1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
|
-----------------------------------------------------------------------------
--
-- Generating machine code (instruction selection)
--
-- (c) The University of Glasgow 1996-2004
--
-----------------------------------------------------------------------------
-- This is a big module, but, if you pay attention to
-- (a) the sectioning, and (b) the type signatures, the
-- structure should not be too overwhelming.
{-# LANGUAGE GADTs #-}
module X86.CodeGen (
cmmTopCodeGen,
generateJumpTableForInstr,
InstrBlock
)
where
#include "HsVersions.h"
#include "nativeGen/NCG.h"
#include "../includes/MachDeps.h"
-- NCG stuff:
import X86.Instr
import X86.Cond
import X86.Regs
import X86.RegInfo
import CodeGen.Platform
import CPrim
import Instruction
import PIC
import NCGMonad
import Size
import Reg
import Platform
-- Our intermediate code:
import BasicTypes
import BlockId
import Module ( primPackageId )
import PprCmm ()
import CmmUtils
import Cmm
import Hoopl
import CLabel
-- The rest:
import ForeignCall ( CCallConv(..) )
import OrdList
import Outputable
import Unique
import FastString
import FastBool ( isFastTrue )
import DynFlags
import Util
import Control.Monad
import Data.Bits
import Data.Int
import Data.Maybe
import Data.Word
is32BitPlatform :: NatM Bool
is32BitPlatform = do
dflags <- getDynFlags
return $ target32Bit (targetPlatform dflags)
sse2Enabled :: NatM Bool
sse2Enabled = do
dflags <- getDynFlags
return (isSse2Enabled dflags)
sse4_2Enabled :: NatM Bool
sse4_2Enabled = do
dflags <- getDynFlags
return (isSse4_2Enabled dflags)
if_sse2 :: NatM a -> NatM a -> NatM a
if_sse2 sse2 x87 = do
b <- sse2Enabled
if b then sse2 else x87
cmmTopCodeGen
:: RawCmmDecl
-> NatM [NatCmmDecl (Alignment, CmmStatics) Instr]
cmmTopCodeGen (CmmProc info lab live graph) = do
let blocks = toBlockListEntryFirst graph
(nat_blocks,statics) <- mapAndUnzipM basicBlockCodeGen blocks
picBaseMb <- getPicBaseMaybeNat
dflags <- getDynFlags
let proc = CmmProc info lab live (ListGraph $ concat nat_blocks)
tops = proc : concat statics
os = platformOS $ targetPlatform dflags
case picBaseMb of
Just picBase -> initializePicBase_x86 ArchX86 os picBase tops
Nothing -> return tops
cmmTopCodeGen (CmmData sec dat) = do
return [CmmData sec (1, dat)] -- no translation, we just use CmmStatic
basicBlockCodeGen
:: CmmBlock
-> NatM ( [NatBasicBlock Instr]
, [NatCmmDecl (Alignment, CmmStatics) Instr])
basicBlockCodeGen block = do
let (CmmEntry id, nodes, tail) = blockSplit block
stmts = blockToList nodes
mid_instrs <- stmtsToInstrs stmts
tail_instrs <- stmtToInstrs tail
let instrs = mid_instrs `appOL` tail_instrs
-- code generation may introduce new basic block boundaries, which
-- are indicated by the NEWBLOCK instruction. We must split up the
-- instruction stream into basic blocks again. Also, we extract
-- LDATAs here too.
let
(top,other_blocks,statics) = foldrOL mkBlocks ([],[],[]) instrs
mkBlocks (NEWBLOCK id) (instrs,blocks,statics)
= ([], BasicBlock id instrs : blocks, statics)
mkBlocks (LDATA sec dat) (instrs,blocks,statics)
= (instrs, blocks, CmmData sec dat:statics)
mkBlocks instr (instrs,blocks,statics)
= (instr:instrs, blocks, statics)
return (BasicBlock id top : other_blocks, statics)
stmtsToInstrs :: [CmmNode e x] -> NatM InstrBlock
stmtsToInstrs stmts
= do instrss <- mapM stmtToInstrs stmts
return (concatOL instrss)
stmtToInstrs :: CmmNode e x -> NatM InstrBlock
stmtToInstrs stmt = do
dflags <- getDynFlags
is32Bit <- is32BitPlatform
case stmt of
CmmComment s -> return (unitOL (COMMENT s))
CmmAssign reg src
| isFloatType ty -> assignReg_FltCode size reg src
| is32Bit && isWord64 ty -> assignReg_I64Code reg src
| otherwise -> assignReg_IntCode size reg src
where ty = cmmRegType dflags reg
size = cmmTypeSize ty
CmmStore addr src
| isFloatType ty -> assignMem_FltCode size addr src
| is32Bit && isWord64 ty -> assignMem_I64Code addr src
| otherwise -> assignMem_IntCode size addr src
where ty = cmmExprType dflags src
size = cmmTypeSize ty
CmmUnsafeForeignCall target result_regs args
-> genCCall dflags is32Bit target result_regs args
CmmBranch id -> genBranch id
CmmCondBranch arg true false -> do b1 <- genCondJump true arg
b2 <- genBranch false
return (b1 `appOL` b2)
CmmSwitch arg ids -> do dflags <- getDynFlags
genSwitch dflags arg ids
CmmCall { cml_target = arg
, cml_args_regs = gregs } -> do
dflags <- getDynFlags
genJump arg (jumpRegs dflags gregs)
_ ->
panic "stmtToInstrs: statement should have been cps'd away"
jumpRegs :: DynFlags -> [GlobalReg] -> [Reg]
jumpRegs dflags gregs = [ RegReal r | Just r <- map (globalRegMaybe platform) gregs ]
where platform = targetPlatform dflags
--------------------------------------------------------------------------------
-- | 'InstrBlock's are the insn sequences generated by the insn selectors.
-- They are really trees of insns to facilitate fast appending, where a
-- left-to-right traversal yields the insns in the correct order.
--
type InstrBlock
= OrdList Instr
-- | Condition codes passed up the tree.
--
data CondCode
= CondCode Bool Cond InstrBlock
-- | a.k.a "Register64"
-- Reg is the lower 32-bit temporary which contains the result.
-- Use getHiVRegFromLo to find the other VRegUnique.
--
-- Rules of this simplified insn selection game are therefore that
-- the returned Reg may be modified
--
data ChildCode64
= ChildCode64
InstrBlock
Reg
-- | Register's passed up the tree. If the stix code forces the register
-- to live in a pre-decided machine register, it comes out as @Fixed@;
-- otherwise, it comes out as @Any@, and the parent can decide which
-- register to put it in.
--
data Register
= Fixed Size Reg InstrBlock
| Any Size (Reg -> InstrBlock)
swizzleRegisterRep :: Register -> Size -> Register
swizzleRegisterRep (Fixed _ reg code) size = Fixed size reg code
swizzleRegisterRep (Any _ codefn) size = Any size codefn
-- | Grab the Reg for a CmmReg
getRegisterReg :: Platform -> Bool -> CmmReg -> Reg
getRegisterReg _ use_sse2 (CmmLocal (LocalReg u pk))
= let sz = cmmTypeSize pk in
if isFloatSize sz && not use_sse2
then RegVirtual (mkVirtualReg u FF80)
else RegVirtual (mkVirtualReg u sz)
getRegisterReg platform _ (CmmGlobal mid)
= case globalRegMaybe platform mid of
Just reg -> RegReal $ reg
Nothing -> pprPanic "getRegisterReg-memory" (ppr $ CmmGlobal mid)
-- By this stage, the only MagicIds remaining should be the
-- ones which map to a real machine register on this
-- platform. Hence ...
-- | Memory addressing modes passed up the tree.
data Amode
= Amode AddrMode InstrBlock
{-
Now, given a tree (the argument to an CmmLoad) that references memory,
produce a suitable addressing mode.
A Rule of the Game (tm) for Amodes: use of the addr bit must
immediately follow use of the code part, since the code part puts
values in registers which the addr then refers to. So you can't put
anything in between, lest it overwrite some of those registers. If
you need to do some other computation between the code part and use of
the addr bit, first store the effective address from the amode in a
temporary, then do the other computation, and then use the temporary:
code
LEA amode, tmp
... other computation ...
... (tmp) ...
-}
-- | Check whether an integer will fit in 32 bits.
-- A CmmInt is intended to be truncated to the appropriate
-- number of bits, so here we truncate it to Int64. This is
-- important because e.g. -1 as a CmmInt might be either
-- -1 or 18446744073709551615.
--
is32BitInteger :: Integer -> Bool
is32BitInteger i = i64 <= 0x7fffffff && i64 >= -0x80000000
where i64 = fromIntegral i :: Int64
-- | Convert a BlockId to some CmmStatic data
jumpTableEntry :: DynFlags -> Maybe BlockId -> CmmStatic
jumpTableEntry dflags Nothing = CmmStaticLit (CmmInt 0 (wordWidth dflags))
jumpTableEntry _ (Just blockid) = CmmStaticLit (CmmLabel blockLabel)
where blockLabel = mkAsmTempLabel (getUnique blockid)
-- -----------------------------------------------------------------------------
-- General things for putting together code sequences
-- Expand CmmRegOff. ToDo: should we do it this way around, or convert
-- CmmExprs into CmmRegOff?
mangleIndexTree :: DynFlags -> CmmReg -> Int -> CmmExpr
mangleIndexTree dflags reg off
= CmmMachOp (MO_Add width) [CmmReg reg, CmmLit (CmmInt (fromIntegral off) width)]
where width = typeWidth (cmmRegType dflags reg)
-- | The dual to getAnyReg: compute an expression into a register, but
-- we don't mind which one it is.
getSomeReg :: CmmExpr -> NatM (Reg, InstrBlock)
getSomeReg expr = do
r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed _ reg code ->
return (reg, code)
assignMem_I64Code :: CmmExpr -> CmmExpr -> NatM InstrBlock
assignMem_I64Code addrTree valueTree = do
Amode addr addr_code <- getAmode addrTree
ChildCode64 vcode rlo <- iselExpr64 valueTree
let
rhi = getHiVRegFromLo rlo
-- Little-endian store
mov_lo = MOV II32 (OpReg rlo) (OpAddr addr)
mov_hi = MOV II32 (OpReg rhi) (OpAddr (fromJust (addrOffset addr 4)))
return (vcode `appOL` addr_code `snocOL` mov_lo `snocOL` mov_hi)
assignReg_I64Code :: CmmReg -> CmmExpr -> NatM InstrBlock
assignReg_I64Code (CmmLocal (LocalReg u_dst _)) valueTree = do
ChildCode64 vcode r_src_lo <- iselExpr64 valueTree
let
r_dst_lo = RegVirtual $ mkVirtualReg u_dst II32
r_dst_hi = getHiVRegFromLo r_dst_lo
r_src_hi = getHiVRegFromLo r_src_lo
mov_lo = MOV II32 (OpReg r_src_lo) (OpReg r_dst_lo)
mov_hi = MOV II32 (OpReg r_src_hi) (OpReg r_dst_hi)
return (
vcode `snocOL` mov_lo `snocOL` mov_hi
)
assignReg_I64Code _ _
= panic "assignReg_I64Code(i386): invalid lvalue"
iselExpr64 :: CmmExpr -> NatM ChildCode64
iselExpr64 (CmmLit (CmmInt i _)) = do
(rlo,rhi) <- getNewRegPairNat II32
let
r = fromIntegral (fromIntegral i :: Word32)
q = fromIntegral (fromIntegral (i `shiftR` 32) :: Word32)
code = toOL [
MOV II32 (OpImm (ImmInteger r)) (OpReg rlo),
MOV II32 (OpImm (ImmInteger q)) (OpReg rhi)
]
return (ChildCode64 code rlo)
iselExpr64 (CmmLoad addrTree ty) | isWord64 ty = do
Amode addr addr_code <- getAmode addrTree
(rlo,rhi) <- getNewRegPairNat II32
let
mov_lo = MOV II32 (OpAddr addr) (OpReg rlo)
mov_hi = MOV II32 (OpAddr (fromJust (addrOffset addr 4))) (OpReg rhi)
return (
ChildCode64 (addr_code `snocOL` mov_lo `snocOL` mov_hi)
rlo
)
iselExpr64 (CmmReg (CmmLocal (LocalReg vu ty))) | isWord64 ty
= return (ChildCode64 nilOL (RegVirtual $ mkVirtualReg vu II32))
-- we handle addition, but rather badly
iselExpr64 (CmmMachOp (MO_Add _) [e1, CmmLit (CmmInt i _)]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
(rlo,rhi) <- getNewRegPairNat II32
let
r = fromIntegral (fromIntegral i :: Word32)
q = fromIntegral (fromIntegral (i `shiftR` 32) :: Word32)
r1hi = getHiVRegFromLo r1lo
code = code1 `appOL`
toOL [ MOV II32 (OpReg r1lo) (OpReg rlo),
ADD II32 (OpImm (ImmInteger r)) (OpReg rlo),
MOV II32 (OpReg r1hi) (OpReg rhi),
ADC II32 (OpImm (ImmInteger q)) (OpReg rhi) ]
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_Add _) [e1,e2]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
ChildCode64 code2 r2lo <- iselExpr64 e2
(rlo,rhi) <- getNewRegPairNat II32
let
r1hi = getHiVRegFromLo r1lo
r2hi = getHiVRegFromLo r2lo
code = code1 `appOL`
code2 `appOL`
toOL [ MOV II32 (OpReg r1lo) (OpReg rlo),
ADD II32 (OpReg r2lo) (OpReg rlo),
MOV II32 (OpReg r1hi) (OpReg rhi),
ADC II32 (OpReg r2hi) (OpReg rhi) ]
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_UU_Conv _ W64) [expr]) = do
fn <- getAnyReg expr
r_dst_lo <- getNewRegNat II32
let r_dst_hi = getHiVRegFromLo r_dst_lo
code = fn r_dst_lo
return (
ChildCode64 (code `snocOL`
MOV II32 (OpImm (ImmInt 0)) (OpReg r_dst_hi))
r_dst_lo
)
iselExpr64 expr
= pprPanic "iselExpr64(i386)" (ppr expr)
--------------------------------------------------------------------------------
getRegister :: CmmExpr -> NatM Register
getRegister e = do dflags <- getDynFlags
is32Bit <- is32BitPlatform
getRegister' dflags is32Bit e
getRegister' :: DynFlags -> Bool -> CmmExpr -> NatM Register
getRegister' dflags is32Bit (CmmReg reg)
= case reg of
CmmGlobal PicBaseReg
| is32Bit ->
-- on x86_64, we have %rip for PicBaseReg, but it's not
-- a full-featured register, it can only be used for
-- rip-relative addressing.
do reg' <- getPicBaseNat (archWordSize is32Bit)
return (Fixed (archWordSize is32Bit) reg' nilOL)
_ ->
do use_sse2 <- sse2Enabled
let
sz = cmmTypeSize (cmmRegType dflags reg)
size | not use_sse2 && isFloatSize sz = FF80
| otherwise = sz
--
let platform = targetPlatform dflags
return (Fixed size (getRegisterReg platform use_sse2 reg) nilOL)
getRegister' dflags is32Bit (CmmRegOff r n)
= getRegister' dflags is32Bit $ mangleIndexTree dflags r n
-- for 32-bit architectuers, support some 64 -> 32 bit conversions:
-- TO_W_(x), TO_W_(x >> 32)
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W64 W32)
[CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 (getHiVRegFromLo rlo) code
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W64 W32)
[CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 (getHiVRegFromLo rlo) code
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W64 W32) [x])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 rlo code
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W64 W32) [x])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 rlo code
getRegister' _ _ (CmmLit lit@(CmmFloat f w)) =
if_sse2 float_const_sse2 float_const_x87
where
float_const_sse2
| f == 0.0 = do
let
size = floatSize w
code dst = unitOL (XOR size (OpReg dst) (OpReg dst))
-- I don't know why there are xorpd, xorps, and pxor instructions.
-- They all appear to do the same thing --SDM
return (Any size code)
| otherwise = do
Amode addr code <- memConstant (widthInBytes w) lit
loadFloatAmode True w addr code
float_const_x87 = case w of
W64
| f == 0.0 ->
let code dst = unitOL (GLDZ dst)
in return (Any FF80 code)
| f == 1.0 ->
let code dst = unitOL (GLD1 dst)
in return (Any FF80 code)
_otherwise -> do
Amode addr code <- memConstant (widthInBytes w) lit
loadFloatAmode False w addr code
-- catch simple cases of zero- or sign-extended load
getRegister' _ _ (CmmMachOp (MO_UU_Conv W8 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVZxL II8) addr
return (Any II32 code)
getRegister' _ _ (CmmMachOp (MO_SS_Conv W8 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVSxL II8) addr
return (Any II32 code)
getRegister' _ _ (CmmMachOp (MO_UU_Conv W16 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVZxL II16) addr
return (Any II32 code)
getRegister' _ _ (CmmMachOp (MO_SS_Conv W16 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVSxL II16) addr
return (Any II32 code)
-- catch simple cases of zero- or sign-extended load
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W8 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVZxL II8) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W8 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVSxL II8) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W16 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVZxL II16) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W16 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVSxL II16) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W32 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOV II32) addr -- 32-bit loads zero-extend
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W32 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVSxL II32) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_Add W64) [CmmReg (CmmGlobal PicBaseReg),
CmmLit displacement])
| not is32Bit = do
return $ Any II64 (\dst -> unitOL $
LEA II64 (OpAddr (ripRel (litToImm displacement))) (OpReg dst))
getRegister' dflags is32Bit (CmmMachOp mop [x]) = do -- unary MachOps
sse2 <- sse2Enabled
case mop of
MO_F_Neg w
| sse2 -> sse2NegCode w x
| otherwise -> trivialUFCode FF80 (GNEG FF80) x
MO_S_Neg w -> triv_ucode NEGI (intSize w)
MO_Not w -> triv_ucode NOT (intSize w)
-- Nop conversions
MO_UU_Conv W32 W8 -> toI8Reg W32 x
MO_SS_Conv W32 W8 -> toI8Reg W32 x
MO_UU_Conv W16 W8 -> toI8Reg W16 x
MO_SS_Conv W16 W8 -> toI8Reg W16 x
MO_UU_Conv W32 W16 -> toI16Reg W32 x
MO_SS_Conv W32 W16 -> toI16Reg W32 x
MO_UU_Conv W64 W32 | not is32Bit -> conversionNop II64 x
MO_SS_Conv W64 W32 | not is32Bit -> conversionNop II64 x
MO_UU_Conv W64 W16 | not is32Bit -> toI16Reg W64 x
MO_SS_Conv W64 W16 | not is32Bit -> toI16Reg W64 x
MO_UU_Conv W64 W8 | not is32Bit -> toI8Reg W64 x
MO_SS_Conv W64 W8 | not is32Bit -> toI8Reg W64 x
MO_UU_Conv rep1 rep2 | rep1 == rep2 -> conversionNop (intSize rep1) x
MO_SS_Conv rep1 rep2 | rep1 == rep2 -> conversionNop (intSize rep1) x
-- widenings
MO_UU_Conv W8 W32 -> integerExtend W8 W32 MOVZxL x
MO_UU_Conv W16 W32 -> integerExtend W16 W32 MOVZxL x
MO_UU_Conv W8 W16 -> integerExtend W8 W16 MOVZxL x
MO_SS_Conv W8 W32 -> integerExtend W8 W32 MOVSxL x
MO_SS_Conv W16 W32 -> integerExtend W16 W32 MOVSxL x
MO_SS_Conv W8 W16 -> integerExtend W8 W16 MOVSxL x
MO_UU_Conv W8 W64 | not is32Bit -> integerExtend W8 W64 MOVZxL x
MO_UU_Conv W16 W64 | not is32Bit -> integerExtend W16 W64 MOVZxL x
MO_UU_Conv W32 W64 | not is32Bit -> integerExtend W32 W64 MOVZxL x
MO_SS_Conv W8 W64 | not is32Bit -> integerExtend W8 W64 MOVSxL x
MO_SS_Conv W16 W64 | not is32Bit -> integerExtend W16 W64 MOVSxL x
MO_SS_Conv W32 W64 | not is32Bit -> integerExtend W32 W64 MOVSxL x
-- for 32-to-64 bit zero extension, amd64 uses an ordinary movl.
-- However, we don't want the register allocator to throw it
-- away as an unnecessary reg-to-reg move, so we keep it in
-- the form of a movzl and print it as a movl later.
MO_FF_Conv W32 W64
| sse2 -> coerceFP2FP W64 x
| otherwise -> conversionNop FF80 x
MO_FF_Conv W64 W32 -> coerceFP2FP W32 x
MO_FS_Conv from to -> coerceFP2Int from to x
MO_SF_Conv from to -> coerceInt2FP from to x
MO_V_Insert {} -> needLlvm
MO_V_Extract {} -> needLlvm
MO_V_Add {} -> needLlvm
MO_V_Sub {} -> needLlvm
MO_V_Mul {} -> needLlvm
MO_VS_Quot {} -> needLlvm
MO_VS_Rem {} -> needLlvm
MO_VS_Neg {} -> needLlvm
MO_VU_Quot {} -> needLlvm
MO_VU_Rem {} -> needLlvm
MO_VF_Insert {} -> needLlvm
MO_VF_Extract {} -> needLlvm
MO_VF_Add {} -> needLlvm
MO_VF_Sub {} -> needLlvm
MO_VF_Mul {} -> needLlvm
MO_VF_Quot {} -> needLlvm
MO_VF_Neg {} -> needLlvm
_other -> pprPanic "getRegister" (pprMachOp mop)
where
triv_ucode :: (Size -> Operand -> Instr) -> Size -> NatM Register
triv_ucode instr size = trivialUCode size (instr size) x
-- signed or unsigned extension.
integerExtend :: Width -> Width
-> (Size -> Operand -> Operand -> Instr)
-> CmmExpr -> NatM Register
integerExtend from to instr expr = do
(reg,e_code) <- if from == W8 then getByteReg expr
else getSomeReg expr
let
code dst =
e_code `snocOL`
instr (intSize from) (OpReg reg) (OpReg dst)
return (Any (intSize to) code)
toI8Reg :: Width -> CmmExpr -> NatM Register
toI8Reg new_rep expr
= do codefn <- getAnyReg expr
return (Any (intSize new_rep) codefn)
-- HACK: use getAnyReg to get a byte-addressable register.
-- If the source was a Fixed register, this will add the
-- mov instruction to put it into the desired destination.
-- We're assuming that the destination won't be a fixed
-- non-byte-addressable register; it won't be, because all
-- fixed registers are word-sized.
toI16Reg = toI8Reg -- for now
conversionNop :: Size -> CmmExpr -> NatM Register
conversionNop new_size expr
= do e_code <- getRegister' dflags is32Bit expr
return (swizzleRegisterRep e_code new_size)
getRegister' _ is32Bit (CmmMachOp mop [x, y]) = do -- dyadic MachOps
sse2 <- sse2Enabled
case mop of
MO_F_Eq _ -> condFltReg is32Bit EQQ x y
MO_F_Ne _ -> condFltReg is32Bit NE x y
MO_F_Gt _ -> condFltReg is32Bit GTT x y
MO_F_Ge _ -> condFltReg is32Bit GE x y
MO_F_Lt _ -> condFltReg is32Bit LTT x y
MO_F_Le _ -> condFltReg is32Bit LE x y
MO_Eq _ -> condIntReg EQQ x y
MO_Ne _ -> condIntReg NE x y
MO_S_Gt _ -> condIntReg GTT x y
MO_S_Ge _ -> condIntReg GE x y
MO_S_Lt _ -> condIntReg LTT x y
MO_S_Le _ -> condIntReg LE x y
MO_U_Gt _ -> condIntReg GU x y
MO_U_Ge _ -> condIntReg GEU x y
MO_U_Lt _ -> condIntReg LU x y
MO_U_Le _ -> condIntReg LEU x y
MO_F_Add w | sse2 -> trivialFCode_sse2 w ADD x y
| otherwise -> trivialFCode_x87 GADD x y
MO_F_Sub w | sse2 -> trivialFCode_sse2 w SUB x y
| otherwise -> trivialFCode_x87 GSUB x y
MO_F_Quot w | sse2 -> trivialFCode_sse2 w FDIV x y
| otherwise -> trivialFCode_x87 GDIV x y
MO_F_Mul w | sse2 -> trivialFCode_sse2 w MUL x y
| otherwise -> trivialFCode_x87 GMUL x y
MO_Add rep -> add_code rep x y
MO_Sub rep -> sub_code rep x y
MO_S_Quot rep -> div_code rep True True x y
MO_S_Rem rep -> div_code rep True False x y
MO_U_Quot rep -> div_code rep False True x y
MO_U_Rem rep -> div_code rep False False x y
MO_S_MulMayOflo rep -> imulMayOflo rep x y
MO_Mul rep -> triv_op rep IMUL
MO_And rep -> triv_op rep AND
MO_Or rep -> triv_op rep OR
MO_Xor rep -> triv_op rep XOR
{- Shift ops on x86s have constraints on their source, it
either has to be Imm, CL or 1
=> trivialCode is not restrictive enough (sigh.)
-}
MO_Shl rep -> shift_code rep SHL x y {-False-}
MO_U_Shr rep -> shift_code rep SHR x y {-False-}
MO_S_Shr rep -> shift_code rep SAR x y {-False-}
MO_V_Insert {} -> needLlvm
MO_V_Extract {} -> needLlvm
MO_V_Add {} -> needLlvm
MO_V_Sub {} -> needLlvm
MO_V_Mul {} -> needLlvm
MO_VS_Quot {} -> needLlvm
MO_VS_Rem {} -> needLlvm
MO_VS_Neg {} -> needLlvm
MO_VF_Insert {} -> needLlvm
MO_VF_Extract {} -> needLlvm
MO_VF_Add {} -> needLlvm
MO_VF_Sub {} -> needLlvm
MO_VF_Mul {} -> needLlvm
MO_VF_Quot {} -> needLlvm
MO_VF_Neg {} -> needLlvm
_other -> pprPanic "getRegister(x86) - binary CmmMachOp (1)" (pprMachOp mop)
where
--------------------
triv_op width instr = trivialCode width op (Just op) x y
where op = instr (intSize width)
imulMayOflo :: Width -> CmmExpr -> CmmExpr -> NatM Register
imulMayOflo rep a b = do
(a_reg, a_code) <- getNonClobberedReg a
b_code <- getAnyReg b
let
shift_amt = case rep of
W32 -> 31
W64 -> 63
_ -> panic "shift_amt"
size = intSize rep
code = a_code `appOL` b_code eax `appOL`
toOL [
IMUL2 size (OpReg a_reg), -- result in %edx:%eax
SAR size (OpImm (ImmInt shift_amt)) (OpReg eax),
-- sign extend lower part
SUB size (OpReg edx) (OpReg eax)
-- compare against upper
-- eax==0 if high part == sign extended low part
]
return (Fixed size eax code)
--------------------
shift_code :: Width
-> (Size -> Operand -> Operand -> Instr)
-> CmmExpr
-> CmmExpr
-> NatM Register
{- Case1: shift length as immediate -}
shift_code width instr x (CmmLit lit) = do
x_code <- getAnyReg x
let
size = intSize width
code dst
= x_code dst `snocOL`
instr size (OpImm (litToImm lit)) (OpReg dst)
return (Any size code)
{- Case2: shift length is complex (non-immediate)
* y must go in %ecx.
* we cannot do y first *and* put its result in %ecx, because
%ecx might be clobbered by x.
* if we do y second, then x cannot be
in a clobbered reg. Also, we cannot clobber x's reg
with the instruction itself.
* so we can either:
- do y first, put its result in a fresh tmp, then copy it to %ecx later
- do y second and put its result into %ecx. x gets placed in a fresh
tmp. This is likely to be better, because the reg alloc can
eliminate this reg->reg move here (it won't eliminate the other one,
because the move is into the fixed %ecx).
-}
shift_code width instr x y{-amount-} = do
x_code <- getAnyReg x
let size = intSize width
tmp <- getNewRegNat size
y_code <- getAnyReg y
let
code = x_code tmp `appOL`
y_code ecx `snocOL`
instr size (OpReg ecx) (OpReg tmp)
return (Fixed size tmp code)
--------------------
add_code :: Width -> CmmExpr -> CmmExpr -> NatM Register
add_code rep x (CmmLit (CmmInt y _))
| is32BitInteger y = add_int rep x y
add_code rep x y = trivialCode rep (ADD size) (Just (ADD size)) x y
where size = intSize rep
--------------------
sub_code :: Width -> CmmExpr -> CmmExpr -> NatM Register
sub_code rep x (CmmLit (CmmInt y _))
| is32BitInteger (-y) = add_int rep x (-y)
sub_code rep x y = trivialCode rep (SUB (intSize rep)) Nothing x y
-- our three-operand add instruction:
add_int width x y = do
(x_reg, x_code) <- getSomeReg x
let
size = intSize width
imm = ImmInt (fromInteger y)
code dst
= x_code `snocOL`
LEA size
(OpAddr (AddrBaseIndex (EABaseReg x_reg) EAIndexNone imm))
(OpReg dst)
--
return (Any size code)
----------------------
div_code width signed quotient x y = do
(y_op, y_code) <- getRegOrMem y -- cannot be clobbered
x_code <- getAnyReg x
let
size = intSize width
widen | signed = CLTD size
| otherwise = XOR size (OpReg edx) (OpReg edx)
instr | signed = IDIV
| otherwise = DIV
code = y_code `appOL`
x_code eax `appOL`
toOL [widen, instr size y_op]
result | quotient = eax
| otherwise = edx
return (Fixed size result code)
getRegister' _ _ (CmmLoad mem pk)
| isFloatType pk
= do
Amode addr mem_code <- getAmode mem
use_sse2 <- sse2Enabled
loadFloatAmode use_sse2 (typeWidth pk) addr mem_code
getRegister' _ is32Bit (CmmLoad mem pk)
| is32Bit && not (isWord64 pk)
= do
code <- intLoadCode instr mem
return (Any size code)
where
width = typeWidth pk
size = intSize width
instr = case width of
W8 -> MOVZxL II8
_other -> MOV size
-- We always zero-extend 8-bit loads, if we
-- can't think of anything better. This is because
-- we can't guarantee access to an 8-bit variant of every register
-- (esi and edi don't have 8-bit variants), so to make things
-- simpler we do our 8-bit arithmetic with full 32-bit registers.
-- Simpler memory load code on x86_64
getRegister' _ is32Bit (CmmLoad mem pk)
| not is32Bit
= do
code <- intLoadCode (MOV size) mem
return (Any size code)
where size = intSize $ typeWidth pk
getRegister' _ is32Bit (CmmLit (CmmInt 0 width))
= let
size = intSize width
-- x86_64: 32-bit xor is one byte shorter, and zero-extends to 64 bits
size1 = if is32Bit then size
else case size of
II64 -> II32
_ -> size
code dst
= unitOL (XOR size1 (OpReg dst) (OpReg dst))
in
return (Any size code)
-- optimisation for loading small literals on x86_64: take advantage
-- of the automatic zero-extension from 32 to 64 bits, because the 32-bit
-- instruction forms are shorter.
getRegister' dflags is32Bit (CmmLit lit)
| not is32Bit, isWord64 (cmmLitType dflags lit), not (isBigLit lit)
= let
imm = litToImm lit
code dst = unitOL (MOV II32 (OpImm imm) (OpReg dst))
in
return (Any II64 code)
where
isBigLit (CmmInt i _) = i < 0 || i > 0xffffffff
isBigLit _ = False
-- note1: not the same as (not.is32BitLit), because that checks for
-- signed literals that fit in 32 bits, but we want unsigned
-- literals here.
-- note2: all labels are small, because we're assuming the
-- small memory model (see gcc docs, -mcmodel=small).
getRegister' dflags _ (CmmLit lit)
= do let size = cmmTypeSize (cmmLitType dflags lit)
imm = litToImm lit
code dst = unitOL (MOV size (OpImm imm) (OpReg dst))
return (Any size code)
getRegister' _ _ other
| isVecExpr other = needLlvm
| otherwise = pprPanic "getRegister(x86)" (ppr other)
intLoadCode :: (Operand -> Operand -> Instr) -> CmmExpr
-> NatM (Reg -> InstrBlock)
intLoadCode instr mem = do
Amode src mem_code <- getAmode mem
return (\dst -> mem_code `snocOL` instr (OpAddr src) (OpReg dst))
-- Compute an expression into *any* register, adding the appropriate
-- move instruction if necessary.
getAnyReg :: CmmExpr -> NatM (Reg -> InstrBlock)
getAnyReg expr = do
r <- getRegister expr
anyReg r
anyReg :: Register -> NatM (Reg -> InstrBlock)
anyReg (Any _ code) = return code
anyReg (Fixed rep reg fcode) = return (\dst -> fcode `snocOL` reg2reg rep reg dst)
-- A bit like getSomeReg, but we want a reg that can be byte-addressed.
-- Fixed registers might not be byte-addressable, so we make sure we've
-- got a temporary, inserting an extra reg copy if necessary.
getByteReg :: CmmExpr -> NatM (Reg, InstrBlock)
getByteReg expr = do
is32Bit <- is32BitPlatform
if is32Bit
then do r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed rep reg code
| isVirtualReg reg -> return (reg,code)
| otherwise -> do
tmp <- getNewRegNat rep
return (tmp, code `snocOL` reg2reg rep reg tmp)
-- ToDo: could optimise slightly by checking for
-- byte-addressable real registers, but that will
-- happen very rarely if at all.
else getSomeReg expr -- all regs are byte-addressable on x86_64
-- Another variant: this time we want the result in a register that cannot
-- be modified by code to evaluate an arbitrary expression.
getNonClobberedReg :: CmmExpr -> NatM (Reg, InstrBlock)
getNonClobberedReg expr = do
dflags <- getDynFlags
r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed rep reg code
-- only certain regs can be clobbered
| reg `elem` instrClobberedRegs (targetPlatform dflags)
-> do
tmp <- getNewRegNat rep
return (tmp, code `snocOL` reg2reg rep reg tmp)
| otherwise ->
return (reg, code)
reg2reg :: Size -> Reg -> Reg -> Instr
reg2reg size src dst
| size == FF80 = GMOV src dst
| otherwise = MOV size (OpReg src) (OpReg dst)
--------------------------------------------------------------------------------
getAmode :: CmmExpr -> NatM Amode
getAmode e = do is32Bit <- is32BitPlatform
getAmode' is32Bit e
getAmode' :: Bool -> CmmExpr -> NatM Amode
getAmode' _ (CmmRegOff r n) = do dflags <- getDynFlags
getAmode $ mangleIndexTree dflags r n
getAmode' is32Bit (CmmMachOp (MO_Add W64) [CmmReg (CmmGlobal PicBaseReg),
CmmLit displacement])
| not is32Bit
= return $ Amode (ripRel (litToImm displacement)) nilOL
-- This is all just ridiculous, since it carefully undoes
-- what mangleIndexTree has just done.
getAmode' is32Bit (CmmMachOp (MO_Sub _rep) [x, CmmLit lit@(CmmInt i _)])
| is32BitLit is32Bit lit
-- ASSERT(rep == II32)???
= do (x_reg, x_code) <- getSomeReg x
let off = ImmInt (-(fromInteger i))
return (Amode (AddrBaseIndex (EABaseReg x_reg) EAIndexNone off) x_code)
getAmode' is32Bit (CmmMachOp (MO_Add _rep) [x, CmmLit lit])
| is32BitLit is32Bit lit
-- ASSERT(rep == II32)???
= do (x_reg, x_code) <- getSomeReg x
let off = litToImm lit
return (Amode (AddrBaseIndex (EABaseReg x_reg) EAIndexNone off) x_code)
-- Turn (lit1 << n + lit2) into (lit2 + lit1 << n) so it will be
-- recognised by the next rule.
getAmode' is32Bit (CmmMachOp (MO_Add rep) [a@(CmmMachOp (MO_Shl _) _),
b@(CmmLit _)])
= getAmode' is32Bit (CmmMachOp (MO_Add rep) [b,a])
getAmode' _ (CmmMachOp (MO_Add _) [x, CmmMachOp (MO_Shl _)
[y, CmmLit (CmmInt shift _)]])
| shift == 0 || shift == 1 || shift == 2 || shift == 3
= x86_complex_amode x y shift 0
getAmode' _ (CmmMachOp (MO_Add _)
[x, CmmMachOp (MO_Add _)
[CmmMachOp (MO_Shl _) [y, CmmLit (CmmInt shift _)],
CmmLit (CmmInt offset _)]])
| shift == 0 || shift == 1 || shift == 2 || shift == 3
&& is32BitInteger offset
= x86_complex_amode x y shift offset
getAmode' _ (CmmMachOp (MO_Add _) [x,y])
= x86_complex_amode x y 0 0
getAmode' is32Bit (CmmLit lit) | is32BitLit is32Bit lit
= return (Amode (ImmAddr (litToImm lit) 0) nilOL)
getAmode' _ expr = do
(reg,code) <- getSomeReg expr
return (Amode (AddrBaseIndex (EABaseReg reg) EAIndexNone (ImmInt 0)) code)
x86_complex_amode :: CmmExpr -> CmmExpr -> Integer -> Integer -> NatM Amode
x86_complex_amode base index shift offset
= do (x_reg, x_code) <- getNonClobberedReg base
-- x must be in a temp, because it has to stay live over y_code
-- we could compre x_reg and y_reg and do something better here...
(y_reg, y_code) <- getSomeReg index
let
code = x_code `appOL` y_code
base = case shift of 0 -> 1; 1 -> 2; 2 -> 4; 3 -> 8;
n -> panic $ "x86_complex_amode: unhandled shift! (" ++ show n ++ ")"
return (Amode (AddrBaseIndex (EABaseReg x_reg) (EAIndex y_reg base) (ImmInt (fromIntegral offset)))
code)
-- -----------------------------------------------------------------------------
-- getOperand: sometimes any operand will do.
-- getNonClobberedOperand: the value of the operand will remain valid across
-- the computation of an arbitrary expression, unless the expression
-- is computed directly into a register which the operand refers to
-- (see trivialCode where this function is used for an example).
getNonClobberedOperand :: CmmExpr -> NatM (Operand, InstrBlock)
getNonClobberedOperand (CmmLit lit) = do
use_sse2 <- sse2Enabled
if use_sse2 && isSuitableFloatingPointLit lit
then do
let CmmFloat _ w = lit
Amode addr code <- memConstant (widthInBytes w) lit
return (OpAddr addr, code)
else do
is32Bit <- is32BitPlatform
dflags <- getDynFlags
if is32BitLit is32Bit lit && not (isFloatType (cmmLitType dflags lit))
then return (OpImm (litToImm lit), nilOL)
else getNonClobberedOperand_generic (CmmLit lit)
getNonClobberedOperand (CmmLoad mem pk) = do
is32Bit <- is32BitPlatform
use_sse2 <- sse2Enabled
if (not (isFloatType pk) || use_sse2)
&& (if is32Bit then not (isWord64 pk) else True)
then do
dflags <- getDynFlags
let platform = targetPlatform dflags
Amode src mem_code <- getAmode mem
(src',save_code) <-
if (amodeCouldBeClobbered platform src)
then do
tmp <- getNewRegNat (archWordSize is32Bit)
return (AddrBaseIndex (EABaseReg tmp) EAIndexNone (ImmInt 0),
unitOL (LEA (archWordSize is32Bit) (OpAddr src) (OpReg tmp)))
else
return (src, nilOL)
return (OpAddr src', mem_code `appOL` save_code)
else do
getNonClobberedOperand_generic (CmmLoad mem pk)
getNonClobberedOperand e = getNonClobberedOperand_generic e
getNonClobberedOperand_generic :: CmmExpr -> NatM (Operand, InstrBlock)
getNonClobberedOperand_generic e = do
(reg, code) <- getNonClobberedReg e
return (OpReg reg, code)
amodeCouldBeClobbered :: Platform -> AddrMode -> Bool
amodeCouldBeClobbered platform amode = any (regClobbered platform) (addrModeRegs amode)
regClobbered :: Platform -> Reg -> Bool
regClobbered platform (RegReal (RealRegSingle rr)) = isFastTrue (freeReg platform rr)
regClobbered _ _ = False
-- getOperand: the operand is not required to remain valid across the
-- computation of an arbitrary expression.
getOperand :: CmmExpr -> NatM (Operand, InstrBlock)
getOperand (CmmLit lit) = do
use_sse2 <- sse2Enabled
if (use_sse2 && isSuitableFloatingPointLit lit)
then do
let CmmFloat _ w = lit
Amode addr code <- memConstant (widthInBytes w) lit
return (OpAddr addr, code)
else do
is32Bit <- is32BitPlatform
dflags <- getDynFlags
if is32BitLit is32Bit lit && not (isFloatType (cmmLitType dflags lit))
then return (OpImm (litToImm lit), nilOL)
else getOperand_generic (CmmLit lit)
getOperand (CmmLoad mem pk) = do
is32Bit <- is32BitPlatform
use_sse2 <- sse2Enabled
if (not (isFloatType pk) || use_sse2) && (if is32Bit then not (isWord64 pk) else True)
then do
Amode src mem_code <- getAmode mem
return (OpAddr src, mem_code)
else
getOperand_generic (CmmLoad mem pk)
getOperand e = getOperand_generic e
getOperand_generic :: CmmExpr -> NatM (Operand, InstrBlock)
getOperand_generic e = do
(reg, code) <- getSomeReg e
return (OpReg reg, code)
isOperand :: Bool -> CmmExpr -> Bool
isOperand _ (CmmLoad _ _) = True
isOperand is32Bit (CmmLit lit) = is32BitLit is32Bit lit
|| isSuitableFloatingPointLit lit
isOperand _ _ = False
memConstant :: Int -> CmmLit -> NatM Amode
memConstant align lit = do
lbl <- getNewLabelNat
dflags <- getDynFlags
(addr, addr_code) <- if target32Bit (targetPlatform dflags)
then do dynRef <- cmmMakeDynamicReference
dflags
DataReference
lbl
Amode addr addr_code <- getAmode dynRef
return (addr, addr_code)
else return (ripRel (ImmCLbl lbl), nilOL)
let code =
LDATA ReadOnlyData (align, Statics lbl [CmmStaticLit lit])
`consOL` addr_code
return (Amode addr code)
loadFloatAmode :: Bool -> Width -> AddrMode -> InstrBlock -> NatM Register
loadFloatAmode use_sse2 w addr addr_code = do
let size = floatSize w
code dst = addr_code `snocOL`
if use_sse2
then MOV size (OpAddr addr) (OpReg dst)
else GLD size addr dst
return (Any (if use_sse2 then size else FF80) code)
-- if we want a floating-point literal as an operand, we can
-- use it directly from memory. However, if the literal is
-- zero, we're better off generating it into a register using
-- xor.
isSuitableFloatingPointLit :: CmmLit -> Bool
isSuitableFloatingPointLit (CmmFloat f _) = f /= 0.0
isSuitableFloatingPointLit _ = False
getRegOrMem :: CmmExpr -> NatM (Operand, InstrBlock)
getRegOrMem e@(CmmLoad mem pk) = do
is32Bit <- is32BitPlatform
use_sse2 <- sse2Enabled
if (not (isFloatType pk) || use_sse2) && (if is32Bit then not (isWord64 pk) else True)
then do
Amode src mem_code <- getAmode mem
return (OpAddr src, mem_code)
else do
(reg, code) <- getNonClobberedReg e
return (OpReg reg, code)
getRegOrMem e = do
(reg, code) <- getNonClobberedReg e
return (OpReg reg, code)
is32BitLit :: Bool -> CmmLit -> Bool
is32BitLit is32Bit (CmmInt i W64)
| not is32Bit
= -- assume that labels are in the range 0-2^31-1: this assumes the
-- small memory model (see gcc docs, -mcmodel=small).
is32BitInteger i
is32BitLit _ _ = True
-- Set up a condition code for a conditional branch.
getCondCode :: CmmExpr -> NatM CondCode
-- yes, they really do seem to want exactly the same!
getCondCode (CmmMachOp mop [x, y])
=
case mop of
MO_F_Eq W32 -> condFltCode EQQ x y
MO_F_Ne W32 -> condFltCode NE x y
MO_F_Gt W32 -> condFltCode GTT x y
MO_F_Ge W32 -> condFltCode GE x y
MO_F_Lt W32 -> condFltCode LTT x y
MO_F_Le W32 -> condFltCode LE x y
MO_F_Eq W64 -> condFltCode EQQ x y
MO_F_Ne W64 -> condFltCode NE x y
MO_F_Gt W64 -> condFltCode GTT x y
MO_F_Ge W64 -> condFltCode GE x y
MO_F_Lt W64 -> condFltCode LTT x y
MO_F_Le W64 -> condFltCode LE x y
MO_Eq _ -> condIntCode EQQ x y
MO_Ne _ -> condIntCode NE x y
MO_S_Gt _ -> condIntCode GTT x y
MO_S_Ge _ -> condIntCode GE x y
MO_S_Lt _ -> condIntCode LTT x y
MO_S_Le _ -> condIntCode LE x y
MO_U_Gt _ -> condIntCode GU x y
MO_U_Ge _ -> condIntCode GEU x y
MO_U_Lt _ -> condIntCode LU x y
MO_U_Le _ -> condIntCode LEU x y
_other -> pprPanic "getCondCode(x86,x86_64)" (ppr (CmmMachOp mop [x,y]))
getCondCode other = pprPanic "getCondCode(2)(x86,x86_64)" (ppr other)
-- @cond(Int|Flt)Code@: Turn a boolean expression into a condition, to be
-- passed back up the tree.
condIntCode :: Cond -> CmmExpr -> CmmExpr -> NatM CondCode
condIntCode cond x y = do is32Bit <- is32BitPlatform
condIntCode' is32Bit cond x y
condIntCode' :: Bool -> Cond -> CmmExpr -> CmmExpr -> NatM CondCode
-- memory vs immediate
condIntCode' is32Bit cond (CmmLoad x pk) (CmmLit lit)
| is32BitLit is32Bit lit = do
Amode x_addr x_code <- getAmode x
let
imm = litToImm lit
code = x_code `snocOL`
CMP (cmmTypeSize pk) (OpImm imm) (OpAddr x_addr)
--
return (CondCode False cond code)
-- anything vs zero, using a mask
-- TODO: Add some sanity checking!!!!
condIntCode' is32Bit cond (CmmMachOp (MO_And _) [x,o2]) (CmmLit (CmmInt 0 pk))
| (CmmLit lit@(CmmInt mask _)) <- o2, is32BitLit is32Bit lit
= do
(x_reg, x_code) <- getSomeReg x
let
code = x_code `snocOL`
TEST (intSize pk) (OpImm (ImmInteger mask)) (OpReg x_reg)
--
return (CondCode False cond code)
-- anything vs zero
condIntCode' _ cond x (CmmLit (CmmInt 0 pk)) = do
(x_reg, x_code) <- getSomeReg x
let
code = x_code `snocOL`
TEST (intSize pk) (OpReg x_reg) (OpReg x_reg)
--
return (CondCode False cond code)
-- anything vs operand
condIntCode' is32Bit cond x y
| isOperand is32Bit y = do
dflags <- getDynFlags
(x_reg, x_code) <- getNonClobberedReg x
(y_op, y_code) <- getOperand y
let
code = x_code `appOL` y_code `snocOL`
CMP (cmmTypeSize (cmmExprType dflags x)) y_op (OpReg x_reg)
return (CondCode False cond code)
-- operand vs. anything: invert the comparison so that we can use a
-- single comparison instruction.
| isOperand is32Bit x
, Just revcond <- maybeFlipCond cond = do
dflags <- getDynFlags
(y_reg, y_code) <- getNonClobberedReg y
(x_op, x_code) <- getOperand x
let
code = y_code `appOL` x_code `snocOL`
CMP (cmmTypeSize (cmmExprType dflags x)) x_op (OpReg y_reg)
return (CondCode False revcond code)
-- anything vs anything
condIntCode' _ cond x y = do
dflags <- getDynFlags
(y_reg, y_code) <- getNonClobberedReg y
(x_op, x_code) <- getRegOrMem x
let
code = y_code `appOL`
x_code `snocOL`
CMP (cmmTypeSize (cmmExprType dflags x)) (OpReg y_reg) x_op
return (CondCode False cond code)
--------------------------------------------------------------------------------
condFltCode :: Cond -> CmmExpr -> CmmExpr -> NatM CondCode
condFltCode cond x y
= if_sse2 condFltCode_sse2 condFltCode_x87
where
condFltCode_x87
= ASSERT(cond `elem` ([EQQ, NE, LE, LTT, GE, GTT])) do
(x_reg, x_code) <- getNonClobberedReg x
(y_reg, y_code) <- getSomeReg y
let
code = x_code `appOL` y_code `snocOL`
GCMP cond x_reg y_reg
-- The GCMP insn does the test and sets the zero flag if comparable
-- and true. Hence we always supply EQQ as the condition to test.
return (CondCode True EQQ code)
-- in the SSE2 comparison ops (ucomiss, ucomisd) the left arg may be
-- an operand, but the right must be a reg. We can probably do better
-- than this general case...
condFltCode_sse2 = do
dflags <- getDynFlags
(x_reg, x_code) <- getNonClobberedReg x
(y_op, y_code) <- getOperand y
let
code = x_code `appOL`
y_code `snocOL`
CMP (floatSize $ cmmExprWidth dflags x) y_op (OpReg x_reg)
-- NB(1): we need to use the unsigned comparison operators on the
-- result of this comparison.
return (CondCode True (condToUnsigned cond) code)
-- -----------------------------------------------------------------------------
-- Generating assignments
-- Assignments are really at the heart of the whole code generation
-- business. Almost all top-level nodes of any real importance are
-- assignments, which correspond to loads, stores, or register
-- transfers. If we're really lucky, some of the register transfers
-- will go away, because we can use the destination register to
-- complete the code generation for the right hand side. This only
-- fails when the right hand side is forced into a fixed register
-- (e.g. the result of a call).
assignMem_IntCode :: Size -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_IntCode :: Size -> CmmReg -> CmmExpr -> NatM InstrBlock
assignMem_FltCode :: Size -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_FltCode :: Size -> CmmReg -> CmmExpr -> NatM InstrBlock
-- integer assignment to memory
-- specific case of adding/subtracting an integer to a particular address.
-- ToDo: catch other cases where we can use an operation directly on a memory
-- address.
assignMem_IntCode pk addr (CmmMachOp op [CmmLoad addr2 _,
CmmLit (CmmInt i _)])
| addr == addr2, pk /= II64 || is32BitInteger i,
Just instr <- check op
= do Amode amode code_addr <- getAmode addr
let code = code_addr `snocOL`
instr pk (OpImm (ImmInt (fromIntegral i))) (OpAddr amode)
return code
where
check (MO_Add _) = Just ADD
check (MO_Sub _) = Just SUB
check _ = Nothing
-- ToDo: more?
-- general case
assignMem_IntCode pk addr src = do
is32Bit <- is32BitPlatform
Amode addr code_addr <- getAmode addr
(code_src, op_src) <- get_op_RI is32Bit src
let
code = code_src `appOL`
code_addr `snocOL`
MOV pk op_src (OpAddr addr)
-- NOTE: op_src is stable, so it will still be valid
-- after code_addr. This may involve the introduction
-- of an extra MOV to a temporary register, but we hope
-- the register allocator will get rid of it.
--
return code
where
get_op_RI :: Bool -> CmmExpr -> NatM (InstrBlock,Operand) -- code, operator
get_op_RI is32Bit (CmmLit lit) | is32BitLit is32Bit lit
= return (nilOL, OpImm (litToImm lit))
get_op_RI _ op
= do (reg,code) <- getNonClobberedReg op
return (code, OpReg reg)
-- Assign; dst is a reg, rhs is mem
assignReg_IntCode pk reg (CmmLoad src _) = do
load_code <- intLoadCode (MOV pk) src
dflags <- getDynFlags
let platform = targetPlatform dflags
return (load_code (getRegisterReg platform False{-no sse2-} reg))
-- dst is a reg, but src could be anything
assignReg_IntCode _ reg src = do
dflags <- getDynFlags
let platform = targetPlatform dflags
code <- getAnyReg src
return (code (getRegisterReg platform False{-no sse2-} reg))
-- Floating point assignment to memory
assignMem_FltCode pk addr src = do
(src_reg, src_code) <- getNonClobberedReg src
Amode addr addr_code <- getAmode addr
use_sse2 <- sse2Enabled
let
code = src_code `appOL`
addr_code `snocOL`
if use_sse2 then MOV pk (OpReg src_reg) (OpAddr addr)
else GST pk src_reg addr
return code
-- Floating point assignment to a register/temporary
assignReg_FltCode _ reg src = do
use_sse2 <- sse2Enabled
src_code <- getAnyReg src
dflags <- getDynFlags
let platform = targetPlatform dflags
return (src_code (getRegisterReg platform use_sse2 reg))
genJump :: CmmExpr{-the branch target-} -> [Reg] -> NatM InstrBlock
genJump (CmmLoad mem _) regs = do
Amode target code <- getAmode mem
return (code `snocOL` JMP (OpAddr target) regs)
genJump (CmmLit lit) regs = do
return (unitOL (JMP (OpImm (litToImm lit)) regs))
genJump expr regs = do
(reg,code) <- getSomeReg expr
return (code `snocOL` JMP (OpReg reg) regs)
-- -----------------------------------------------------------------------------
-- Unconditional branches
genBranch :: BlockId -> NatM InstrBlock
genBranch = return . toOL . mkJumpInstr
-- -----------------------------------------------------------------------------
-- Conditional jumps
{-
Conditional jumps are always to local labels, so we can use branch
instructions. We peek at the arguments to decide what kind of
comparison to do.
I386: First, we have to ensure that the condition
codes are set according to the supplied comparison operation.
-}
genCondJump
:: BlockId -- the branch target
-> CmmExpr -- the condition on which to branch
-> NatM InstrBlock
genCondJump id bool = do
CondCode is_float cond cond_code <- getCondCode bool
use_sse2 <- sse2Enabled
if not is_float || not use_sse2
then
return (cond_code `snocOL` JXX cond id)
else do
lbl <- getBlockIdNat
-- see comment with condFltReg
let code = case cond of
NE -> or_unordered
GU -> plain_test
GEU -> plain_test
_ -> and_ordered
plain_test = unitOL (
JXX cond id
)
or_unordered = toOL [
JXX cond id,
JXX PARITY id
]
and_ordered = toOL [
JXX PARITY lbl,
JXX cond id,
JXX ALWAYS lbl,
NEWBLOCK lbl
]
return (cond_code `appOL` code)
-- -----------------------------------------------------------------------------
-- Generating C calls
-- Now the biggest nightmare---calls. Most of the nastiness is buried in
-- @get_arg@, which moves the arguments to the correct registers/stack
-- locations. Apart from that, the code is easy.
--
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.
genCCall
:: DynFlags
-> Bool -- 32 bit platform?
-> ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> NatM InstrBlock
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- Unroll memcpy calls if the source and destination pointers are at
-- least DWORD aligned and the number of bytes to copy isn't too
-- large. Otherwise, call C's memcpy.
genCCall dflags is32Bit (PrimTarget MO_Memcpy) _
[dst, src,
(CmmLit (CmmInt n _)),
(CmmLit (CmmInt align _))]
| fromInteger insns <= maxInlineMemcpyInsns dflags && align .&. 3 == 0 = do
code_dst <- getAnyReg dst
dst_r <- getNewRegNat size
code_src <- getAnyReg src
src_r <- getNewRegNat size
tmp_r <- getNewRegNat size
return $ code_dst dst_r `appOL` code_src src_r `appOL`
go dst_r src_r tmp_r (fromInteger n)
where
-- The number of instructions we will generate (approx). We need 2
-- instructions per move.
insns = 2 * ((n + sizeBytes - 1) `div` sizeBytes)
size = if align .&. 4 /= 0 then II32 else (archWordSize is32Bit)
-- The size of each move, in bytes.
sizeBytes :: Integer
sizeBytes = fromIntegral (sizeInBytes size)
go :: Reg -> Reg -> Reg -> Integer -> OrdList Instr
go dst src tmp i
| i >= sizeBytes =
unitOL (MOV size (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV size (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - sizeBytes)
-- Deal with remaining bytes.
| i >= 4 = -- Will never happen on 32-bit
unitOL (MOV II32 (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV II32 (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - 4)
| i >= 2 =
unitOL (MOVZxL II16 (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV II16 (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - 2)
| i >= 1 =
unitOL (MOVZxL II8 (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV II8 (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - 1)
| otherwise = nilOL
where
src_addr = AddrBaseIndex (EABaseReg src) EAIndexNone
(ImmInteger (n - i))
dst_addr = AddrBaseIndex (EABaseReg dst) EAIndexNone
(ImmInteger (n - i))
genCCall dflags _ (PrimTarget MO_Memset) _
[dst,
CmmLit (CmmInt c _),
CmmLit (CmmInt n _),
CmmLit (CmmInt align _)]
| fromInteger insns <= maxInlineMemsetInsns dflags && align .&. 3 == 0 = do
code_dst <- getAnyReg dst
dst_r <- getNewRegNat size
return $ code_dst dst_r `appOL` go dst_r (fromInteger n)
where
(size, val) = case align .&. 3 of
2 -> (II16, c2)
0 -> (II32, c4)
_ -> (II8, c)
c2 = c `shiftL` 8 .|. c
c4 = c2 `shiftL` 16 .|. c2
-- The number of instructions we will generate (approx). We need 1
-- instructions per move.
insns = (n + sizeBytes - 1) `div` sizeBytes
-- The size of each move, in bytes.
sizeBytes :: Integer
sizeBytes = fromIntegral (sizeInBytes size)
go :: Reg -> Integer -> OrdList Instr
go dst i
-- TODO: Add movabs instruction and support 64-bit sets.
| i >= sizeBytes = -- This might be smaller than the below sizes
unitOL (MOV size (OpImm (ImmInteger val)) (OpAddr dst_addr)) `appOL`
go dst (i - sizeBytes)
| i >= 4 = -- Will never happen on 32-bit
unitOL (MOV II32 (OpImm (ImmInteger c4)) (OpAddr dst_addr)) `appOL`
go dst (i - 4)
| i >= 2 =
unitOL (MOV II16 (OpImm (ImmInteger c2)) (OpAddr dst_addr)) `appOL`
go dst (i - 2)
| i >= 1 =
unitOL (MOV II8 (OpImm (ImmInteger c)) (OpAddr dst_addr)) `appOL`
go dst (i - 1)
| otherwise = nilOL
where
dst_addr = AddrBaseIndex (EABaseReg dst) EAIndexNone
(ImmInteger (n - i))
genCCall _ _ (PrimTarget MO_WriteBarrier) _ _ = return nilOL
-- write barrier compiles to no code on x86/x86-64;
-- we keep it this long in order to prevent earlier optimisations.
genCCall _ _ (PrimTarget MO_Touch) _ _ = return nilOL
genCCall _ is32bit (PrimTarget (MO_Prefetch_Data n )) _ [src] =
case n of
0 -> genPrefetch src $ PREFETCH NTA size
1 -> genPrefetch src $ PREFETCH Lvl2 size
2 -> genPrefetch src $ PREFETCH Lvl1 size
3 -> genPrefetch src $ PREFETCH Lvl0 size
l -> panic $ "unexpected prefetch level in genCCall MO_Prefetch_Data: " ++ (show l)
-- the c / llvm prefetch convention is 0, 1, 2, and 3
-- the x86 corresponding names are : NTA, 2 , 1, and 0
where
size = archWordSize is32bit
-- need to know what register width for pointers!
genPrefetch inRegSrc prefetchCTor =
do
code_src <- getAnyReg inRegSrc
src_r <- getNewRegNat size
return $ code_src src_r `appOL`
(unitOL (prefetchCTor (OpAddr
((AddrBaseIndex (EABaseReg src_r ) EAIndexNone (ImmInt 0)))) ))
-- prefetch always takes an address
genCCall dflags is32Bit (PrimTarget (MO_BSwap width)) [dst] [src] = do
let platform = targetPlatform dflags
let dst_r = getRegisterReg platform False (CmmLocal dst)
case width of
W64 | is32Bit -> do
ChildCode64 vcode rlo <- iselExpr64 src
let dst_rhi = getHiVRegFromLo dst_r
rhi = getHiVRegFromLo rlo
return $ vcode `appOL`
toOL [ MOV II32 (OpReg rlo) (OpReg dst_rhi),
MOV II32 (OpReg rhi) (OpReg dst_r),
BSWAP II32 dst_rhi,
BSWAP II32 dst_r ]
W16 -> do code_src <- getAnyReg src
return $ code_src dst_r `appOL`
unitOL (BSWAP II32 dst_r) `appOL`
unitOL (SHR II32 (OpImm $ ImmInt 16) (OpReg dst_r))
_ -> do code_src <- getAnyReg src
return $ code_src dst_r `appOL` unitOL (BSWAP size dst_r)
where
size = intSize width
genCCall dflags is32Bit (PrimTarget (MO_PopCnt width)) dest_regs@[dst]
args@[src] = do
sse4_2 <- sse4_2Enabled
let platform = targetPlatform dflags
if sse4_2
then do code_src <- getAnyReg src
src_r <- getNewRegNat size
return $ code_src src_r `appOL`
(if width == W8 then
-- The POPCNT instruction doesn't take a r/m8
unitOL (MOVZxL II8 (OpReg src_r) (OpReg src_r)) `appOL`
unitOL (POPCNT II16 (OpReg src_r)
(getRegisterReg platform False (CmmLocal dst)))
else
unitOL (POPCNT size (OpReg src_r)
(getRegisterReg platform False (CmmLocal dst))))
else do
targetExpr <- cmmMakeDynamicReference dflags
CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall dflags is32Bit target dest_regs args
where
size = intSize width
lbl = mkCmmCodeLabel primPackageId (fsLit (popCntLabel width))
genCCall dflags is32Bit (PrimTarget (MO_UF_Conv width)) dest_regs args = do
targetExpr <- cmmMakeDynamicReference dflags
CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall dflags is32Bit target dest_regs args
where
lbl = mkCmmCodeLabel primPackageId (fsLit (word2FloatLabel width))
genCCall _ is32Bit target dest_regs args
| is32Bit = genCCall32 target dest_regs args
| otherwise = genCCall64 target dest_regs args
genCCall32 :: ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> NatM InstrBlock
genCCall32 target dest_regs args = do
dflags <- getDynFlags
let platform = targetPlatform dflags
case (target, dest_regs) of
-- void return type prim op
(PrimTarget op, []) ->
outOfLineCmmOp op Nothing args
-- we only cope with a single result for foreign calls
(PrimTarget op, [r]) -> do
l1 <- getNewLabelNat
l2 <- getNewLabelNat
sse2 <- sse2Enabled
if sse2
then
outOfLineCmmOp op (Just r) args
else case op of
MO_F32_Sqrt -> actuallyInlineFloatOp GSQRT FF32 args
MO_F64_Sqrt -> actuallyInlineFloatOp GSQRT FF64 args
MO_F32_Sin -> actuallyInlineFloatOp (\s -> GSIN s l1 l2) FF32 args
MO_F64_Sin -> actuallyInlineFloatOp (\s -> GSIN s l1 l2) FF64 args
MO_F32_Cos -> actuallyInlineFloatOp (\s -> GCOS s l1 l2) FF32 args
MO_F64_Cos -> actuallyInlineFloatOp (\s -> GCOS s l1 l2) FF64 args
MO_F32_Tan -> actuallyInlineFloatOp (\s -> GTAN s l1 l2) FF32 args
MO_F64_Tan -> actuallyInlineFloatOp (\s -> GTAN s l1 l2) FF64 args
_other_op -> outOfLineCmmOp op (Just r) args
where
actuallyInlineFloatOp instr size [x]
= do res <- trivialUFCode size (instr size) x
any <- anyReg res
return (any (getRegisterReg platform False (CmmLocal r)))
actuallyInlineFloatOp _ _ args
= panic $ "genCCall32.actuallyInlineFloatOp: bad number of arguments! ("
++ show (length args) ++ ")"
(PrimTarget (MO_S_QuotRem width), _) -> divOp1 platform True width dest_regs args
(PrimTarget (MO_U_QuotRem width), _) -> divOp1 platform False width dest_regs args
(PrimTarget (MO_U_QuotRem2 width), _) -> divOp2 platform False width dest_regs args
(PrimTarget (MO_Add2 width), [res_h, res_l]) ->
case args of
[arg_x, arg_y] ->
do hCode <- getAnyReg (CmmLit (CmmInt 0 width))
lCode <- getAnyReg (CmmMachOp (MO_Add width) [arg_x, arg_y])
let size = intSize width
reg_l = getRegisterReg platform True (CmmLocal res_l)
reg_h = getRegisterReg platform True (CmmLocal res_h)
code = hCode reg_h `appOL`
lCode reg_l `snocOL`
ADC size (OpImm (ImmInteger 0)) (OpReg reg_h)
return code
_ -> panic "genCCall32: Wrong number of arguments/results for add2"
(PrimTarget (MO_U_Mul2 width), [res_h, res_l]) ->
case args of
[arg_x, arg_y] ->
do (y_reg, y_code) <- getRegOrMem arg_y
x_code <- getAnyReg arg_x
let size = intSize width
reg_h = getRegisterReg platform True (CmmLocal res_h)
reg_l = getRegisterReg platform True (CmmLocal res_l)
code = y_code `appOL`
x_code rax `appOL`
toOL [MUL2 size y_reg,
MOV size (OpReg rdx) (OpReg reg_h),
MOV size (OpReg rax) (OpReg reg_l)]
return code
_ -> panic "genCCall32: Wrong number of arguments/results for add2"
_ -> genCCall32' dflags target dest_regs args
where divOp1 platform signed width results [arg_x, arg_y]
= divOp platform signed width results Nothing arg_x arg_y
divOp1 _ _ _ _ _
= panic "genCCall32: Wrong number of arguments for divOp1"
divOp2 platform signed width results [arg_x_high, arg_x_low, arg_y]
= divOp platform signed width results (Just arg_x_high) arg_x_low arg_y
divOp2 _ _ _ _ _
= panic "genCCall64: Wrong number of arguments for divOp2"
divOp platform signed width [res_q, res_r]
m_arg_x_high arg_x_low arg_y
= do let size = intSize width
reg_q = getRegisterReg platform True (CmmLocal res_q)
reg_r = getRegisterReg platform True (CmmLocal res_r)
widen | signed = CLTD size
| otherwise = XOR size (OpReg rdx) (OpReg rdx)
instr | signed = IDIV
| otherwise = DIV
(y_reg, y_code) <- getRegOrMem arg_y
x_low_code <- getAnyReg arg_x_low
x_high_code <- case m_arg_x_high of
Just arg_x_high ->
getAnyReg arg_x_high
Nothing ->
return $ const $ unitOL widen
return $ y_code `appOL`
x_low_code rax `appOL`
x_high_code rdx `appOL`
toOL [instr size y_reg,
MOV size (OpReg rax) (OpReg reg_q),
MOV size (OpReg rdx) (OpReg reg_r)]
divOp _ _ _ _ _ _ _
= panic "genCCall32: Wrong number of results for divOp"
genCCall32' :: DynFlags
-> ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> NatM InstrBlock
genCCall32' dflags target dest_regs args = do
let
prom_args = map (maybePromoteCArg dflags W32) args
-- Align stack to 16n for calls, assuming a starting stack
-- alignment of 16n - word_size on procedure entry. Which we
-- maintiain. See Note [rts/StgCRun.c : Stack Alignment on X86]
sizes = map (arg_size . cmmExprType dflags) (reverse args)
raw_arg_size = sum sizes + wORD_SIZE dflags
arg_pad_size = (roundTo 16 $ raw_arg_size) - raw_arg_size
tot_arg_size = raw_arg_size + arg_pad_size - wORD_SIZE dflags
delta0 <- getDeltaNat
setDeltaNat (delta0 - arg_pad_size)
use_sse2 <- sse2Enabled
push_codes <- mapM (push_arg use_sse2) (reverse prom_args)
delta <- getDeltaNat
MASSERT(delta == delta0 - tot_arg_size)
-- deal with static vs dynamic call targets
(callinsns,cconv) <-
case target of
ForeignTarget (CmmLit (CmmLabel lbl)) conv
-> -- ToDo: stdcall arg sizes
return (unitOL (CALL (Left fn_imm) []), conv)
where fn_imm = ImmCLbl lbl
ForeignTarget expr conv
-> do { (dyn_r, dyn_c) <- getSomeReg expr
; ASSERT( isWord32 (cmmExprType dflags expr) )
return (dyn_c `snocOL` CALL (Right dyn_r) [], conv) }
PrimTarget _
-> panic $ "genCCall: Can't handle PrimTarget call type here, error "
++ "probably because too many return values."
let push_code
| arg_pad_size /= 0
= toOL [SUB II32 (OpImm (ImmInt arg_pad_size)) (OpReg esp),
DELTA (delta0 - arg_pad_size)]
`appOL` concatOL push_codes
| otherwise
= concatOL push_codes
-- Deallocate parameters after call for ccall;
-- but not for stdcall (callee does it)
--
-- We have to pop any stack padding we added
-- even if we are doing stdcall, though (#5052)
pop_size
| ForeignConvention StdCallConv _ _ _ <- cconv = arg_pad_size
| otherwise = tot_arg_size
call = callinsns `appOL`
toOL (
(if pop_size==0 then [] else
[ADD II32 (OpImm (ImmInt pop_size)) (OpReg esp)])
++
[DELTA delta0]
)
setDeltaNat delta0
dflags <- getDynFlags
let platform = targetPlatform dflags
let
-- assign the results, if necessary
assign_code [] = nilOL
assign_code [dest]
| isFloatType ty =
if use_sse2
then let tmp_amode = AddrBaseIndex (EABaseReg esp)
EAIndexNone
(ImmInt 0)
sz = floatSize w
in toOL [ SUB II32 (OpImm (ImmInt b)) (OpReg esp),
DELTA (delta0 - b),
GST sz fake0 tmp_amode,
MOV sz (OpAddr tmp_amode) (OpReg r_dest),
ADD II32 (OpImm (ImmInt b)) (OpReg esp),
DELTA delta0]
else unitOL (GMOV fake0 r_dest)
| isWord64 ty = toOL [MOV II32 (OpReg eax) (OpReg r_dest),
MOV II32 (OpReg edx) (OpReg r_dest_hi)]
| otherwise = unitOL (MOV (intSize w) (OpReg eax) (OpReg r_dest))
where
ty = localRegType dest
w = typeWidth ty
b = widthInBytes w
r_dest_hi = getHiVRegFromLo r_dest
r_dest = getRegisterReg platform use_sse2 (CmmLocal dest)
assign_code many = pprPanic "genCCall.assign_code - too many return values:" (ppr many)
return (push_code `appOL`
call `appOL`
assign_code dest_regs)
where
arg_size :: CmmType -> Int -- Width in bytes
arg_size ty = widthInBytes (typeWidth ty)
roundTo a x | x `mod` a == 0 = x
| otherwise = x + a - (x `mod` a)
push_arg :: Bool -> CmmActual {-current argument-}
-> NatM InstrBlock -- code
push_arg use_sse2 arg -- we don't need the hints on x86
| isWord64 arg_ty = do
ChildCode64 code r_lo <- iselExpr64 arg
delta <- getDeltaNat
setDeltaNat (delta - 8)
let
r_hi = getHiVRegFromLo r_lo
return ( code `appOL`
toOL [PUSH II32 (OpReg r_hi), DELTA (delta - 4),
PUSH II32 (OpReg r_lo), DELTA (delta - 8),
DELTA (delta-8)]
)
| isFloatType arg_ty = do
(reg, code) <- getSomeReg arg
delta <- getDeltaNat
setDeltaNat (delta-size)
return (code `appOL`
toOL [SUB II32 (OpImm (ImmInt size)) (OpReg esp),
DELTA (delta-size),
let addr = AddrBaseIndex (EABaseReg esp)
EAIndexNone
(ImmInt 0)
size = floatSize (typeWidth arg_ty)
in
if use_sse2
then MOV size (OpReg reg) (OpAddr addr)
else GST size reg addr
]
)
| otherwise = do
(operand, code) <- getOperand arg
delta <- getDeltaNat
setDeltaNat (delta-size)
return (code `snocOL`
PUSH II32 operand `snocOL`
DELTA (delta-size))
where
arg_ty = cmmExprType dflags arg
size = arg_size arg_ty -- Byte size
genCCall64 :: ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> NatM InstrBlock
genCCall64 target dest_regs args = do
dflags <- getDynFlags
let platform = targetPlatform dflags
case (target, dest_regs) of
(PrimTarget op, []) ->
-- void return type prim op
outOfLineCmmOp op Nothing args
(PrimTarget op, [res]) ->
-- we only cope with a single result for foreign calls
outOfLineCmmOp op (Just res) args
(PrimTarget (MO_S_QuotRem width), _) -> divOp1 platform True width dest_regs args
(PrimTarget (MO_U_QuotRem width), _) -> divOp1 platform False width dest_regs args
(PrimTarget (MO_U_QuotRem2 width), _) -> divOp2 platform False width dest_regs args
(PrimTarget (MO_Add2 width), [res_h, res_l]) ->
case args of
[arg_x, arg_y] ->
do hCode <- getAnyReg (CmmLit (CmmInt 0 width))
lCode <- getAnyReg (CmmMachOp (MO_Add width) [arg_x, arg_y])
let size = intSize width
reg_l = getRegisterReg platform True (CmmLocal res_l)
reg_h = getRegisterReg platform True (CmmLocal res_h)
code = hCode reg_h `appOL`
lCode reg_l `snocOL`
ADC size (OpImm (ImmInteger 0)) (OpReg reg_h)
return code
_ -> panic "genCCall64: Wrong number of arguments/results for add2"
(PrimTarget (MO_U_Mul2 width), [res_h, res_l]) ->
case args of
[arg_x, arg_y] ->
do (y_reg, y_code) <- getRegOrMem arg_y
x_code <- getAnyReg arg_x
let size = intSize width
reg_h = getRegisterReg platform True (CmmLocal res_h)
reg_l = getRegisterReg platform True (CmmLocal res_l)
code = y_code `appOL`
x_code rax `appOL`
toOL [MUL2 size y_reg,
MOV size (OpReg rdx) (OpReg reg_h),
MOV size (OpReg rax) (OpReg reg_l)]
return code
_ -> panic "genCCall64: Wrong number of arguments/results for add2"
_ ->
do dflags <- getDynFlags
genCCall64' dflags target dest_regs args
where divOp1 platform signed width results [arg_x, arg_y]
= divOp platform signed width results Nothing arg_x arg_y
divOp1 _ _ _ _ _
= panic "genCCall64: Wrong number of arguments for divOp1"
divOp2 platform signed width results [arg_x_high, arg_x_low, arg_y]
= divOp platform signed width results (Just arg_x_high) arg_x_low arg_y
divOp2 _ _ _ _ _
= panic "genCCall64: Wrong number of arguments for divOp2"
divOp platform signed width [res_q, res_r]
m_arg_x_high arg_x_low arg_y
= do let size = intSize width
reg_q = getRegisterReg platform True (CmmLocal res_q)
reg_r = getRegisterReg platform True (CmmLocal res_r)
widen | signed = CLTD size
| otherwise = XOR size (OpReg rdx) (OpReg rdx)
instr | signed = IDIV
| otherwise = DIV
(y_reg, y_code) <- getRegOrMem arg_y
x_low_code <- getAnyReg arg_x_low
x_high_code <- case m_arg_x_high of
Just arg_x_high -> getAnyReg arg_x_high
Nothing -> return $ const $ unitOL widen
return $ y_code `appOL`
x_low_code rax `appOL`
x_high_code rdx `appOL`
toOL [instr size y_reg,
MOV size (OpReg rax) (OpReg reg_q),
MOV size (OpReg rdx) (OpReg reg_r)]
divOp _ _ _ _ _ _ _
= panic "genCCall64: Wrong number of results for divOp"
genCCall64' :: DynFlags
-> ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> NatM InstrBlock
genCCall64' dflags target dest_regs args = do
-- load up the register arguments
let prom_args = map (maybePromoteCArg dflags W32) args
(stack_args, int_regs_used, fp_regs_used, load_args_code)
<-
if platformOS platform == OSMinGW32
then load_args_win prom_args [] [] (allArgRegs platform) nilOL
else do (stack_args, aregs, fregs, load_args_code)
<- load_args prom_args (allIntArgRegs platform) (allFPArgRegs platform) nilOL
let fp_regs_used = reverse (drop (length fregs) (reverse (allFPArgRegs platform)))
int_regs_used = reverse (drop (length aregs) (reverse (allIntArgRegs platform)))
return (stack_args, int_regs_used, fp_regs_used, load_args_code)
let
arg_regs_used = int_regs_used ++ fp_regs_used
arg_regs = [eax] ++ arg_regs_used
-- for annotating the call instruction with
sse_regs = length fp_regs_used
arg_stack_slots = if platformOS platform == OSMinGW32
then length stack_args + length (allArgRegs platform)
else length stack_args
tot_arg_size = arg_size * arg_stack_slots
-- Align stack to 16n for calls, assuming a starting stack
-- alignment of 16n - word_size on procedure entry. Which we
-- maintain. See Note [rts/StgCRun.c : Stack Alignment on X86]
(real_size, adjust_rsp) <-
if (tot_arg_size + wORD_SIZE dflags) `rem` 16 == 0
then return (tot_arg_size, nilOL)
else do -- we need to adjust...
delta <- getDeltaNat
setDeltaNat (delta - wORD_SIZE dflags)
return (tot_arg_size + wORD_SIZE dflags, toOL [
SUB II64 (OpImm (ImmInt (wORD_SIZE dflags))) (OpReg rsp),
DELTA (delta - wORD_SIZE dflags) ])
-- push the stack args, right to left
push_code <- push_args (reverse stack_args) nilOL
-- On Win64, we also have to leave stack space for the arguments
-- that we are passing in registers
lss_code <- if platformOS platform == OSMinGW32
then leaveStackSpace (length (allArgRegs platform))
else return nilOL
delta <- getDeltaNat
-- deal with static vs dynamic call targets
(callinsns,_cconv) <-
case target of
ForeignTarget (CmmLit (CmmLabel lbl)) conv
-> -- ToDo: stdcall arg sizes
return (unitOL (CALL (Left fn_imm) arg_regs), conv)
where fn_imm = ImmCLbl lbl
ForeignTarget expr conv
-> do (dyn_r, dyn_c) <- getSomeReg expr
return (dyn_c `snocOL` CALL (Right dyn_r) arg_regs, conv)
PrimTarget _
-> panic $ "genCCall: Can't handle PrimTarget call type here, error "
++ "probably because too many return values."
let
-- The x86_64 ABI requires us to set %al to the number of SSE2
-- registers that contain arguments, if the called routine
-- is a varargs function. We don't know whether it's a
-- varargs function or not, so we have to assume it is.
--
-- It's not safe to omit this assignment, even if the number
-- of SSE2 regs in use is zero. If %al is larger than 8
-- on entry to a varargs function, seg faults ensue.
assign_eax n = unitOL (MOV II32 (OpImm (ImmInt n)) (OpReg eax))
let call = callinsns `appOL`
toOL (
-- Deallocate parameters after call for ccall;
-- stdcall has callee do it, but is not supported on
-- x86_64 target (see #3336)
(if real_size==0 then [] else
[ADD (intSize (wordWidth dflags)) (OpImm (ImmInt real_size)) (OpReg esp)])
++
[DELTA (delta + real_size)]
)
setDeltaNat (delta + real_size)
let
-- assign the results, if necessary
assign_code [] = nilOL
assign_code [dest] =
case typeWidth rep of
W32 | isFloatType rep -> unitOL (MOV (floatSize W32) (OpReg xmm0) (OpReg r_dest))
W64 | isFloatType rep -> unitOL (MOV (floatSize W64) (OpReg xmm0) (OpReg r_dest))
_ -> unitOL (MOV (cmmTypeSize rep) (OpReg rax) (OpReg r_dest))
where
rep = localRegType dest
r_dest = getRegisterReg platform True (CmmLocal dest)
assign_code _many = panic "genCCall.assign_code many"
return (load_args_code `appOL`
adjust_rsp `appOL`
push_code `appOL`
lss_code `appOL`
assign_eax sse_regs `appOL`
call `appOL`
assign_code dest_regs)
where platform = targetPlatform dflags
arg_size = 8 -- always, at the mo
load_args :: [CmmExpr]
-> [Reg] -- int regs avail for args
-> [Reg] -- FP regs avail for args
-> InstrBlock
-> NatM ([CmmExpr],[Reg],[Reg],InstrBlock)
load_args args [] [] code = return (args, [], [], code)
-- no more regs to use
load_args [] aregs fregs code = return ([], aregs, fregs, code)
-- no more args to push
load_args (arg : rest) aregs fregs code
| isFloatType arg_rep =
case fregs of
[] -> push_this_arg
(r:rs) -> do
arg_code <- getAnyReg arg
load_args rest aregs rs (code `appOL` arg_code r)
| otherwise =
case aregs of
[] -> push_this_arg
(r:rs) -> do
arg_code <- getAnyReg arg
load_args rest rs fregs (code `appOL` arg_code r)
where
arg_rep = cmmExprType dflags arg
push_this_arg = do
(args',ars,frs,code') <- load_args rest aregs fregs code
return (arg:args', ars, frs, code')
load_args_win :: [CmmExpr]
-> [Reg] -- used int regs
-> [Reg] -- used FP regs
-> [(Reg, Reg)] -- (int, FP) regs avail for args
-> InstrBlock
-> NatM ([CmmExpr],[Reg],[Reg],InstrBlock)
load_args_win args usedInt usedFP [] code
= return (args, usedInt, usedFP, code)
-- no more regs to use
load_args_win [] usedInt usedFP _ code
= return ([], usedInt, usedFP, code)
-- no more args to push
load_args_win (arg : rest) usedInt usedFP
((ireg, freg) : regs) code
| isFloatType arg_rep = do
arg_code <- getAnyReg arg
load_args_win rest (ireg : usedInt) (freg : usedFP) regs
(code `appOL`
arg_code freg `snocOL`
-- If we are calling a varargs function
-- then we need to define ireg as well
-- as freg
MOV II64 (OpReg freg) (OpReg ireg))
| otherwise = do
arg_code <- getAnyReg arg
load_args_win rest (ireg : usedInt) usedFP regs
(code `appOL` arg_code ireg)
where
arg_rep = cmmExprType dflags arg
push_args [] code = return code
push_args (arg:rest) code
| isFloatType arg_rep = do
(arg_reg, arg_code) <- getSomeReg arg
delta <- getDeltaNat
setDeltaNat (delta-arg_size)
let code' = code `appOL` arg_code `appOL` toOL [
SUB (intSize (wordWidth dflags)) (OpImm (ImmInt arg_size)) (OpReg rsp) ,
DELTA (delta-arg_size),
MOV (floatSize width) (OpReg arg_reg) (OpAddr (spRel dflags 0))]
push_args rest code'
| otherwise = do
ASSERT(width == W64) return ()
(arg_op, arg_code) <- getOperand arg
delta <- getDeltaNat
setDeltaNat (delta-arg_size)
let code' = code `appOL` arg_code `appOL` toOL [
PUSH II64 arg_op,
DELTA (delta-arg_size)]
push_args rest code'
where
arg_rep = cmmExprType dflags arg
width = typeWidth arg_rep
leaveStackSpace n = do
delta <- getDeltaNat
setDeltaNat (delta - n * arg_size)
return $ toOL [
SUB II64 (OpImm (ImmInt (n * wORD_SIZE dflags))) (OpReg rsp),
DELTA (delta - n * arg_size)]
maybePromoteCArg :: DynFlags -> Width -> CmmExpr -> CmmExpr
maybePromoteCArg dflags wto arg
| wfrom < wto = CmmMachOp (MO_UU_Conv wfrom wto) [arg]
| otherwise = arg
where
wfrom = cmmExprWidth dflags arg
outOfLineCmmOp :: CallishMachOp -> Maybe CmmFormal -> [CmmActual] -> NatM InstrBlock
outOfLineCmmOp mop res args
= do
dflags <- getDynFlags
targetExpr <- cmmMakeDynamicReference dflags CallReference lbl
let target = ForeignTarget targetExpr
(ForeignConvention CCallConv [] [] CmmMayReturn)
stmtToInstrs (CmmUnsafeForeignCall target (catMaybes [res]) args')
where
-- Assume we can call these functions directly, and that they're not in a dynamic library.
-- TODO: Why is this ok? Under linux this code will be in libm.so
-- Is is because they're really implemented as a primitive instruction by the assembler?? -- BL 2009/12/31
lbl = mkForeignLabel fn Nothing ForeignLabelInThisPackage IsFunction
args' = case mop of
MO_Memcpy -> init args
MO_Memset -> init args
MO_Memmove -> init args
_ -> args
fn = case mop of
MO_F32_Sqrt -> fsLit "sqrtf"
MO_F32_Sin -> fsLit "sinf"
MO_F32_Cos -> fsLit "cosf"
MO_F32_Tan -> fsLit "tanf"
MO_F32_Exp -> fsLit "expf"
MO_F32_Log -> fsLit "logf"
MO_F32_Asin -> fsLit "asinf"
MO_F32_Acos -> fsLit "acosf"
MO_F32_Atan -> fsLit "atanf"
MO_F32_Sinh -> fsLit "sinhf"
MO_F32_Cosh -> fsLit "coshf"
MO_F32_Tanh -> fsLit "tanhf"
MO_F32_Pwr -> fsLit "powf"
MO_F64_Sqrt -> fsLit "sqrt"
MO_F64_Sin -> fsLit "sin"
MO_F64_Cos -> fsLit "cos"
MO_F64_Tan -> fsLit "tan"
MO_F64_Exp -> fsLit "exp"
MO_F64_Log -> fsLit "log"
MO_F64_Asin -> fsLit "asin"
MO_F64_Acos -> fsLit "acos"
MO_F64_Atan -> fsLit "atan"
MO_F64_Sinh -> fsLit "sinh"
MO_F64_Cosh -> fsLit "cosh"
MO_F64_Tanh -> fsLit "tanh"
MO_F64_Pwr -> fsLit "pow"
MO_Memcpy -> fsLit "memcpy"
MO_Memset -> fsLit "memset"
MO_Memmove -> fsLit "memmove"
MO_PopCnt _ -> fsLit "popcnt"
MO_BSwap _ -> fsLit "bswap"
MO_UF_Conv _ -> unsupported
MO_S_QuotRem {} -> unsupported
MO_U_QuotRem {} -> unsupported
MO_U_QuotRem2 {} -> unsupported
MO_Add2 {} -> unsupported
MO_U_Mul2 {} -> unsupported
MO_WriteBarrier -> unsupported
MO_Touch -> unsupported
(MO_Prefetch_Data _ ) -> unsupported
unsupported = panic ("outOfLineCmmOp: " ++ show mop
++ " not supported here")
-- -----------------------------------------------------------------------------
-- Generating a table-branch
genSwitch :: DynFlags -> CmmExpr -> [Maybe BlockId] -> NatM InstrBlock
genSwitch dflags expr ids
| gopt Opt_PIC dflags
= do
(reg,e_code) <- getSomeReg expr
lbl <- getNewLabelNat
dflags <- getDynFlags
dynRef <- cmmMakeDynamicReference dflags DataReference lbl
(tableReg,t_code) <- getSomeReg $ dynRef
let op = OpAddr (AddrBaseIndex (EABaseReg tableReg)
(EAIndex reg (wORD_SIZE dflags)) (ImmInt 0))
return $ if target32Bit (targetPlatform dflags)
then e_code `appOL` t_code `appOL` toOL [
ADD (intSize (wordWidth dflags)) op (OpReg tableReg),
JMP_TBL (OpReg tableReg) ids ReadOnlyData lbl
]
else case platformOS (targetPlatform dflags) of
OSDarwin ->
-- on Mac OS X/x86_64, put the jump table
-- in the text section to work around a
-- limitation of the linker.
-- ld64 is unable to handle the relocations for
-- .quad L1 - L0
-- if L0 is not preceded by a non-anonymous
-- label in its section.
e_code `appOL` t_code `appOL` toOL [
ADD (intSize (wordWidth dflags)) op (OpReg tableReg),
JMP_TBL (OpReg tableReg) ids Text lbl
]
_ ->
-- HACK: On x86_64 binutils<2.17 is only able
-- to generate PC32 relocations, hence we only
-- get 32-bit offsets in the jump table. As
-- these offsets are always negative we need
-- to properly sign extend them to 64-bit.
-- This hack should be removed in conjunction
-- with the hack in PprMach.hs/pprDataItem
-- once binutils 2.17 is standard.
e_code `appOL` t_code `appOL` toOL [
MOVSxL II32 op (OpReg reg),
ADD (intSize (wordWidth dflags)) (OpReg reg) (OpReg tableReg),
JMP_TBL (OpReg tableReg) ids ReadOnlyData lbl
]
| otherwise
= do
(reg,e_code) <- getSomeReg expr
lbl <- getNewLabelNat
let op = OpAddr (AddrBaseIndex EABaseNone (EAIndex reg (wORD_SIZE dflags)) (ImmCLbl lbl))
code = e_code `appOL` toOL [
JMP_TBL op ids ReadOnlyData lbl
]
return code
generateJumpTableForInstr :: DynFlags -> Instr -> Maybe (NatCmmDecl (Alignment, CmmStatics) Instr)
generateJumpTableForInstr dflags (JMP_TBL _ ids section lbl)
= Just (createJumpTable dflags ids section lbl)
generateJumpTableForInstr _ _ = Nothing
createJumpTable :: DynFlags -> [Maybe BlockId] -> Section -> CLabel
-> GenCmmDecl (Alignment, CmmStatics) h g
createJumpTable dflags ids section lbl
= let jumpTable
| gopt Opt_PIC dflags =
let jumpTableEntryRel Nothing
= CmmStaticLit (CmmInt 0 (wordWidth dflags))
jumpTableEntryRel (Just blockid)
= CmmStaticLit (CmmLabelDiffOff blockLabel lbl 0)
where blockLabel = mkAsmTempLabel (getUnique blockid)
in map jumpTableEntryRel ids
| otherwise = map (jumpTableEntry dflags) ids
in CmmData section (1, Statics lbl jumpTable)
-- -----------------------------------------------------------------------------
-- 'condIntReg' and 'condFltReg': condition codes into registers
-- Turn those condition codes into integers now (when they appear on
-- the right hand side of an assignment).
--
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.
condIntReg :: Cond -> CmmExpr -> CmmExpr -> NatM Register
condIntReg cond x y = do
CondCode _ cond cond_code <- condIntCode cond x y
tmp <- getNewRegNat II8
let
code dst = cond_code `appOL` toOL [
SETCC cond (OpReg tmp),
MOVZxL II8 (OpReg tmp) (OpReg dst)
]
return (Any II32 code)
condFltReg :: Bool -> Cond -> CmmExpr -> CmmExpr -> NatM Register
condFltReg is32Bit cond x y = if_sse2 condFltReg_sse2 condFltReg_x87
where
condFltReg_x87 = do
CondCode _ cond cond_code <- condFltCode cond x y
tmp <- getNewRegNat II8
let
code dst = cond_code `appOL` toOL [
SETCC cond (OpReg tmp),
MOVZxL II8 (OpReg tmp) (OpReg dst)
]
return (Any II32 code)
condFltReg_sse2 = do
CondCode _ cond cond_code <- condFltCode cond x y
tmp1 <- getNewRegNat (archWordSize is32Bit)
tmp2 <- getNewRegNat (archWordSize is32Bit)
let
-- We have to worry about unordered operands (eg. comparisons
-- against NaN). If the operands are unordered, the comparison
-- sets the parity flag, carry flag and zero flag.
-- All comparisons are supposed to return false for unordered
-- operands except for !=, which returns true.
--
-- Optimisation: we don't have to test the parity flag if we
-- know the test has already excluded the unordered case: eg >
-- and >= test for a zero carry flag, which can only occur for
-- ordered operands.
--
-- ToDo: by reversing comparisons we could avoid testing the
-- parity flag in more cases.
code dst =
cond_code `appOL`
(case cond of
NE -> or_unordered dst
GU -> plain_test dst
GEU -> plain_test dst
_ -> and_ordered dst)
plain_test dst = toOL [
SETCC cond (OpReg tmp1),
MOVZxL II8 (OpReg tmp1) (OpReg dst)
]
or_unordered dst = toOL [
SETCC cond (OpReg tmp1),
SETCC PARITY (OpReg tmp2),
OR II8 (OpReg tmp1) (OpReg tmp2),
MOVZxL II8 (OpReg tmp2) (OpReg dst)
]
and_ordered dst = toOL [
SETCC cond (OpReg tmp1),
SETCC NOTPARITY (OpReg tmp2),
AND II8 (OpReg tmp1) (OpReg tmp2),
MOVZxL II8 (OpReg tmp2) (OpReg dst)
]
return (Any II32 code)
-- -----------------------------------------------------------------------------
-- 'trivial*Code': deal with trivial instructions
-- Trivial (dyadic: 'trivialCode', floating-point: 'trivialFCode',
-- unary: 'trivialUCode', unary fl-pt:'trivialUFCode') instructions.
-- Only look for constants on the right hand side, because that's
-- where the generic optimizer will have put them.
-- Similarly, for unary instructions, we don't have to worry about
-- matching an StInt as the argument, because genericOpt will already
-- have handled the constant-folding.
{-
The Rules of the Game are:
* You cannot assume anything about the destination register dst;
it may be anything, including a fixed reg.
* You may compute an operand into a fixed reg, but you may not
subsequently change the contents of that fixed reg. If you
want to do so, first copy the value either to a temporary
or into dst. You are free to modify dst even if it happens
to be a fixed reg -- that's not your problem.
* You cannot assume that a fixed reg will stay live over an
arbitrary computation. The same applies to the dst reg.
* Temporary regs obtained from getNewRegNat are distinct from
each other and from all other regs, and stay live over
arbitrary computations.
--------------------
SDM's version of The Rules:
* If getRegister returns Any, that means it can generate correct
code which places the result in any register, period. Even if that
register happens to be read during the computation.
Corollary #1: this means that if you are generating code for an
operation with two arbitrary operands, you cannot assign the result
of the first operand into the destination register before computing
the second operand. The second operand might require the old value
of the destination register.
Corollary #2: A function might be able to generate more efficient
code if it knows the destination register is a new temporary (and
therefore not read by any of the sub-computations).
* If getRegister returns Any, then the code it generates may modify only:
(a) fresh temporaries
(b) the destination register
(c) known registers (eg. %ecx is used by shifts)
In particular, it may *not* modify global registers, unless the global
register happens to be the destination register.
-}
trivialCode :: Width -> (Operand -> Operand -> Instr)
-> Maybe (Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialCode width instr m a b
= do is32Bit <- is32BitPlatform
trivialCode' is32Bit width instr m a b
trivialCode' :: Bool -> Width -> (Operand -> Operand -> Instr)
-> Maybe (Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialCode' is32Bit width _ (Just revinstr) (CmmLit lit_a) b
| is32BitLit is32Bit lit_a = do
b_code <- getAnyReg b
let
code dst
= b_code dst `snocOL`
revinstr (OpImm (litToImm lit_a)) (OpReg dst)
return (Any (intSize width) code)
trivialCode' _ width instr _ a b
= genTrivialCode (intSize width) instr a b
-- This is re-used for floating pt instructions too.
genTrivialCode :: Size -> (Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
genTrivialCode rep instr a b = do
(b_op, b_code) <- getNonClobberedOperand b
a_code <- getAnyReg a
tmp <- getNewRegNat rep
let
-- We want the value of b to stay alive across the computation of a.
-- But, we want to calculate a straight into the destination register,
-- because the instruction only has two operands (dst := dst `op` src).
-- The troublesome case is when the result of b is in the same register
-- as the destination reg. In this case, we have to save b in a
-- new temporary across the computation of a.
code dst
| dst `regClashesWithOp` b_op =
b_code `appOL`
unitOL (MOV rep b_op (OpReg tmp)) `appOL`
a_code dst `snocOL`
instr (OpReg tmp) (OpReg dst)
| otherwise =
b_code `appOL`
a_code dst `snocOL`
instr b_op (OpReg dst)
return (Any rep code)
regClashesWithOp :: Reg -> Operand -> Bool
reg `regClashesWithOp` OpReg reg2 = reg == reg2
reg `regClashesWithOp` OpAddr amode = any (==reg) (addrModeRegs amode)
_ `regClashesWithOp` _ = False
-----------
trivialUCode :: Size -> (Operand -> Instr)
-> CmmExpr -> NatM Register
trivialUCode rep instr x = do
x_code <- getAnyReg x
let
code dst =
x_code dst `snocOL`
instr (OpReg dst)
return (Any rep code)
-----------
trivialFCode_x87 :: (Size -> Reg -> Reg -> Reg -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialFCode_x87 instr x y = do
(x_reg, x_code) <- getNonClobberedReg x -- these work for float regs too
(y_reg, y_code) <- getSomeReg y
let
size = FF80 -- always, on x87
code dst =
x_code `appOL`
y_code `snocOL`
instr size x_reg y_reg dst
return (Any size code)
trivialFCode_sse2 :: Width -> (Size -> Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialFCode_sse2 pk instr x y
= genTrivialCode size (instr size) x y
where size = floatSize pk
trivialUFCode :: Size -> (Reg -> Reg -> Instr) -> CmmExpr -> NatM Register
trivialUFCode size instr x = do
(x_reg, x_code) <- getSomeReg x
let
code dst =
x_code `snocOL`
instr x_reg dst
return (Any size code)
--------------------------------------------------------------------------------
coerceInt2FP :: Width -> Width -> CmmExpr -> NatM Register
coerceInt2FP from to x = if_sse2 coerce_sse2 coerce_x87
where
coerce_x87 = do
(x_reg, x_code) <- getSomeReg x
let
opc = case to of W32 -> GITOF; W64 -> GITOD;
n -> panic $ "coerceInt2FP.x87: unhandled width ("
++ show n ++ ")"
code dst = x_code `snocOL` opc x_reg dst
-- ToDo: works for non-II32 reps?
return (Any FF80 code)
coerce_sse2 = do
(x_op, x_code) <- getOperand x -- ToDo: could be a safe operand
let
opc = case to of W32 -> CVTSI2SS; W64 -> CVTSI2SD
n -> panic $ "coerceInt2FP.sse: unhandled width ("
++ show n ++ ")"
code dst = x_code `snocOL` opc (intSize from) x_op dst
return (Any (floatSize to) code)
-- works even if the destination rep is <II32
--------------------------------------------------------------------------------
coerceFP2Int :: Width -> Width -> CmmExpr -> NatM Register
coerceFP2Int from to x = if_sse2 coerceFP2Int_sse2 coerceFP2Int_x87
where
coerceFP2Int_x87 = do
(x_reg, x_code) <- getSomeReg x
let
opc = case from of W32 -> GFTOI; W64 -> GDTOI
n -> panic $ "coerceFP2Int.x87: unhandled width ("
++ show n ++ ")"
code dst = x_code `snocOL` opc x_reg dst
-- ToDo: works for non-II32 reps?
return (Any (intSize to) code)
coerceFP2Int_sse2 = do
(x_op, x_code) <- getOperand x -- ToDo: could be a safe operand
let
opc = case from of W32 -> CVTTSS2SIQ; W64 -> CVTTSD2SIQ;
n -> panic $ "coerceFP2Init.sse: unhandled width ("
++ show n ++ ")"
code dst = x_code `snocOL` opc (intSize to) x_op dst
return (Any (intSize to) code)
-- works even if the destination rep is <II32
--------------------------------------------------------------------------------
coerceFP2FP :: Width -> CmmExpr -> NatM Register
coerceFP2FP to x = do
use_sse2 <- sse2Enabled
(x_reg, x_code) <- getSomeReg x
let
opc | use_sse2 = case to of W32 -> CVTSD2SS; W64 -> CVTSS2SD;
n -> panic $ "coerceFP2FP: unhandled width ("
++ show n ++ ")"
| otherwise = GDTOF
code dst = x_code `snocOL` opc x_reg dst
return (Any (if use_sse2 then floatSize to else FF80) code)
--------------------------------------------------------------------------------
sse2NegCode :: Width -> CmmExpr -> NatM Register
sse2NegCode w x = do
let sz = floatSize w
x_code <- getAnyReg x
-- This is how gcc does it, so it can't be that bad:
let
const | FF32 <- sz = CmmInt 0x80000000 W32
| otherwise = CmmInt 0x8000000000000000 W64
Amode amode amode_code <- memConstant (widthInBytes w) const
tmp <- getNewRegNat sz
let
code dst = x_code dst `appOL` amode_code `appOL` toOL [
MOV sz (OpAddr amode) (OpReg tmp),
XOR sz (OpReg tmp) (OpReg dst)
]
--
return (Any sz code)
isVecExpr :: CmmExpr -> Bool
isVecExpr (CmmMachOp (MO_V_Insert {}) _) = True
isVecExpr (CmmMachOp (MO_V_Extract {}) _) = True
isVecExpr (CmmMachOp (MO_V_Add {}) _) = True
isVecExpr (CmmMachOp (MO_V_Sub {}) _) = True
isVecExpr (CmmMachOp (MO_V_Mul {}) _) = True
isVecExpr (CmmMachOp (MO_VS_Quot {}) _) = True
isVecExpr (CmmMachOp (MO_VS_Rem {}) _) = True
isVecExpr (CmmMachOp (MO_VS_Neg {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Insert {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Extract {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Add {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Sub {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Mul {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Quot {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Neg {}) _) = True
isVecExpr (CmmMachOp _ [e]) = isVecExpr e
isVecExpr _ = False
needLlvm :: NatM a
needLlvm =
sorry $ unlines ["The native code generator does not support vector"
,"instructions. Please use -fllvm."]
|