call to error,
when the second arg is stupid.
************************************************************************
* *
\subsection{Vaguely generic functions}
* *
************************************************************************
-}
mkBasicRule :: Name -> Int -> RuleM CoreExpr -> CoreRule
-- Gives the Rule the same name as the primop itself
mkBasicRule op_name n_args rm
= BuiltinRule { ru_name = occNameFS (nameOccName op_name),
ru_fn = op_name,
ru_nargs = n_args,
ru_try = \ dflags in_scope _ -> runRuleM rm dflags in_scope }
newtype RuleM r = RuleM
{ runRuleM :: DynFlags -> InScopeEnv -> [CoreExpr] -> Maybe r }
instance Functor RuleM where
fmap = liftM
instance Applicative RuleM where
pure x = RuleM $ \_ _ _ -> Just x
(<*>) = ap
instance Monad RuleM where
return = pure
RuleM f >>= g = RuleM $ \dflags iu e -> case f dflags iu e of
Nothing -> Nothing
Just r -> runRuleM (g r) dflags iu e
fail _ = mzero
#if __GLASGOW_HASKELL__ > 710
instance MonadFail.MonadFail RuleM where
fail _ = mzero
#endif
instance Alternative RuleM where
empty = mzero
(<|>) = mplus
instance MonadPlus RuleM where
mzero = RuleM $ \_ _ _ -> Nothing
mplus (RuleM f1) (RuleM f2) = RuleM $ \dflags iu args ->
f1 dflags iu args `mplus` f2 dflags iu args
instance HasDynFlags RuleM where
getDynFlags = RuleM $ \dflags _ _ -> Just dflags
liftMaybe :: Maybe a -> RuleM a
liftMaybe Nothing = mzero
liftMaybe (Just x) = return x
liftLit :: (Literal -> Literal) -> RuleM CoreExpr
liftLit f = liftLitDynFlags (const f)
liftLitDynFlags :: (DynFlags -> Literal -> Literal) -> RuleM CoreExpr
liftLitDynFlags f = do
dflags <- getDynFlags
[Lit lit] <- getArgs
return $ Lit (f dflags lit)
removeOp32 :: RuleM CoreExpr
removeOp32 = do
dflags <- getDynFlags
if wordSizeInBits dflags == 32
then do
[e] <- getArgs
return e
else mzero
getArgs :: RuleM [CoreExpr]
getArgs = RuleM $ \_ _ args -> Just args
getInScopeEnv :: RuleM InScopeEnv
getInScopeEnv = RuleM $ \_ iu _ -> Just iu
-- return the n-th argument of this rule, if it is a literal
-- argument indices start from 0
getLiteral :: Int -> RuleM Literal
getLiteral n = RuleM $ \_ _ exprs -> case drop n exprs of
(Lit l:_) -> Just l
_ -> Nothing
unaryLit :: (DynFlags -> Literal -> Maybe CoreExpr) -> RuleM CoreExpr
unaryLit op = do
dflags <- getDynFlags
[Lit l] <- getArgs
liftMaybe $ op dflags (convFloating dflags l)
binaryLit :: (DynFlags -> Literal -> Literal -> Maybe CoreExpr) -> RuleM CoreExpr
binaryLit op = do
dflags <- getDynFlags
[Lit l1, Lit l2] <- getArgs
liftMaybe $ op dflags (convFloating dflags l1) (convFloating dflags l2)
binaryCmpLit :: (forall a . Ord a => a -> a -> Bool) -> RuleM CoreExpr
binaryCmpLit op = do
dflags <- getDynFlags
binaryLit (\_ -> cmpOp dflags op)
leftIdentity :: Literal -> RuleM CoreExpr
leftIdentity id_lit = leftIdentityDynFlags (const id_lit)
rightIdentity :: Literal -> RuleM CoreExpr
rightIdentity id_lit = rightIdentityDynFlags (const id_lit)
identity :: Literal -> RuleM CoreExpr
identity lit = leftIdentity lit `mplus` rightIdentity lit
leftIdentityDynFlags :: (DynFlags -> Literal) -> RuleM CoreExpr
leftIdentityDynFlags id_lit = do
dflags <- getDynFlags
[Lit l1, e2] <- getArgs
guard $ l1 == id_lit dflags
return e2
rightIdentityDynFlags :: (DynFlags -> Literal) -> RuleM CoreExpr
rightIdentityDynFlags id_lit = do
dflags <- getDynFlags
[e1, Lit l2] <- getArgs
guard $ l2 == id_lit dflags
return e1
identityDynFlags :: (DynFlags -> Literal) -> RuleM CoreExpr
identityDynFlags lit = leftIdentityDynFlags lit `mplus` rightIdentityDynFlags lit
leftZero :: (DynFlags -> Literal) -> RuleM CoreExpr
leftZero zero = do
dflags <- getDynFlags
[Lit l1, _] <- getArgs
guard $ l1 == zero dflags
return $ Lit l1
rightZero :: (DynFlags -> Literal) -> RuleM CoreExpr
rightZero zero = do
dflags <- getDynFlags
[_, Lit l2] <- getArgs
guard $ l2 == zero dflags
return $ Lit l2
zeroElem :: (DynFlags -> Literal) -> RuleM CoreExpr
zeroElem lit = leftZero lit `mplus` rightZero lit
equalArgs :: RuleM ()
equalArgs = do
[e1, e2] <- getArgs
guard $ e1 `cheapEqExpr` e2
nonZeroLit :: Int -> RuleM ()
nonZeroLit n = getLiteral n >>= guard . not . isZeroLit
-- When excess precision is not requested, cut down the precision of the
-- Rational value to that of Float/Double. We confuse host architecture
-- and target architecture here, but it's convenient (and wrong :-).
convFloating :: DynFlags -> Literal -> Literal
convFloating dflags (MachFloat f) | not (gopt Opt_ExcessPrecision dflags) =
MachFloat (toRational (fromRational f :: Float ))
convFloating dflags (MachDouble d) | not (gopt Opt_ExcessPrecision dflags) =
MachDouble (toRational (fromRational d :: Double))
convFloating _ l = l
guardFloatDiv :: RuleM ()
guardFloatDiv = do
[Lit (MachFloat f1), Lit (MachFloat f2)] <- getArgs
guard $ (f1 /=0 || f2 > 0) -- see Note [negative zero]
&& f2 /= 0 -- avoid NaN and Infinity/-Infinity
guardDoubleDiv :: RuleM ()
guardDoubleDiv = do
[Lit (MachDouble d1), Lit (MachDouble d2)] <- getArgs
guard $ (d1 /=0 || d2 > 0) -- see Note [negative zero]
&& d2 /= 0 -- avoid NaN and Infinity/-Infinity
-- Note [negative zero] Avoid (0 / -d), otherwise 0/(-1) reduces to
-- zero, but we might want to preserve the negative zero here which
-- is representable in Float/Double but not in (normalised)
-- Rational. (#3676) Perhaps we should generate (0 :% (-1)) instead?
strengthReduction :: Literal -> PrimOp -> RuleM CoreExpr
strengthReduction two_lit add_op = do -- Note [Strength reduction]
arg <- msum [ do [arg, Lit mult_lit] <- getArgs
guard (mult_lit == two_lit)
return arg
, do [Lit mult_lit, arg] <- getArgs
guard (mult_lit == two_lit)
return arg ]
return $ Var (mkPrimOpId add_op) `App` arg `App` arg
-- Note [Strength reduction]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- This rule turns floating point multiplications of the form 2.0 * x and
-- x * 2.0 into x + x addition, because addition costs less than multiplication.
-- See #7116
-- Note [What's true and false]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- trueValInt and falseValInt represent true and false values returned by
-- comparison primops for Char, Int, Word, Integer, Double, Float and Addr.
-- True is represented as an unboxed 1# literal, while false is represented
-- as 0# literal.
-- We still need Bool data constructors (True and False) to use in a rule
-- for constant folding of equal Strings
trueValInt, falseValInt :: DynFlags -> Expr CoreBndr
trueValInt dflags = Lit $ onei dflags -- see Note [What's true and false]
falseValInt dflags = Lit $ zeroi dflags
trueValBool, falseValBool :: Expr CoreBndr
trueValBool = Var trueDataConId -- see Note [What's true and false]
falseValBool = Var falseDataConId
ltVal, eqVal, gtVal :: Expr CoreBndr
ltVal = Var ltDataConId
eqVal = Var eqDataConId
gtVal = Var gtDataConId
mkIntVal :: DynFlags -> Integer -> Expr CoreBndr
mkIntVal dflags i = Lit (mkMachInt dflags i)
mkWordVal :: DynFlags -> Integer -> Expr CoreBndr
mkWordVal dflags w = Lit (mkMachWord dflags w)
mkFloatVal :: DynFlags -> Rational -> Expr CoreBndr
mkFloatVal dflags f = Lit (convFloating dflags (MachFloat f))
mkDoubleVal :: DynFlags -> Rational -> Expr CoreBndr
mkDoubleVal dflags d = Lit (convFloating dflags (MachDouble d))
matchPrimOpId :: PrimOp -> Id -> RuleM ()
matchPrimOpId op id = do
op' <- liftMaybe $ isPrimOpId_maybe id
guard $ op == op'
{-
************************************************************************
* *
\subsection{Special rules for seq, tagToEnum, dataToTag}
* *
************************************************************************
Note [tagToEnum#]
~~~~~~~~~~~~~~~~~
Nasty check to ensure that tagToEnum# is applied to a type that is an
enumeration TyCon. Unification may refine the type later, but this
check won't see that, alas. It's crude but it works.
Here's are two cases that should fail
f :: forall a. a
f = tagToEnum# 0 -- Can't do tagToEnum# at a type variable
g :: Int
g = tagToEnum# 0 -- Int is not an enumeration
We used to make this check in the type inference engine, but it's quite
ugly to do so, because the delayed constraint solving means that we don't
really know what's going on until the end. It's very much a corner case
because we don't expect the user to call tagToEnum# at all; we merely
generate calls in derived instances of Enum. So we compromise: a
rewrite rule rewrites a bad instance of tagToEnum# to an error call,
and emits a warning.
-}
tagToEnumRule :: RuleM CoreExpr
-- If data T a = A | B | C
-- then tag2Enum# (T ty) 2# --> B ty
tagToEnumRule = do
[Type ty, Lit (MachInt i)] <- getArgs
case splitTyConApp_maybe ty of
Just (tycon, tc_args) | isEnumerationTyCon tycon -> do
let tag = fromInteger i
correct_tag dc = (dataConTag dc - fIRST_TAG) == tag
(dc:rest) <- return $ filter correct_tag (tyConDataCons_maybe tycon `orElse` [])
ASSERT(null rest) return ()
return $ mkTyApps (Var (dataConWorkId dc)) tc_args
-- See Note [tagToEnum#]
_ -> WARN( True, ptext (sLit "tagToEnum# on non-enumeration type") <+> ppr ty )
return $ mkRuntimeErrorApp rUNTIME_ERROR_ID ty "tagToEnum# on non-enumeration type"
{-
For dataToTag#, we can reduce if either
(a) the argument is a constructor
(b) the argument is a variable whose unfolding is a known constructor
-}
dataToTagRule :: RuleM CoreExpr
dataToTagRule = a `mplus` b
where
a = do
[Type ty1, Var tag_to_enum `App` Type ty2 `App` tag] <- getArgs
guard $ tag_to_enum `hasKey` tagToEnumKey
guard $ ty1 `eqType` ty2
return tag -- dataToTag (tagToEnum x) ==> x
b = do
dflags <- getDynFlags
[_, val_arg] <- getArgs
in_scope <- getInScopeEnv
(dc,_,_) <- liftMaybe $ exprIsConApp_maybe in_scope val_arg
ASSERT( not (isNewTyCon (dataConTyCon dc)) ) return ()
return $ mkIntVal dflags (toInteger (dataConTag dc - fIRST_TAG))
{-
************************************************************************
* *
\subsection{Rules for seq# and spark#}
* *
************************************************************************
-}
-- seq# :: forall a s . a -> State# s -> (# State# s, a #)
seqRule :: RuleM CoreExpr
seqRule = do
[Type ty_a, Type ty_s, a, s] <- getArgs
guard $ exprIsHNF a
return $ mkCoreUbxTup [mkStatePrimTy ty_s, ty_a] [s, a]
-- spark# :: forall a s . a -> State# s -> (# State# s, a #)
sparkRule :: RuleM CoreExpr
sparkRule = seqRule -- reduce on HNF, just the same
-- XXX perhaps we shouldn't do this, because a spark eliminated by
-- this rule won't be counted as a dud at runtime?
{-
************************************************************************
* *
\subsection{Built in rules}
* *
************************************************************************
Note [Scoping for Builtin rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When compiling a (base-package) module that defines one of the
functions mentioned in the RHS of a built-in rule, there's a danger
that we'll see
f = ...(eq String x)....
....and lower down...
eqString = ...
Then a rewrite would give
f = ...(eqString x)...
....and lower down...
eqString = ...
and lo, eqString is not in scope. This only really matters when we get to code
generation. With -O we do a GlomBinds step that does a new SCC analysis on the whole
set of bindings, which sorts out the dependency. Without -O we don't do any rule
rewriting so again we are fine.
(This whole thing doesn't show up for non-built-in rules because their dependencies
are explicit.)
-}
builtinRules :: [CoreRule]
-- Rules for non-primops that can't be expressed using a RULE pragma
builtinRules
= [BuiltinRule { ru_name = fsLit "AppendLitString",
ru_fn = unpackCStringFoldrName,
ru_nargs = 4, ru_try = \_ _ _ -> match_append_lit },
BuiltinRule { ru_name = fsLit "EqString", ru_fn = eqStringName,
ru_nargs = 2, ru_try = \dflags _ _ -> match_eq_string dflags },
BuiltinRule { ru_name = fsLit "Inline", ru_fn = inlineIdName,
ru_nargs = 2, ru_try = \_ _ _ -> match_inline },
BuiltinRule { ru_name = fsLit "MagicDict", ru_fn = idName magicDictId,
ru_nargs = 4, ru_try = \_ _ _ -> match_magicDict }
]
++ builtinIntegerRules
builtinIntegerRules :: [CoreRule]
builtinIntegerRules =
[rule_IntToInteger "smallInteger" smallIntegerName,
rule_WordToInteger "wordToInteger" wordToIntegerName,
rule_Int64ToInteger "int64ToInteger" int64ToIntegerName,
rule_Word64ToInteger "word64ToInteger" word64ToIntegerName,
rule_convert "integerToWord" integerToWordName mkWordLitWord,
rule_convert "integerToInt" integerToIntName mkIntLitInt,
rule_convert "integerToWord64" integerToWord64Name (\_ -> mkWord64LitWord64),
rule_convert "integerToInt64" integerToInt64Name (\_ -> mkInt64LitInt64),
rule_binop "plusInteger" plusIntegerName (+),
rule_binop "minusInteger" minusIntegerName (-),
rule_binop "timesInteger" timesIntegerName (*),
rule_unop "negateInteger" negateIntegerName negate,
rule_binop_Prim "eqInteger#" eqIntegerPrimName (==),
rule_binop_Prim "neqInteger#" neqIntegerPrimName (/=),
rule_unop "absInteger" absIntegerName abs,
rule_unop "signumInteger" signumIntegerName signum,
rule_binop_Prim "leInteger#" leIntegerPrimName (<=),
rule_binop_Prim "gtInteger#" gtIntegerPrimName (>),
rule_binop_Prim "ltInteger#" ltIntegerPrimName (<),
rule_binop_Prim "geInteger#" geIntegerPrimName (>=),
rule_binop_Ordering "compareInteger" compareIntegerName compare,
rule_encodeFloat "encodeFloatInteger" encodeFloatIntegerName mkFloatLitFloat,
rule_convert "floatFromInteger" floatFromIntegerName (\_ -> mkFloatLitFloat),
rule_encodeFloat "encodeDoubleInteger" encodeDoubleIntegerName mkDoubleLitDouble,
rule_decodeDouble "decodeDoubleInteger" decodeDoubleIntegerName,
rule_convert "doubleFromInteger" doubleFromIntegerName (\_ -> mkDoubleLitDouble),
rule_rationalTo "rationalToFloat" rationalToFloatName mkFloatExpr,
rule_rationalTo "rationalToDouble" rationalToDoubleName mkDoubleExpr,
rule_binop "gcdInteger" gcdIntegerName gcd,
rule_binop "lcmInteger" lcmIntegerName lcm,
rule_binop "andInteger" andIntegerName (.&.),
rule_binop "orInteger" orIntegerName (.|.),
rule_binop "xorInteger" xorIntegerName xor,
rule_unop "complementInteger" complementIntegerName complement,
rule_Int_binop "shiftLInteger" shiftLIntegerName shiftL,
rule_Int_binop "shiftRInteger" shiftRIntegerName shiftR,
rule_bitInteger "bitInteger" bitIntegerName,
-- See Note [Integer division constant folding] in libraries/base/GHC/Real.hs
rule_divop_one "quotInteger" quotIntegerName quot,
rule_divop_one "remInteger" remIntegerName rem,
rule_divop_one "divInteger" divIntegerName div,
rule_divop_one "modInteger" modIntegerName mod,
rule_divop_both "divModInteger" divModIntegerName divMod,
rule_divop_both "quotRemInteger" quotRemIntegerName quotRem,
-- These rules below don't actually have to be built in, but if we
-- put them in the Haskell source then we'd have to duplicate them
-- between all Integer implementations
rule_XToIntegerToX "smallIntegerToInt" integerToIntName smallIntegerName,
rule_XToIntegerToX "wordToIntegerToWord" integerToWordName wordToIntegerName,
rule_XToIntegerToX "int64ToIntegerToInt64" integerToInt64Name int64ToIntegerName,
rule_XToIntegerToX "word64ToIntegerToWord64" integerToWord64Name word64ToIntegerName,
rule_smallIntegerTo "smallIntegerToWord" integerToWordName Int2WordOp,
rule_smallIntegerTo "smallIntegerToFloat" floatFromIntegerName Int2FloatOp,
rule_smallIntegerTo "smallIntegerToDouble" doubleFromIntegerName Int2DoubleOp
]
where rule_convert str name convert
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_Integer_convert convert }
rule_IntToInteger str name
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_IntToInteger }
rule_WordToInteger str name
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_WordToInteger }
rule_Int64ToInteger str name
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_Int64ToInteger }
rule_Word64ToInteger str name
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_Word64ToInteger }
rule_unop str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_Integer_unop op }
rule_bitInteger str name
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_IntToInteger_unop (bit . fromIntegral) }
rule_binop str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_binop op }
rule_divop_both str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_divop_both op }
rule_divop_one str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_divop_one op }
rule_Int_binop str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_Int_binop op }
rule_binop_Prim str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_binop_Prim op }
rule_binop_Ordering str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_binop_Ordering op }
rule_encodeFloat str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_Int_encodeFloat op }
rule_decodeDouble str name
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_decodeDouble }
rule_XToIntegerToX str name toIntegerName
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_XToIntegerToX toIntegerName }
rule_smallIntegerTo str name primOp
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_smallIntegerTo primOp }
rule_rationalTo str name mkLit
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_rationalTo mkLit }
---------------------------------------------------
-- The rule is this:
-- unpackFoldrCString# "foo" c (unpackFoldrCString# "baz" c n)
-- = unpackFoldrCString# "foobaz" c n
match_append_lit :: [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_append_lit [Type ty1,
Lit (MachStr s1),
c1,
Var unpk `App` Type ty2
`App` Lit (MachStr s2)
`App` c2
`App` n
]
| unpk `hasKey` unpackCStringFoldrIdKey &&
c1 `cheapEqExpr` c2
= ASSERT( ty1 `eqType` ty2 )
Just (Var unpk `App` Type ty1
`App` Lit (MachStr (s1 `BS.append` s2))
`App` c1
`App` n)
match_append_lit _ = Nothing
---------------------------------------------------
-- The rule is this:
-- eqString (unpackCString# (Lit s1)) (unpackCString# (Lit s2) = s1==s2
match_eq_string :: DynFlags -> [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_eq_string _ [Var unpk1 `App` Lit (MachStr s1),
Var unpk2 `App` Lit (MachStr s2)]
| unpk1 `hasKey` unpackCStringIdKey,
unpk2 `hasKey` unpackCStringIdKey
= Just (if s1 == s2 then trueValBool else falseValBool)
match_eq_string _ _ = Nothing
---------------------------------------------------
-- The rule is this:
-- inline f_ty (f a b c) = <f's unfolding> a b c
-- (if f has an unfolding, EVEN if it's a loop breaker)
--
-- It's important to allow the argument to 'inline' to have args itself
-- (a) because its more forgiving to allow the programmer to write
-- inline f a b c
-- or inline (f a b c)
-- (b) because a polymorphic f wll get a type argument that the
-- programmer can't avoid
--
-- Also, don't forget about 'inline's type argument!
match_inline :: [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_inline (Type _ : e : _)
| (Var f, args1) <- collectArgs e,
Just unf <- maybeUnfoldingTemplate (realIdUnfolding f)
-- Ignore the IdUnfoldingFun here!
= Just (mkApps unf args1)
match_inline _ = Nothing
-- See Note [magicDictId magic] in `basicTypes/MkId.hs`
-- for a description of what is going on here.
match_magicDict :: [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_magicDict [Type _, Var wrap `App` Type a `App` Type _ `App` f, x, y ]
| Just (fieldTy, _) <- splitFunTy_maybe $ dropForAlls $ idType wrap
, Just (dictTy, _) <- splitFunTy_maybe fieldTy
, Just dictTc <- tyConAppTyCon_maybe dictTy
, Just (_,_,co) <- unwrapNewTyCon_maybe dictTc
= Just
$ f `App` Cast x (mkSymCo (mkUnbranchedAxInstCo Representational co [a] []))
`App` y
match_magicDict _ = Nothing
-------------------------------------------------
-- Integer rules
-- smallInteger (79::Int#) = 79::Integer
-- wordToInteger (79::Word#) = 79::Integer
-- Similarly Int64, Word64
match_IntToInteger :: RuleFun
match_IntToInteger = match_IntToInteger_unop id
match_WordToInteger :: RuleFun
match_WordToInteger _ id_unf id [xl]
| Just (MachWord x) <- exprIsLiteral_maybe id_unf xl
= case splitFunTy_maybe (idType id) of
Just (_, integerTy) ->
Just (Lit (LitInteger x integerTy))
_ ->
panic "match_WordToInteger: Id has the wrong type"
match_WordToInteger _ _ _ _ = Nothing
match_Int64ToInteger :: RuleFun
match_Int64ToInteger _ id_unf id [xl]
| Just (MachInt64 x) <- exprIsLiteral_maybe id_unf xl
= case splitFunTy_maybe (idType id) of
Just (_, integerTy) ->
Just (Lit (LitInteger x integerTy))
_ ->
panic "match_Int64ToInteger: Id has the wrong type"
match_Int64ToInteger _ _ _ _ = Nothing
match_Word64ToInteger :: RuleFun
match_Word64ToInteger _ id_unf id [xl]
| Just (MachWord64 x) <- exprIsLiteral_maybe id_unf xl
= case splitFunTy_maybe (idType id) of
Just (_, integerTy) ->
Just (Lit (LitInteger x integerTy))
_ ->
panic "match_Word64ToInteger: Id has the wrong type"
match_Word64ToInteger _ _ _ _ = Nothing
-------------------------------------------------
match_Integer_convert :: Num a
=> (DynFlags -> a -> Expr CoreBndr)
-> RuleFun
match_Integer_convert convert dflags id_unf _ [xl]
| Just (LitInteger x _) <- exprIsLiteral_maybe id_unf xl
= Just (convert dflags (fromInteger x))
match_Integer_convert _ _ _ _ _ = Nothing
match_Integer_unop :: (Integer -> Integer) -> RuleFun
match_Integer_unop unop _ id_unf _ [xl]
| Just (LitInteger x i) <- exprIsLiteral_maybe id_unf xl
= Just (Lit (LitInteger (unop x) i))
match_Integer_unop _ _ _ _ _ = Nothing
{- Note [Rewriting bitInteger]
For most types the bitInteger operation can be implemented in terms of shifts.
The integer-gmp package, however, can do substantially better than this if
allowed to provide its own implementation. However, in so doing it previously lost
constant-folding (see Trac #8832). The bitInteger rule above provides constant folding
specifically for this function.
There is, however, a bit of trickiness here when it comes to ranges. While the
AST encodes all integers (even MachInts) as Integers, `bit` expects the bit
index to be given as an Int. Hence we coerce to an Int in the rule definition.
This will behave a bit funny for constants larger than the word size, but the user
should expect some funniness given that they will have at very least ignored a
warning in this case.
-}
match_IntToInteger_unop :: (Integer -> Integer) -> RuleFun
match_IntToInteger_unop unop _ id_unf fn [xl]
| Just (MachInt x) <- exprIsLiteral_maybe id_unf xl
= case splitFunTy_maybe (idType fn) of
Just (_, integerTy) ->
Just (Lit (LitInteger (unop x) integerTy))
_ ->
panic "match_IntToInteger_unop: Id has the wrong type"
match_IntToInteger_unop _ _ _ _ _ = Nothing
match_Integer_binop :: (Integer -> Integer -> Integer) -> RuleFun
match_Integer_binop binop _ id_unf _ [xl,yl]
| Just (LitInteger x i) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
= Just (Lit (LitInteger (x `binop` y) i))
match_Integer_binop _ _ _ _ _ = Nothing
-- This helper is used for the quotRem and divMod functions
match_Integer_divop_both
:: (Integer -> Integer -> (Integer, Integer)) -> RuleFun
match_Integer_divop_both divop _ id_unf _ [xl,yl]
| Just (LitInteger x t) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
, y /= 0
, (r,s) <- x `divop` y
= Just $ mkCoreUbxTup [t,t] [Lit (LitInteger r t), Lit (LitInteger s t)]
match_Integer_divop_both _ _ _ _ _ = Nothing
-- This helper is used for the quot and rem functions
match_Integer_divop_one :: (Integer -> Integer -> Integer) -> RuleFun
match_Integer_divop_one divop _ id_unf _ [xl,yl]
| Just (LitInteger x i) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
, y /= 0
= Just (Lit (LitInteger (x `divop` y) i))
match_Integer_divop_one _ _ _ _ _ = Nothing
match_Integer_Int_binop :: (Integer -> Int -> Integer) -> RuleFun
match_Integer_Int_binop binop _ id_unf _ [xl,yl]
| Just (LitInteger x i) <- exprIsLiteral_maybe id_unf xl
, Just (MachInt y) <- exprIsLiteral_maybe id_unf yl
= Just (Lit (LitInteger (x `binop` fromIntegral y) i))
match_Integer_Int_binop _ _ _ _ _ = Nothing
match_Integer_binop_Prim :: (Integer -> Integer -> Bool) -> RuleFun
match_Integer_binop_Prim binop dflags id_unf _ [xl, yl]
| Just (LitInteger x _) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
= Just (if x `binop` y then trueValInt dflags else falseValInt dflags)
match_Integer_binop_Prim _ _ _ _ _ = Nothing
match_Integer_binop_Ordering :: (Integer -> Integer -> Ordering) -> RuleFun
match_Integer_binop_Ordering binop _ id_unf _ [xl, yl]
| Just (LitInteger x _) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
= Just $ case x `binop` y of
LT -> ltVal
EQ -> eqVal
GT -> gtVal
match_Integer_binop_Ordering _ _ _ _ _ = Nothing
match_Integer_Int_encodeFloat :: RealFloat a
=> (a -> Expr CoreBndr)
-> RuleFun
match_Integer_Int_encodeFloat mkLit _ id_unf _ [xl,yl]
| Just (LitInteger x _) <- exprIsLiteral_maybe id_unf xl
, Just (MachInt y) <- exprIsLiteral_maybe id_unf yl
= Just (mkLit $ encodeFloat x (fromInteger y))
match_Integer_Int_encodeFloat _ _ _ _ _ = Nothing
---------------------------------------------------
-- constant folding for Float/Double
--
-- This turns
-- rationalToFloat n d
-- into a literal Float, and similarly for Doubles.
--
-- it's important to not match d == 0, because that may represent a
-- literal "0/0" or similar, and we can't produce a literal value for
-- NaN or +-Inf
match_rationalTo :: RealFloat a
=> (a -> Expr CoreBndr)
-> RuleFun
match_rationalTo mkLit _ id_unf _ [xl, yl]
| Just (LitInteger x _) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
, y /= 0
= Just (mkLit (fromRational (x % y)))
match_rationalTo _ _ _ _ _ = Nothing
match_decodeDouble :: RuleFun
match_decodeDouble _ id_unf fn [xl]
| Just (MachDouble x) <- exprIsLiteral_maybe id_unf xl
= case splitFunTy_maybe (idType fn) of
Just (_, res)
| Just [_lev1, _lev2, integerTy, intHashTy] <- tyConAppArgs_maybe res
-> case decodeFloat (fromRational x :: Double) of
(y, z) ->
Just $ mkCoreUbxTup [integerTy, intHashTy]
[Lit (LitInteger y integerTy),
Lit (MachInt (toInteger z))]
_ ->
pprPanic "match_decodeDouble: Id has the wrong type"
(ppr fn <+> dcolon <+> ppr (idType fn))
match_decodeDouble _ _ _ _ = Nothing
match_XToIntegerToX :: Name -> RuleFun
match_XToIntegerToX n _ _ _ [App (Var x) y]
| idName x == n
= Just y
match_XToIntegerToX _ _ _ _ _ = Nothing
match_smallIntegerTo :: PrimOp -> RuleFun
match_smallIntegerTo primOp _ _ _ [App (Var x) y]
| idName x == smallIntegerName
= Just $ App (Var (mkPrimOpId primOp)) y
match_smallIntegerTo _ _ _ _ _ = Nothing
|