1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
|
{-
Author: George Karachalias <george.karachalias@cs.kuleuven.be>
Pattern Matching Coverage Checking.
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE LambdaCase #-}
module Check (
-- Checking and printing
checkSingle, checkMatches, checkGuardMatches,
needToRunPmCheck, isMatchContextPmChecked,
-- See Note [Type and Term Equality Propagation]
addTyCsDs, addScrutTmCs, addPatTmCs
) where
#include "HsVersions.h"
import GhcPrelude
import PmTypes
import PmOracle
import PmPpr
import BasicTypes (Origin, isGenerated)
import CoreSyn (CoreExpr, Expr(Var))
import CoreUtils (exprType)
import FastString (unpackFS)
import DynFlags
import GHC.Hs
import TcHsSyn
import Id
import ConLike
import Name
import FamInst
import TysWiredIn
import SrcLoc
import Util
import Outputable
import DataCon
import PatSyn (patSynArity)
import BasicTypes (Boxity(..))
import Var (EvVar)
import Coercion
import TcEvidence
import {-# SOURCE #-} DsExpr (dsExpr, dsLExpr, dsSyntaxExpr)
import MatchLit (dsLit, dsOverLit)
import DsMonad
import Bag
import TyCoRep
import Type
import DsUtils (isTrueLHsExpr)
import Maybes
import qualified GHC.LanguageExtensions as LangExt
import Data.List (find, isSubsequenceOf)
import Control.Monad (forM, when, forM_, zipWithM)
import qualified Data.Semigroup as Semi
{-
This module checks pattern matches for:
\begin{enumerate}
\item Equations that are redundant
\item Equations with inaccessible right-hand-side
\item Exhaustiveness
\end{enumerate}
The algorithm is based on the paper:
"GADTs Meet Their Match:
Pattern-matching Warnings That Account for GADTs, Guards, and Laziness"
http://people.cs.kuleuven.be/~george.karachalias/papers/p424-karachalias.pdf
%************************************************************************
%* *
Pattern Match Check Types
%* *
%************************************************************************
-}
data PmPat
= -- | For the arguments' meaning see 'HsPat.ConPatOut'.
PmCon {
pm_con_con :: PmAltCon,
pm_con_arg_tys :: [Type],
pm_con_tvs :: [TyVar],
pm_con_dicts :: [EvVar],
pm_con_args :: [PmPat]
}
-- | Possibly strict variable pattern match
| PmVar {
_pm_var_bang :: HsImplBang,
pm_var_id :: Id
}
-- | @PmGrd pat expr@ matches @expr@ against @pat@,
-- binding the variables in @pat@
| PmGrd {
pm_grd_pv :: PatVec,
-- ^ Always has 'patVecArity' 1.
pm_grd_expr :: CoreExpr
}
-- | Should not be user-facing.
instance Outputable PmPat where
ppr (PmCon alt _arg_tys _con_tvs _con_dicts con_args)
= cparen (notNull con_args) (hsep [ppr alt, hsep (map ppr con_args)])
ppr (PmVar bang vid) = (if isBanged bang then char '!' else empty) <> ppr vid
ppr (PmGrd pv ge) = hsep (map ppr pv) <+> text "<-" <+> ppr ge
-- data T a where
-- MkT :: forall p q. (Eq p, Ord q) => p -> q -> T [p]
-- or MkT :: forall p q r. (Eq p, Ord q, [p] ~ r) => p -> q -> T r
-- | Pattern Vectors. The *arity* of a PatVec [p1,..,pn] is
-- the number of p1..pn that are not Guards. See 'patternArity'.
type PatVec = [PmPat]
type ValVec = [Id] -- ^ Value Vector Abstractions
-- | Each 'Delta' is proof (i.e., a model of the fact) that some values are not
-- covered by a pattern match. E.g. @f Nothing = <rhs>@ might be given an
-- uncovered set @[x :-> Just y]@ or @[x /= Nothing]@, where @x@ is the variable
-- matching against @f@'s first argument.
type Uncovered = [Delta]
-- Instead of keeping the whole sets in memory, we keep a boolean for both the
-- covered and the divergent set (we store the uncovered set though, since we
-- want to print it). For both the covered and the divergent we have:
--
-- True <=> The set is non-empty
--
-- hence:
-- C = True ==> Useful clause (no warning)
-- C = False, D = True ==> Clause with inaccessible RHS
-- C = False, D = False ==> Redundant clause
data Covered = Covered | NotCovered
deriving Show
instance Outputable Covered where
ppr = text . show
-- Like the or monoid for booleans
-- Covered = True, Uncovered = False
instance Semi.Semigroup Covered where
Covered <> _ = Covered
_ <> Covered = Covered
NotCovered <> NotCovered = NotCovered
instance Monoid Covered where
mempty = NotCovered
mappend = (Semi.<>)
data Diverged = Diverged | NotDiverged
deriving Show
instance Outputable Diverged where
ppr = text . show
instance Semi.Semigroup Diverged where
Diverged <> _ = Diverged
_ <> Diverged = Diverged
NotDiverged <> NotDiverged = NotDiverged
instance Monoid Diverged where
mempty = NotDiverged
mappend = (Semi.<>)
data Precision = Approximate | Precise
deriving (Eq, Show)
instance Outputable Precision where
ppr = text . show
instance Semi.Semigroup Precision where
Approximate <> _ = Approximate
_ <> Approximate = Approximate
Precise <> Precise = Precise
instance Monoid Precision where
mempty = Precise
mappend = (Semi.<>)
-- | A triple <C,U,D> of covered, uncovered, and divergent sets.
--
-- Also stores a flag 'presultApprox' denoting whether we ran into the
-- 'maxPmCheckModels' limit for the purpose of hints in warning messages to
-- maybe increase the limit.
data PartialResult = PartialResult {
presultCovered :: Covered
, presultUncovered :: Uncovered
, presultDivergent :: Diverged
, presultApprox :: Precision }
emptyPartialResult :: PartialResult
emptyPartialResult = PartialResult { presultUncovered = mempty
, presultCovered = mempty
, presultDivergent = mempty
, presultApprox = mempty }
combinePartialResults :: PartialResult -> PartialResult -> PartialResult
combinePartialResults (PartialResult cs1 vsa1 ds1 ap1) (PartialResult cs2 vsa2 ds2 ap2)
= PartialResult (cs1 Semi.<> cs2)
(vsa1 Semi.<> vsa2)
(ds1 Semi.<> ds2)
(ap1 Semi.<> ap2) -- the result is approximate if either is
instance Outputable PartialResult where
ppr (PartialResult c unc d pc)
= hang (text "PartialResult" <+> ppr c <+> ppr d <+> ppr pc) 2 (ppr_unc unc)
where
ppr_unc = braces . fsep . punctuate comma . map ppr
instance Semi.Semigroup PartialResult where
(<>) = combinePartialResults
instance Monoid PartialResult where
mempty = emptyPartialResult
mappend = (Semi.<>)
-- | Pattern check result
--
-- * Redundant clauses
-- * Not-covered clauses (or their type, if no pattern is available)
-- * Clauses with inaccessible RHS
-- * A flag saying whether we ran into the 'maxPmCheckModels' limit for the
-- purpose of suggesting to crank it up in the warning message
--
-- More details about the classification of clauses into useful, redundant
-- and with inaccessible right hand side can be found here:
--
-- https://gitlab.haskell.org/ghc/ghc/wikis/pattern-match-check
--
data PmResult =
PmResult {
pmresultRedundant :: [Located [LPat GhcTc]]
, pmresultUncovered :: UncoveredCandidates
, pmresultInaccessible :: [Located [LPat GhcTc]]
, pmresultApproximate :: Precision }
instance Outputable PmResult where
ppr pmr = hang (text "PmResult") 2 $ vcat
[ text "pmresultRedundant" <+> ppr (pmresultRedundant pmr)
, text "pmresultUncovered" <+> ppr (pmresultUncovered pmr)
, text "pmresultInaccessible" <+> ppr (pmresultInaccessible pmr)
, text "pmresultApproximate" <+> ppr (pmresultApproximate pmr)
]
-- | Either a list of patterns that are not covered, or their type, in case we
-- have no patterns at hand. Not having patterns at hand can arise when
-- handling EmptyCase expressions, in two cases:
--
-- * The type of the scrutinee is a trivially inhabited type (like Int or Char)
-- * The type of the scrutinee cannot be reduced to WHNF.
--
-- In both these cases we have no inhabitation candidates for the type at hand,
-- but we don't want to issue just a wildcard as missing. Instead, we print a
-- type annotated wildcard, so that the user knows what kind of patterns is
-- expected (e.g. (_ :: Int), or (_ :: F Int), where F Int does not reduce).
data UncoveredCandidates = UncoveredPatterns [Id] [Delta]
| TypeOfUncovered Type
instance Outputable UncoveredCandidates where
ppr (UncoveredPatterns vva deltas) = text "UnPat" <+> ppr vva $$ ppr deltas
ppr (TypeOfUncovered ty) = text "UnTy" <+> ppr ty
{-
%************************************************************************
%* *
Entry points to the checker: checkSingle and checkMatches
%* *
%************************************************************************
-}
-- | Check a single pattern binding (let)
checkSingle :: DynFlags -> DsMatchContext -> Id -> Pat GhcTc -> DsM ()
checkSingle dflags ctxt@(DsMatchContext _ locn) var p = do
tracePm "checkSingle" (vcat [ppr ctxt, ppr var, ppr p])
res <- checkSingle' locn var p
dsPmWarn dflags ctxt res
-- | Check a single pattern binding (let)
checkSingle' :: SrcSpan -> Id -> Pat GhcTc -> DsM PmResult
checkSingle' locn var p = do
fam_insts <- dsGetFamInstEnvs
clause <- translatePat fam_insts p
missing <- getPmDelta
tracePm "checkSingle': missing" (ppr missing)
PartialResult cs us ds pc <- pmcheckI clause [] [var] 1 missing
dflags <- getDynFlags
us' <- getNFirstUncovered [var] (maxUncoveredPatterns dflags + 1) us
let uc = UncoveredPatterns [var] us'
return $ case (cs,ds) of
(Covered, _ ) -> PmResult [] uc [] pc -- useful
(NotCovered, NotDiverged) -> PmResult m uc [] pc -- redundant
(NotCovered, Diverged ) -> PmResult [] uc m pc -- inaccessible rhs
where m = [cL locn [cL locn p]]
-- | Exhaustive for guard matches, is used for guards in pattern bindings and
-- in @MultiIf@ expressions.
checkGuardMatches :: HsMatchContext Name -- Match context
-> GRHSs GhcTc (LHsExpr GhcTc) -- Guarded RHSs
-> DsM ()
checkGuardMatches hs_ctx guards@(GRHSs _ grhss _) = do
dflags <- getDynFlags
let combinedLoc = foldl1 combineSrcSpans (map getLoc grhss)
dsMatchContext = DsMatchContext hs_ctx combinedLoc
match = cL combinedLoc $
Match { m_ext = noExtField
, m_ctxt = hs_ctx
, m_pats = []
, m_grhss = guards }
checkMatches dflags dsMatchContext [] [match]
checkGuardMatches _ (XGRHSs nec) = noExtCon nec
-- | Check a matchgroup (case, functions, etc.)
checkMatches :: DynFlags -> DsMatchContext
-> [Id] -> [LMatch GhcTc (LHsExpr GhcTc)] -> DsM ()
checkMatches dflags ctxt vars matches = do
tracePm "checkMatches" (hang (vcat [ppr ctxt
, ppr vars
, text "Matches:"])
2
(vcat (map ppr matches)))
res <- case matches of
-- Check EmptyCase separately
-- See Note [Checking EmptyCase Expressions] in PmOracle
[] | [var] <- vars -> checkEmptyCase' var
_normal_match -> checkMatches' vars matches
dsPmWarn dflags ctxt res
-- | Check a matchgroup (case, functions, etc.). To be called on a non-empty
-- list of matches. For empty case expressions, use checkEmptyCase' instead.
checkMatches' :: [Id] -> [LMatch GhcTc (LHsExpr GhcTc)] -> DsM PmResult
checkMatches' vars matches
| null matches = panic "checkMatches': EmptyCase"
| otherwise = do
missing <- getPmDelta
tracePm "checkMatches': missing" (ppr missing)
(rs,us,ds,pc) <- go matches [missing]
dflags <- getDynFlags
us' <- getNFirstUncovered vars (maxUncoveredPatterns dflags + 1) us
let up = UncoveredPatterns vars us'
return $ PmResult {
pmresultRedundant = map hsLMatchToLPats rs
, pmresultUncovered = up
, pmresultInaccessible = map hsLMatchToLPats ds
, pmresultApproximate = pc }
where
go :: [LMatch GhcTc (LHsExpr GhcTc)] -> Uncovered
-> DsM ( [LMatch GhcTc (LHsExpr GhcTc)]
, Uncovered
, [LMatch GhcTc (LHsExpr GhcTc)]
, Precision)
go [] missing = return ([], missing, [], Precise)
go (m:ms) missing = do
tracePm "checkMatches': go" (ppr m)
dflags <- getDynFlags
fam_insts <- dsGetFamInstEnvs
(clause, guards) <- translateMatch fam_insts m
let limit = maxPmCheckModels dflags
n_siblings = length missing
throttled_check delta =
snd <$> throttle limit (pmcheckI clause guards vars) n_siblings delta
r@(PartialResult cs missing' ds pc1) <- runMany throttled_check missing
tracePm "checkMatches': go: res" (ppr r)
(rs, final_u, is, pc2) <- go ms missing'
return $ case (cs, ds) of
-- useful
(Covered, _ ) -> (rs, final_u, is, pc1 Semi.<> pc2)
-- redundant
(NotCovered, NotDiverged) -> (m:rs, final_u, is, pc1 Semi.<> pc2)
-- inaccessible
(NotCovered, Diverged ) -> (rs, final_u, m:is, pc1 Semi.<> pc2)
hsLMatchToLPats :: LMatch id body -> Located [LPat id]
hsLMatchToLPats (dL->L l (Match { m_pats = pats })) = cL l pats
hsLMatchToLPats _ = panic "checkMatches'"
-- | Check an empty case expression. Since there are no clauses to process, we
-- only compute the uncovered set. See Note [Checking EmptyCase Expressions]
-- in "PmOracle" for details.
checkEmptyCase' :: Id -> DsM PmResult
checkEmptyCase' x = do
delta <- getPmDelta
us <- inhabitants delta (idType x) >>= \case
-- Inhabitation checking failed / the type is trivially inhabited
Left ty -> pure (TypeOfUncovered ty)
-- A list of oracle states for the different satisfiable constructors is
-- available. Turn this into a value set abstraction.
Right (va, deltas) -> pure (UncoveredPatterns [va] deltas)
pure (PmResult [] us [] Precise)
getNFirstUncovered :: [Id] -> Int -> [Delta] -> DsM [Delta]
getNFirstUncovered _ 0 _ = pure []
getNFirstUncovered _ _ [] = pure []
getNFirstUncovered vars n (delta:deltas) = do
front <- provideEvidenceForEquation vars n delta
back <- getNFirstUncovered vars (n - length front) deltas
pure (front ++ back)
{-
%************************************************************************
%* *
Transform source syntax to *our* syntax
%* *
%************************************************************************
-}
-- -----------------------------------------------------------------------
-- * Utilities
nullaryConPattern :: ConLike -> PmPat
-- Nullary data constructor and nullary type constructor
nullaryConPattern con =
PmCon { pm_con_con = (PmAltConLike con), pm_con_arg_tys = []
, pm_con_tvs = [], pm_con_dicts = [], pm_con_args = [] }
{-# INLINE nullaryConPattern #-}
truePattern :: PmPat
truePattern = nullaryConPattern (RealDataCon trueDataCon)
{-# INLINE truePattern #-}
vanillaConPattern :: ConLike -> [Type] -> PatVec -> PmPat
-- ADT constructor pattern => no existentials, no local constraints
vanillaConPattern con arg_tys args =
PmCon { pm_con_con = PmAltConLike con, pm_con_arg_tys = arg_tys
, pm_con_tvs = [], pm_con_dicts = [], pm_con_args = args }
{-# INLINE vanillaConPattern #-}
-- | Create an empty list pattern of a given type
nilPattern :: Type -> PmPat
nilPattern ty =
PmCon { pm_con_con = PmAltConLike (RealDataCon nilDataCon)
, pm_con_arg_tys = [ty], pm_con_tvs = [], pm_con_dicts = []
, pm_con_args = [] }
{-# INLINE nilPattern #-}
mkListPatVec :: Type -> PatVec -> PatVec -> PatVec
mkListPatVec ty xs ys = [PmCon { pm_con_con = PmAltConLike (RealDataCon consDataCon)
, pm_con_arg_tys = [ty]
, pm_con_tvs = []
, pm_con_dicts = []
, pm_con_args = xs++ys }]
{-# INLINE mkListPatVec #-}
-- | Create a literal pattern
mkPmLitPattern :: PmLit -> PatVec
mkPmLitPattern lit@(PmLit _ val)
-- We translate String literals to list literals for better overlap reasoning.
-- It's a little unfortunate we do this here rather than in
-- 'PmOracle.trySolve' and 'PmOracle.addRefutableAltCon', but it's so much
-- simpler here.
-- See Note [Representation of Strings in TmState] in PmOracle
| PmLitString s <- val
, let mk_char_lit c = mkPmLitPattern (PmLit charTy (PmLitChar c))
= foldr (\c p -> mkListPatVec charTy (mk_char_lit c) p)
[nilPattern charTy]
(unpackFS s)
| otherwise
= [PmCon { pm_con_con = PmAltLit lit
, pm_con_arg_tys = []
, pm_con_tvs = []
, pm_con_dicts = []
, pm_con_args = [] }]
{-# INLINE mkPmLitPattern #-}
-- -----------------------------------------------------------------------
-- * Transform (Pat Id) into [PmPat]
-- The arity of the [PmPat] is always 1, but it may be a combination
-- of a vanilla pattern and a guard pattern.
-- Example: view pattern (f y -> Just x)
-- becomes [PmVar z, PmGrd [PmPat (Just x), f y]]
-- where z is fresh
translatePat :: FamInstEnvs -> Pat GhcTc -> DsM PatVec
translatePat fam_insts pat = case pat of
WildPat ty -> mkPmVars [ty]
VarPat _ id -> return [PmVar HsLazy (unLoc id)]
ParPat _ p -> translatePat fam_insts (unLoc p)
LazyPat _ _ -> mkPmVars [hsPatType pat] -- like a variable
BangPat _ p -> addBangs [HsStrict] <$> translatePat fam_insts (unLoc p)
-- (x@pat) ===> x (pat <- x)
AsPat _ (dL->L _ x) p -> do
pat <- translatePat fam_insts (unLoc p)
pure [PmVar HsLazy x, PmGrd pat (Var x)]
SigPat _ p _ty -> translatePat fam_insts (unLoc p)
-- See Note [Translate CoPats]
CoPat _ wrapper p ty
| isIdHsWrapper wrapper -> translatePat fam_insts p
| WpCast co <- wrapper, isReflexiveCo co -> translatePat fam_insts p
| otherwise -> do
ps <- translatePat fam_insts p
(xp,xe) <- mkPmId2Forms ty
g <- mkGuard ps (mkHsWrap wrapper (unLoc xe))
pure [xp,g]
-- (n + k) ===> x (True <- x >= k) (n <- x-k)
NPlusKPat pat_ty (dL->L _ n) k1 k2 ge minus -> do
(xp, xe) <- mkPmId2Forms pat_ty
let ke1 = HsOverLit noExtField (unLoc k1)
ke2 = HsOverLit noExtField k2
g1 <- mkGuardSyntaxExpr [truePattern] ge [unLoc xe, ke1]
g2 <- mkGuardSyntaxExpr [PmVar HsLazy n] minus [ke2]
return [xp, g1, g2]
-- (fun -> pat) ===> x (pat <- fun x)
ViewPat arg_ty lexpr lpat -> do
ps <- translatePat fam_insts (unLoc lpat)
(xp,xe) <- mkPmId2Forms arg_ty
g <- mkGuard ps (HsApp noExtField lexpr xe)
return [xp, g]
-- list
ListPat (ListPatTc ty Nothing) ps -> do
pv <- translatePatVec fam_insts (map unLoc ps)
return (foldr (mkListPatVec ty) [nilPattern ty] pv)
-- overloaded list
ListPat (ListPatTc elem_ty (Just (pat_ty, to_list))) lpats -> do
dflags <- getDynFlags
case splitListTyConApp_maybe pat_ty of
Just e_ty
| not (xopt LangExt.RebindableSyntax dflags)
-- Just translate it as a regular ListPat
-> translatePat fam_insts (ListPat (ListPatTc e_ty Nothing) lpats)
_ -> do
ps <- translatePatVec fam_insts (map unLoc lpats)
(xp, xe) <- mkPmId2Forms pat_ty
let pats = foldr (mkListPatVec elem_ty) [nilPattern elem_ty] ps
g <- mkGuardSyntaxExpr pats to_list [unLoc xe]
return [xp,g]
-- (a) In the presence of RebindableSyntax, we don't know anything about
-- `toList`, we should treat `ListPat` as any other view pattern.
--
-- (b) In the absence of RebindableSyntax,
-- - If the pat_ty is `[a]`, then we treat the overloaded list pattern
-- as ordinary list pattern. Although we can give an instance
-- `IsList [Int]` (more specific than the default `IsList [a]`), in
-- practice, we almost never do that. We assume the `_to_list` is
-- the `toList` from `instance IsList [a]`.
--
-- - Otherwise, we treat the `ListPat` as ordinary view pattern.
--
-- See #14547, especially comment#9 and comment#10.
--
-- Here we construct CanFailPmPat directly, rather can construct a view
-- pattern and do further translation as an optimization, for the reason,
-- see Note [Countering exponential blowup].
ConPatOut { pat_con = (dL->L _ con)
, pat_arg_tys = arg_tys
, pat_tvs = ex_tvs
, pat_dicts = dicts
, pat_args = ps } -> do
args <- translateConPatVec fam_insts arg_tys ex_tvs con ps
return [PmCon { pm_con_con = PmAltConLike con
, pm_con_arg_tys = arg_tys
, pm_con_tvs = ex_tvs
, pm_con_dicts = dicts
, pm_con_args = args }]
NPat ty (dL->L _ olit) mb_neg _ -> do
-- See Note [Literal short cut] in MatchLit.hs
-- We inline the Literal short cut for @ty@ here, because @ty@ is more
-- precise than the field of OverLitTc, which is all that dsOverLit (which
-- normally does the literal short cut) can look at. Also @ty@ matches the
-- type of the scrutinee, so info on both pattern and scrutinee (for which
-- short cutting in dsOverLit works properly) is overloaded iff either is.
dflags <- getDynFlags
core_expr <- case olit of
OverLit{ ol_val = val, ol_ext = OverLitTc rebindable _ }
| not rebindable
, Just expr <- shortCutLit dflags val ty
-> dsExpr expr
_ -> dsOverLit olit
let lit = expectJust "failed to detect OverLit" (coreExprAsPmLit core_expr)
let lit' = case mb_neg of
Just _ -> expectJust "failed to negate lit" (negatePmLit lit)
Nothing -> lit
return (mkPmLitPattern lit')
LitPat _ lit -> do
core_expr <- dsLit (convertLit lit)
let lit = expectJust "failed to detect Lit" (coreExprAsPmLit core_expr)
return (mkPmLitPattern lit)
TuplePat tys ps boxity -> do
tidy_ps <- translatePatVec fam_insts (map unLoc ps)
let tuple_con = RealDataCon (tupleDataCon boxity (length ps))
tys' = case boxity of
Boxed -> tys
-- See Note [Unboxed tuple RuntimeRep vars] in TyCon
Unboxed -> map getRuntimeRep tys ++ tys
return [vanillaConPattern tuple_con tys' (concat tidy_ps)]
SumPat ty p alt arity -> do
tidy_p <- translatePat fam_insts (unLoc p)
let sum_con = RealDataCon (sumDataCon alt arity)
-- See Note [Unboxed tuple RuntimeRep vars] in TyCon
return [vanillaConPattern sum_con (map getRuntimeRep ty ++ ty) tidy_p]
-- --------------------------------------------------------------------------
-- Not supposed to happen
ConPatIn {} -> panic "Check.translatePat: ConPatIn"
SplicePat {} -> panic "Check.translatePat: SplicePat"
XPat {} -> panic "Check.translatePat: XPat"
-- | Translate a list of patterns (Note: each pattern is translated
-- to a pattern vector but we do not concatenate the results).
translatePatVec :: FamInstEnvs -> [Pat GhcTc] -> DsM [PatVec]
translatePatVec fam_insts pats = mapM (translatePat fam_insts) pats
-- | Translate a constructor pattern
translateConPatVec :: FamInstEnvs -> [Type] -> [TyVar]
-> ConLike -> HsConPatDetails GhcTc
-> DsM PatVec
translateConPatVec fam_insts _univ_tys _ex_tvs c (PrefixCon ps)
= addFieldBangs c . concat <$> translatePatVec fam_insts (map unLoc ps)
translateConPatVec fam_insts _univ_tys _ex_tvs c (InfixCon p1 p2)
= addFieldBangs c . concat <$> translatePatVec fam_insts (map unLoc [p1,p2])
translateConPatVec fam_insts univ_tys ex_tvs c (RecCon (HsRecFields fs _))
-- Nothing matched. Make up some fresh term variables
| null fs = addFieldBangs c <$> mkPmVars arg_tys
-- The data constructor was not defined using record syntax. For the
-- pattern to be in record syntax it should be empty (e.g. Just {}).
-- So just like the previous case.
| null orig_lbls = ASSERT(null matched_lbls) addFieldBangs c <$> mkPmVars arg_tys
-- Some of the fields appear, in the original order (there may be holes).
-- Generate a simple constructor pattern and make up fresh variables for
-- the rest of the fields
| matched_lbls `isSubsequenceOf` orig_lbls
= ASSERT(orig_lbls `equalLength` arg_tys)
let translateOne lbl ty = case lookup lbl matched_pats of
Just p -> translatePat fam_insts p
Nothing -> mkPmVars [ty]
in addFieldBangs c . concat <$> zipWithM translateOne orig_lbls arg_tys
-- The fields that appear are not in the correct order. Make up fresh
-- variables for all fields and add guards after matching, to force the
-- evaluation in the correct order.
-- See Note [Field match order for RecCon]
| otherwise = do
arg_var_pats <- addFieldBangs c <$> mkPmVars arg_tys
translated_pats <- forM matched_pats $ \(x,pat) -> do
pvec <- translatePat fam_insts pat
return (x, pvec)
let zipped = zip orig_lbls [ x | PmVar _ x <- arg_var_pats ]
guards = map (\(name,pvec) -> case lookup name zipped of
Just x -> PmGrd pvec (Var x)
Nothing -> panic "translateConPatVec: lookup")
translated_pats
return (arg_var_pats ++ guards)
where
-- The actual argument types (instantiated), with strictness marks
arg_tys = conLikeInstOrigArgTys c (univ_tys ++ mkTyVarTys ex_tvs)
-- Some label information
orig_lbls = map flSelector $ conLikeFieldLabels c
matched_pats = [ (getName (unLoc (hsRecFieldId x)), unLoc (hsRecFieldArg x))
| (dL->L _ x) <- fs]
matched_lbls = [ name | (name, _pat) <- matched_pats ]
-- Translate a single match
translateMatch :: FamInstEnvs -> LMatch GhcTc (LHsExpr GhcTc)
-> DsM (PatVec, [PatVec])
translateMatch fam_insts (dL->L _ (Match { m_pats = lpats, m_grhss = grhss }))
= do
pats' <- concat <$> translatePatVec fam_insts pats
guards' <- mapM (translateGuards fam_insts) guards
-- tracePm "translateMatch" (vcat [ppr pats, ppr pats', ppr guards, ppr guards'])
return (pats', guards')
where
extractGuards :: LGRHS GhcTc (LHsExpr GhcTc) -> [GuardStmt GhcTc]
extractGuards (dL->L _ (GRHS _ gs _)) = map unLoc gs
extractGuards _ = panic "translateMatch"
pats = map unLoc lpats
guards = map extractGuards (grhssGRHSs grhss)
translateMatch _ _ = panic "translateMatch"
-- -----------------------------------------------------------------------
-- * Transform source guards (GuardStmt Id) to PmPats (Pattern)
-- | Translate a list of guard statements to a pattern vector
translateGuards :: FamInstEnvs -> [GuardStmt GhcTc] -> DsM PatVec
translateGuards fam_insts guards =
concat <$> mapM (translateGuard fam_insts) guards
-- | Translate a guard statement to Pattern
translateGuard :: FamInstEnvs -> GuardStmt GhcTc -> DsM PatVec
translateGuard fam_insts guard = case guard of
BodyStmt _ e _ _ -> translateBoolGuard e
LetStmt _ binds -> translateLet (unLoc binds)
BindStmt _ p e _ _ -> translateBind fam_insts p e
LastStmt {} -> panic "translateGuard LastStmt"
ParStmt {} -> panic "translateGuard ParStmt"
TransStmt {} -> panic "translateGuard TransStmt"
RecStmt {} -> panic "translateGuard RecStmt"
ApplicativeStmt {} -> panic "translateGuard ApplicativeLastStmt"
XStmtLR nec -> noExtCon nec
-- | Translate let-bindings
translateLet :: HsLocalBinds GhcTc -> DsM PatVec
translateLet _binds = return []
-- | Translate a pattern guard
translateBind :: FamInstEnvs -> LPat GhcTc -> LHsExpr GhcTc -> DsM PatVec
translateBind fam_insts (dL->L _ p) e = do
ps <- translatePat fam_insts p
g <- mkGuard ps (unLoc e)
return [g]
-- | Translate a boolean guard
translateBoolGuard :: LHsExpr GhcTc -> DsM PatVec
translateBoolGuard e
| isJust (isTrueLHsExpr e) = return []
-- The formal thing to do would be to generate (True <- True)
-- but it is trivial to solve so instead we give back an empty
-- PatVec for efficiency
| otherwise = (:[]) <$> mkGuard [truePattern] (unLoc e)
-- | Adds bangs to 'PmVar's in the 'PatVec' if the corresponding field of the
-- 'ConLike' definition had one.
addFieldBangs :: ConLike -> PatVec -> PatVec
addFieldBangs c ps = addBangs bangs ps
where
bangs = case c of
RealDataCon dc -> dataConImplBangs dc
PatSynCon ps -> take (patSynArity ps) (repeat HsLazy)
-- | Basically zip the bangs with the 'PatVec', with a few caveats:
--
-- * Skip 'PmGrd's, because they don't match anything. Each bangs corresponds
-- to a pattern arity 1 pattern.
-- * A bang doesn't affect a 'PmCon' because it's already strict, so we just
-- discharge it.
-- * Add the bang to the 'PmVar'.
--
-- Example: @addBangs [HsStrict, HsStrict] [x, 0 <- e, I# 42, True <- p 2]@
-- evaluates to @[!x, 0 <- e, I# 42, True <- p 2]@, so only the first
-- pattern changes from lazy to strict.
addBangs :: [HsImplBang] -> PatVec -> PatVec
addBangs (bang:bangs) (PmVar _ x:ps) = PmVar bang x : addBangs bangs ps
addBangs bangs (p@PmGrd{}:ps) = p : addBangs bangs ps
addBangs (_ :bangs) (p@PmCon{}:ps) = p : addBangs bangs ps
addBangs [] [] = []
addBangs _ _ = panic "addBangs"
{- Note [Field match order for RecCon]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The order for RecCon field patterns actually determines evaluation order of
the pattern match. For example:
data T = T { a :: !Bool, b :: Char, c :: Int }
f :: T -> ()
f T{ c = 42, b = 'b' } = ()
Then
* @f (T (error "a") (error "b") (error "c"))@ errors out with "a" because of
the strict field.
* @f (T True (error "b") (error "c"))@ errors out with "c" because it
is mentioned frist in the pattern match.
This means we can't just desugar the pattern match to the PatVec
@[T !_ 'b' 42]@. Instead we have to generate variable matches that have
strictness according to the field declarations and afterwards force them in the
right order. As a result, we get the PatVec @[T !_ b c, 42 <- c, 'b' <- b]@.
Of course, when the labels occur in the order they are defined, we can just use
the simpler desugaring.
Note [Countering exponential blowup]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Precise pattern match exhaustiveness checking is necessarily exponential in
the size of some input programs. We implement a counter-measure in the form of
the -fmax-pmcheck-models flag, limiting the number of Deltas we check against
each pattern by a constant.
How do we do that? Consider
f True True = ()
f True True = ()
And imagine we set our limit to 1 for the sake of the example. The first clause
will be checked against the initial Delta, {}. Doing so will produce an
Uncovered set of size 2, containing the models {x/~True} and {x~True,y/~True}.
Also we find the first clause to cover the model {x~True,y~True}.
But the Uncovered set we get out of the match is too huge! We somehow have to
ensure not to make things worse as they are already, so we continue checking
with a singleton Uncovered set of the initial Delta {}. Why is this
sound (wrt. notion of the GADTs Meet their Match paper)? Well, it basically
amounts to forgetting that we matched against the first clause. The values
represented by {} are a superset of those represented by its two refinements
{x/~True} and {x~True,y/~True}.
This forgetfulness becomes very apparent in the example above: By continuing
with {} we don't detect the second clause as redundant, as it again covers the
same non-empty subset of {}. So we don't flag everything as redundant anymore,
but still will never flag something as redundant that isn't.
For exhaustivity, the converse applies: We will report @f@ as non-exhaustive
and report @f _ _@ as missing, which is a superset of the actual missing
matches. But soundness means we will never fail to report a missing match.
This mechanism is implemented in the higher-order function 'throttle'.
Note [Combinatorial explosion in guards]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Function with many clauses and deeply nested guards like in #11195 tend to
overwhelm the checker because they lead to exponential splitting behavior.
See the comments on #11195 on refinement trees. Every guard refines the
disjunction of Deltas by another split. This no different than the ConVar case,
but in stark contrast we mostly don't get any useful information out of that
split! Hence splitting k-fold just means having k-fold more work. The problem
exacerbates for larger k, because it gets even more unlikely that we can handle
all of the arising Deltas better than just continue working on the original
Delta.
We simply apply the same mechanism as in Note [Countering exponential blowup].
But we don't want to forget about actually useful info from pattern match
clauses just because we had one clause with many guards. So we set the limit for
guards much lower.
Note [Translate CoPats]
~~~~~~~~~~~~~~~~~~~~~~~
The pattern match checker did not know how to handle coerced patterns `CoPat`
efficiently, which gave rise to #11276. The original approach translated
`CoPat`s:
pat |> co ===> x (pat <- (x |> co))
Why did we do this seemingly unnecessary expansion in the first place?
The reason is that the type of @pat |> co@ (which is the type of the value
abstraction we match against) might be different than that of @pat@. Data
instances such as @Sing (a :: Bool)@ are a good example of this: If we would
just drop the coercion, we'd get a type error when matching @pat@ against its
value abstraction, with the result being that pmIsSatisfiable decides that every
possible data constructor fitting @pat@ is rejected as uninhabitated, leading to
a lot of false warnings.
But we can check whether the coercion is a hole or if it is just refl, in
which case we can drop it.
%************************************************************************
%* *
Utilities for Pattern Match Checking
%* *
%************************************************************************
-}
-- ----------------------------------------------------------------------------
-- * Basic utilities
-- | Get the type out of a PmPat. For guard patterns (ps <- e) we use the type
-- of the first (or the single -WHEREVER IT IS- valid to use?) pattern
pmPatType :: PmPat -> Type
pmPatType (PmCon { pm_con_con = con, pm_con_arg_tys = tys })
= pmAltConType con tys
pmPatType (PmVar { pm_var_id = x }) = idType x
pmPatType (PmGrd { pm_grd_pv = pv })
= ASSERT(patVecArity pv == 1) (pmPatType p)
where Just p = find ((==1) . patternArity) pv
{-
Note [Extensions to GADTs Meet Their Match]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The GADTs Meet Their Match paper presents the formalism that GHC's coverage
checker adheres to. Since the paper's publication, there have been some
additional features added to the coverage checker which are not described in
the paper. This Note serves as a reference for these new features.
* Value abstractions are severely simplified to the point where they are just
variables. The information about the shape of a variable is encoded in
the oracle state 'Delta' instead.
* Handling of uninhabited fields like `!Void`.
See Note [Strict argument type constraints] in PmOracle.
* Efficient handling of literal splitting, large enumerations and accurate
redundancy warnings for `COMPLETE` groups through the oracle.
-}
-- ----------------------------------------------------------------------------
-- * More smart constructors and fresh variable generation
-- | Create a guard pattern
mkGuard :: PatVec -> HsExpr GhcTc -> DsM PmPat
mkGuard pv e = PmGrd pv <$> dsExpr e
mkGuardSyntaxExpr :: PatVec -> SyntaxExpr GhcTc -> [HsExpr GhcTc] -> DsM PmPat
mkGuardSyntaxExpr pv f args = do
core_args <- traverse dsExpr args
PmGrd pv <$> dsSyntaxExpr f core_args
-- | Generate a lazy variable pattern of a given type
mkPmVar :: Type -> DsM PmPat
mkPmVar ty = PmVar HsLazy <$> mkPmId ty
-- | Generate many lazy variable patterns, given a list of types
mkPmVars :: [Type] -> DsM PatVec
mkPmVars tys = mapM mkPmVar tys
-- | Generate a fresh term variable of a given and return it in two forms:
-- * A variable pattern
-- * A variable expression
mkPmId2Forms :: Type -> DsM (PmPat, LHsExpr GhcTc)
mkPmId2Forms ty = do
x <- mkPmId ty
return (PmVar HsLazy x, noLoc (HsVar noExtField (noLoc x)))
{-
Note [Filtering out non-matching COMPLETE sets]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, conlikes in a COMPLETE set are simply grouped by the
type constructor heading the return type. This is nice and simple, but it does
mean that there are scenarios when a COMPLETE set might be incompatible with
the type of a scrutinee. For instance, consider (from #14135):
data Foo a = Foo1 a | Foo2 a
pattern MyFoo2 :: Int -> Foo Int
pattern MyFoo2 i = Foo2 i
{-# COMPLETE Foo1, MyFoo2 #-}
f :: Foo a -> a
f (Foo1 x) = x
`f` has an incomplete pattern-match, so when choosing which constructors to
report as unmatched in a warning, GHC must choose between the original set of
data constructors {Foo1, Foo2} and the COMPLETE set {Foo1, MyFoo2}. But observe
that GHC shouldn't even consider the COMPLETE set as a possibility: the return
type of MyFoo2, Foo Int, does not match the type of the scrutinee, Foo a, since
there's no substitution `s` such that s(Foo Int) = Foo a.
To ensure that GHC doesn't pick this COMPLETE set, it checks each pattern
synonym constructor's return type matches the type of the scrutinee, and if one
doesn't, then we remove the whole COMPLETE set from consideration.
One might wonder why GHC only checks /pattern synonym/ constructors, and not
/data/ constructors as well. The reason is because that the type of a
GADT constructor very well may not match the type of a scrutinee, and that's
OK. Consider this example (from #14059):
data SBool (z :: Bool) where
SFalse :: SBool False
STrue :: SBool True
pattern STooGoodToBeTrue :: forall (z :: Bool). ()
=> z ~ True
=> SBool z
pattern STooGoodToBeTrue = STrue
{-# COMPLETE SFalse, STooGoodToBeTrue #-}
wobble :: SBool z -> Bool
wobble STooGoodToBeTrue = True
In the incomplete pattern match for `wobble`, we /do/ want to warn that SFalse
should be matched against, even though its type, SBool False, does not match
the scrutinee type, SBool z.
SG: Another angle at this is that the implied constraints when we instantiate
universal type variables in the return type of a GADT will lead to *provided*
thetas, whereas when we instantiate the return type of a pattern synonym that
corresponds to a *required* theta. See Note [Pattern synonym result type] in
PatSyn. Note how isValidCompleteMatches will successfully filter out
pattern Just42 :: Maybe Int
pattern Just42 = Just 42
But fail to filter out the equivalent
pattern Just'42 :: (a ~ Int) => Maybe a
pattern Just'42 = Just 42
Which seems fine as far as tcMatchTy is concerned, but it raises a few eye
brows.
-}
{-
%************************************************************************
%* *
Sanity Checks
%* *
%************************************************************************
-}
-- | The arity of a pattern/pattern vector is the
-- number of top-level patterns that are not guards
type PmArity = Int
-- | Compute the arity of a pattern vector
patVecArity :: PatVec -> PmArity
patVecArity = sum . map patternArity
-- | Compute the arity of a pattern
patternArity :: PmPat -> PmArity
patternArity (PmGrd {}) = 0
patternArity _other_pat = 1
{-
%************************************************************************
%* *
Heart of the algorithm: Function pmcheck
%* *
%************************************************************************
Main functions are:
* pmcheck :: PatVec -> [PatVec] -> ValVec -> Delta -> DsM PartialResult
This function implements functions `covered`, `uncovered` and
`divergent` from the paper at once. Calls out to the auxilary function
`pmcheckGuards` for handling (possibly multiple) guarded RHSs when the whole
clause is checked. Slightly different from the paper because it does not even
produce the covered and uncovered sets. Since we only care about whether a
clause covers SOMETHING or if it may forces ANY argument, we only store a
boolean in both cases, for efficiency.
* pmcheckGuards :: [PatVec] -> ValVec -> Delta -> DsM PartialResult
Processes the guards.
-}
-- | @throttle limit f n delta@ executes the pattern match action @f@ but
-- replaces the 'Uncovered' set by @[delta]@ if not doing so would lead to
-- too many Deltas to check.
--
-- See Note [Countering exponential blowup] and
-- Note [Combinatorial explosion in guards]
--
-- How many is "too many"? @throttle@ assumes that the pattern match action
-- will be executed against @n@ similar other Deltas, its "siblings". Now, by
-- observing the branching factor (i.e. the number of children) of executing
-- the action, we can estimate how many Deltas there would be in the next
-- generation. If we find that this number exceeds @limit@, we do
-- "birth control": We simply don't allow a branching factor of more than 1.
-- Otherwise we just return the singleton set of the original @delta@.
-- This amounts to forgetting about the refined facts we got from running the
-- action.
throttle :: Int -> (Int -> Delta -> DsM PartialResult) -> Int -> Delta -> DsM (Int, PartialResult)
throttle limit f n_siblings delta = do
res <- f n_siblings delta
let n_own_children = length (presultUncovered res)
let n_next_gen = n_siblings * n_own_children
-- Birth control!
if n_next_gen <= limit || n_own_children <= 1
then pure (n_next_gen, res)
else pure (n_siblings, res { presultUncovered = [delta], presultApprox = Approximate })
-- | Map a pattern matching action processing a single 'Delta' over a
-- 'Uncovered' set and return the combined 'PartialResult's.
runMany :: (Delta -> DsM PartialResult) -> Uncovered -> DsM PartialResult
runMany f unc = mconcat <$> traverse f unc
-- | Print diagnostic info and actually call 'pmcheck'.
pmcheckI :: PatVec -> [PatVec] -> ValVec -> Int -> Delta -> DsM PartialResult
pmcheckI ps guards vva n delta = do
tracePm "pmCheck {" $ vcat [ ppr n <> colon
, hang (text "patterns:") 2 (ppr ps)
, hang (text "guards:") 2 (ppr guards)
, ppr vva
, ppr delta ]
res <- pmcheck ps guards vva n delta
tracePm "}:" (ppr res) -- braces are easier to match by tooling
return res
{-# INLINE pmcheckI #-}
-- | Check the list of mutually exclusive guards
pmcheckGuards :: [PatVec] -> Int -> Delta -> DsM PartialResult
pmcheckGuards [] _ delta = return (usimple delta)
pmcheckGuards (gv:gvs) n delta = do
dflags <- getDynFlags
let limit = maxPmCheckModels dflags `div` 5
(n', PartialResult cs unc ds pc) <- throttle limit (pmcheckI gv [] []) n delta
(PartialResult css uncs dss pcs) <- runMany (pmcheckGuards gvs n') unc
return $ PartialResult (cs `mappend` css)
uncs
(ds `mappend` dss)
(pc `mappend` pcs)
-- | Matching function: Check simultaneously a clause (takes separately the
-- patterns and the list of guards) for exhaustiveness, redundancy and
-- inaccessibility.
pmcheck
:: PatVec -- ^ Patterns of the clause
-> [PatVec] -- ^ (Possibly multiple) guards of the clause
-> ValVec -- ^ The value vector abstraction to match against
-> Int -- ^ Estimate on the number of similar 'Delta's to handle.
-- See 6. in Note [Countering exponential blowup]
-> Delta -- ^ Oracle state giving meaning to the identifiers in the ValVec
-> DsM PartialResult
pmcheck [] guards [] n delta
| null guards = return $ mempty { presultCovered = Covered }
| otherwise = pmcheckGuards guards n delta
-- Guard
pmcheck (p@PmGrd { pm_grd_pv = pv, pm_grd_expr = e } : ps) guards vva n delta = do
tracePm "PmGrd: pmPatType" (vcat [ppr p, ppr (pmPatType p)])
x <- mkPmId (exprType e)
delta' <- expectJust "x is fresh" <$> addVarCoreCt delta x e
pmcheckI (pv ++ ps) guards (x : vva) n delta'
-- Var: Add x :-> y to the oracle and recurse
pmcheck (PmVar bang x : ps) guards (y : vva) n delta = do
delta_lzy <- expectJust "x is fresh" <$> addTmCt delta (TmVarVar x y)
if isBanged bang
then do
pr <- addTmCt delta_lzy (TmVarNonVoid x) >>= \case
Nothing -> pure mempty
Just delta_str -> pmcheckI ps guards vva n delta_str
pure (forceIfCanDiverge delta x pr)
else pmcheckI ps guards vva n delta_lzy
-- ConVar
pmcheck (p : ps) guards (x : vva) n delta
| PmCon{ pm_con_con = con, pm_con_args = args, pm_con_dicts = dicts } <- p = do
-- E.g f (K p q) = <rhs>
-- <next equation>
-- Split the value vector into two value vectors:
-- * one for <rhs>, binding x to (K p q)
-- * one for <next equation>, recording that x is /not/ (K _ _)
-- Stuff for <rhs>
pr_pos <- addPmConCts delta x con dicts args >>= \case
Nothing -> pure mempty
Just (delta', arg_vas) ->
pmcheckI (args ++ ps) guards (arg_vas ++ vva) n delta'
-- Stuff for <next equation>
-- The var is forced regardless of whether @con@ was satisfiable
let pr_pos' = forceIfCanDiverge delta x pr_pos
pr_neg <- addRefutableAltCon delta x con >>= \case
Nothing -> pure mempty
Just delta' -> pure (usimple delta')
tracePm "ConVar" (vcat [ppr p, ppr x, ppr pr_pos', ppr pr_neg])
-- Combine both into a single PartialResult
let pr = mkUnion pr_pos' pr_neg
pure pr
pmcheck [] _ (_:_) _ _ = panic "pmcheck: nil-cons"
pmcheck (_:_) _ [] _ _ = panic "pmcheck: cons-nil"
addPmConCts :: Delta -> Id -> PmAltCon -> [EvVar] -> PatVec -> DsM (Maybe (Delta, ValVec))
addPmConCts delta x con dicts field_pats = do
-- mk_id will re-use the variable name if possible. The x ~ x is easily
-- discharged by the oracle at no overhead (see 'PmOracle.addVarVarCt').
let mk_id (PmVar _ x) = pure (Just x)
mk_id p@PmCon{} = Just <$> mkPmId (pmPatType p)
mk_id PmGrd{} = pure Nothing -- PmGrds have arity 0, so just forget about them
field_vas <- catMaybes <$> traverse mk_id field_pats
runMaybeT $ do
delta_ty <- MaybeT $ addTypeEvidence delta (listToBag dicts)
delta_tm_ty <- MaybeT $ addTmCt delta_ty (TmVarCon x con field_vas)
-- strictness on fields is unleashed when we match
pure (delta_tm_ty, field_vas)
-- ----------------------------------------------------------------------------
-- * Utilities for main checking
-- | Initialise with default values for covering and divergent information and
-- a singleton uncovered set.
usimple :: Delta -> PartialResult
usimple delta = mempty { presultUncovered = [delta] }
-- | Get the union of two covered, uncovered and divergent value set
-- abstractions. Since the covered and divergent sets are represented by a
-- boolean, union means computing the logical or (at least one of the two is
-- non-empty).
mkUnion :: PartialResult -> PartialResult -> PartialResult
mkUnion = mappend
-- | Set the divergent set to not empty
forces :: PartialResult -> PartialResult
forces pres = pres { presultDivergent = Diverged }
-- | Set the divergent set to non-empty if the variable has not been forced yet
forceIfCanDiverge :: Delta -> Id -> PartialResult -> PartialResult
forceIfCanDiverge delta x
| canDiverge delta x = forces
| otherwise = id
-- ----------------------------------------------------------------------------
-- * Propagation of term constraints inwards when checking nested matches
{- Note [Type and Term Equality Propagation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When checking a match it would be great to have all type and term information
available so we can get more precise results. For this reason we have functions
`addDictsDs' and `addTmVarCsDs' in DsMonad that store in the environment type and
term constraints (respectively) as we go deeper.
The type constraints we propagate inwards are collected by `collectEvVarsPats'
in GHC.Hs.Pat. This handles bug #4139 ( see example
https://gitlab.haskell.org/ghc/ghc/snippets/672 )
where this is needed.
For term equalities we do less, we just generate equalities for HsCase. For
example we accurately give 2 redundancy warnings for the marked cases:
f :: [a] -> Bool
f x = case x of
[] -> case x of -- brings (x ~ []) in scope
[] -> True
(_:_) -> False -- can't happen
(_:_) -> case x of -- brings (x ~ (_:_)) in scope
(_:_) -> True
[] -> False -- can't happen
Functions `addScrutTmCs' and `addPatTmCs' are responsible for generating
these constraints.
-}
locallyExtendPmDelta :: (Delta -> DsM (Maybe Delta)) -> DsM a -> DsM a
locallyExtendPmDelta ext k = getPmDelta >>= ext >>= \case
-- If adding a constraint would lead to a contradiction, don't add it.
-- See @Note [Recovering from unsatisfiable pattern-matching constraints]@
-- for why this is done.
Nothing -> k
Just delta' -> updPmDelta delta' k
-- | Add in-scope type constraints
addTyCsDs :: Bag EvVar -> DsM a -> DsM a
addTyCsDs ev_vars =
locallyExtendPmDelta (\delta -> addTypeEvidence delta ev_vars)
-- | Add equalities for the scrutinee to the local 'DsM' environment when
-- checking a case expression:
-- case e of x { matches }
-- When checking matches we record that (x ~ e) where x is the initial
-- uncovered. All matches will have to satisfy this equality.
addScrutTmCs :: Maybe (LHsExpr GhcTc) -> [Id] -> DsM a -> DsM a
addScrutTmCs Nothing _ k = k
addScrutTmCs (Just scr) [x] k = do
scr_e <- dsLExpr scr
locallyExtendPmDelta (\delta -> addVarCoreCt delta x scr_e) k
addScrutTmCs _ _ _ = panic "addScrutTmCs: HsCase with more than one case binder"
-- | Add equalities to the local 'DsM' environment when checking the RHS of a
-- case expression:
-- case e of x { p1 -> e1; ... pn -> en }
-- When we go deeper to check e.g. e1 we record (x ~ p1).
addPatTmCs :: [Pat GhcTc] -- LHS (should have length 1)
-> [Id] -- MatchVars (should have length 1)
-> DsM a
-> DsM a
-- Computes an approximation of the Covered set for p1 (which pmcheck currently
-- discards).
addPatTmCs ps xs k = do
fam_insts <- dsGetFamInstEnvs
pv <- concat <$> translatePatVec fam_insts ps
locallyExtendPmDelta (\delta -> computeCovered pv xs delta) k
-- | A dead simple version of 'pmcheck' that only computes the Covered set.
-- So it only cares about collecting positive info.
-- We use it to collect info from a pattern when we check its RHS.
-- See 'addPatTmCs'.
computeCovered :: PatVec -> ValVec -> Delta -> DsM (Maybe Delta)
-- The duplication with 'pmcheck' is really unfortunate, but it's simpler than
-- separating out the common cases with 'pmcheck', because that would make the
-- ConVar case harder to understand.
computeCovered [] [] delta = pure (Just delta)
computeCovered (PmGrd { pm_grd_pv = pv, pm_grd_expr = e } : ps) vva delta = do
x <- mkPmId (exprType e)
delta' <- expectJust "x is fresh" <$> addVarCoreCt delta x e
computeCovered (pv ++ ps) (x : vva) delta'
computeCovered (PmVar _ x : ps) (y : vva) delta = do
delta' <- expectJust "x is fresh" <$> addTmCt delta (TmVarVar x y)
computeCovered ps vva delta'
computeCovered (p : ps) (x : vva) delta
| PmCon{ pm_con_con = con, pm_con_args = args, pm_con_dicts = dicts } <- p
= addPmConCts delta x con dicts args >>= \case
Nothing -> pure Nothing
Just (delta', arg_vas) ->
computeCovered (args ++ ps) (arg_vas ++ vva) delta'
computeCovered ps vs _delta = pprPanic "computeCovered" (ppr ps $$ ppr vs)
{-
%************************************************************************
%* *
Pretty printing of exhaustiveness/redundancy check warnings
%* *
%************************************************************************
-}
-- | Check whether any part of pattern match checking is enabled for this
-- 'HsMatchContext' (does not matter whether it is the redundancy check or the
-- exhaustiveness check).
isMatchContextPmChecked :: DynFlags -> Origin -> HsMatchContext id -> Bool
isMatchContextPmChecked dflags origin kind
| isGenerated origin
= False
| otherwise
= wopt Opt_WarnOverlappingPatterns dflags || exhaustive dflags kind
-- | Return True when any of the pattern match warnings ('allPmCheckWarnings')
-- are enabled, in which case we need to run the pattern match checker.
needToRunPmCheck :: DynFlags -> Origin -> Bool
needToRunPmCheck dflags origin
| isGenerated origin
= False
| otherwise
= notNull (filter (`wopt` dflags) allPmCheckWarnings)
-- | Issue all the warnings (coverage, exhaustiveness, inaccessibility)
dsPmWarn :: DynFlags -> DsMatchContext -> PmResult -> DsM ()
dsPmWarn dflags ctx@(DsMatchContext kind loc) pm_result
= when (flag_i || flag_u) $ do
let exists_r = flag_i && notNull redundant
exists_i = flag_i && notNull inaccessible && not is_rec_upd
exists_u = flag_u && (case uncovered of
TypeOfUncovered _ -> True
UncoveredPatterns _ unc -> notNull unc)
approx = precision == Approximate
when (approx && (exists_u || exists_i)) $
putSrcSpanDs loc (warnDs NoReason approx_msg)
when exists_r $ forM_ redundant $ \(dL->L l q) -> do
putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns)
(pprEqn q "is redundant"))
when exists_i $ forM_ inaccessible $ \(dL->L l q) -> do
putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns)
(pprEqn q "has inaccessible right hand side"))
when exists_u $ putSrcSpanDs loc $ warnDs flag_u_reason $
case uncovered of
TypeOfUncovered ty -> warnEmptyCase ty
UncoveredPatterns vars unc -> pprEqns vars unc
where
PmResult
{ pmresultRedundant = redundant
, pmresultUncovered = uncovered
, pmresultInaccessible = inaccessible
, pmresultApproximate = precision } = pm_result
flag_i = wopt Opt_WarnOverlappingPatterns dflags
flag_u = exhaustive dflags kind
flag_u_reason = maybe NoReason Reason (exhaustiveWarningFlag kind)
is_rec_upd = case kind of { RecUpd -> True; _ -> False }
-- See Note [Inaccessible warnings for record updates]
maxPatterns = maxUncoveredPatterns dflags
-- Print a single clause (for redundant/with-inaccessible-rhs)
pprEqn q txt = pprContext True ctx (text txt) $ \f ->
f (pprPats kind (map unLoc q))
-- Print several clauses (for uncovered clauses)
pprEqns vars deltas = pprContext False ctx (text "are non-exhaustive") $ \_ ->
case vars of -- See #11245
[] -> text "Guards do not cover entire pattern space"
_ -> let us = map (\delta -> pprUncovered delta vars) deltas
in hang (text "Patterns not matched:") 4
(vcat (take maxPatterns us) $$ dots maxPatterns us)
-- Print a type-annotated wildcard (for non-exhaustive `EmptyCase`s for
-- which we only know the type and have no inhabitants at hand)
warnEmptyCase ty = pprContext False ctx (text "are non-exhaustive") $ \_ ->
hang (text "Patterns not matched:") 4 (underscore <+> dcolon <+> ppr ty)
approx_msg = vcat
[ hang
(text "Pattern match checker ran into -fmax-pmcheck-models="
<> int (maxPmCheckModels dflags)
<> text " limit, so")
2
( bullet <+> text "Redundant clauses might not be reported at all"
$$ bullet <+> text "Redundant clauses might be reported as inaccessible"
$$ bullet <+> text "Patterns reported as unmatched might actually be matched")
, text "Increase the limit or resolve the warnings to suppress this message." ]
{- Note [Inaccessible warnings for record updates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#12957)
data T a where
T1 :: { x :: Int } -> T Bool
T2 :: { x :: Int } -> T a
T3 :: T a
f :: T Char -> T a
f r = r { x = 3 }
The desugarer will (conservatively generate a case for T1 even though
it's impossible:
f r = case r of
T1 x -> T1 3 -- Inaccessible branch
T2 x -> T2 3
_ -> error "Missing"
We don't want to warn about the inaccessible branch because the programmer
didn't put it there! So we filter out the warning here.
-}
dots :: Int -> [a] -> SDoc
dots maxPatterns qs
| qs `lengthExceeds` maxPatterns = text "..."
| otherwise = empty
-- | All warning flags that need to run the pattern match checker.
allPmCheckWarnings :: [WarningFlag]
allPmCheckWarnings =
[ Opt_WarnIncompletePatterns
, Opt_WarnIncompleteUniPatterns
, Opt_WarnIncompletePatternsRecUpd
, Opt_WarnOverlappingPatterns
]
-- | Check whether the exhaustiveness checker should run (exhaustiveness only)
exhaustive :: DynFlags -> HsMatchContext id -> Bool
exhaustive dflags = maybe False (`wopt` dflags) . exhaustiveWarningFlag
-- | Denotes whether an exhaustiveness check is supported, and if so,
-- via which 'WarningFlag' it's controlled.
-- Returns 'Nothing' if check is not supported.
exhaustiveWarningFlag :: HsMatchContext id -> Maybe WarningFlag
exhaustiveWarningFlag (FunRhs {}) = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag CaseAlt = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag IfAlt = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag LambdaExpr = Just Opt_WarnIncompleteUniPatterns
exhaustiveWarningFlag PatBindRhs = Just Opt_WarnIncompleteUniPatterns
exhaustiveWarningFlag PatBindGuards = Just Opt_WarnIncompletePatterns
exhaustiveWarningFlag ProcExpr = Just Opt_WarnIncompleteUniPatterns
exhaustiveWarningFlag RecUpd = Just Opt_WarnIncompletePatternsRecUpd
exhaustiveWarningFlag ThPatSplice = Nothing
exhaustiveWarningFlag PatSyn = Nothing
exhaustiveWarningFlag ThPatQuote = Nothing
exhaustiveWarningFlag (StmtCtxt {}) = Nothing -- Don't warn about incomplete patterns
-- in list comprehensions, pattern guards
-- etc. They are often *supposed* to be
-- incomplete
-- True <==> singular
pprContext :: Bool -> DsMatchContext -> SDoc -> ((SDoc -> SDoc) -> SDoc) -> SDoc
pprContext singular (DsMatchContext kind _loc) msg rest_of_msg_fun
= vcat [text txt <+> msg,
sep [ text "In" <+> ppr_match <> char ':'
, nest 4 (rest_of_msg_fun pref)]]
where
txt | singular = "Pattern match"
| otherwise = "Pattern match(es)"
(ppr_match, pref)
= case kind of
FunRhs { mc_fun = (dL->L _ fun) }
-> (pprMatchContext kind, \ pp -> ppr fun <+> pp)
_ -> (pprMatchContext kind, \ pp -> pp)
pprPats :: HsMatchContext Name -> [Pat GhcTc] -> SDoc
pprPats kind pats
= sep [sep (map ppr pats), matchSeparator kind, text "..."]
|