summaryrefslogtreecommitdiff
path: root/compiler/coreSyn/CoreOpt.hs
blob: f1ff68d1339878f087199718a4ab602257f75873 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}

{-# LANGUAGE CPP #-}
module CoreOpt (
        -- ** Simple expression optimiser
        simpleOptPgm, simpleOptExpr, simpleOptExprWith,

        -- ** Join points
        joinPointBinding_maybe, joinPointBindings_maybe,

        -- ** Predicates on expressions
        exprIsConApp_maybe, exprIsLiteral_maybe, exprIsLambda_maybe,

        -- ** Coercions and casts
        pushCoArg, pushCoValArg, pushCoTyArg, collectBindersPushingCo
    ) where

#include "HsVersions.h"

import GhcPrelude

import CoreArity( etaExpandToJoinPoint )

import CoreSyn
import CoreSubst
import CoreUtils
import CoreFVs
import PprCore  ( pprCoreBindings, pprRules )
import OccurAnal( occurAnalyseExpr, occurAnalysePgm )
import Literal  ( Literal(MachStr) )
import Id
import Var      ( varType )
import VarSet
import VarEnv
import DataCon
import OptCoercion ( optCoercion )
import Type     hiding ( substTy, extendTvSubst, extendCvSubst, extendTvSubstList
                       , isInScope, substTyVarBndr, cloneTyVarBndr )
import Coercion hiding ( substCo, substCoVarBndr )
import TyCon        ( tyConArity )
import TysWiredIn
import PrelNames
import BasicTypes
import Module       ( Module )
import ErrUtils
import DynFlags
import Outputable
import Pair
import Util
import Maybes       ( orElse )
import FastString
import Data.List
import qualified Data.ByteString as BS

{-
************************************************************************
*                                                                      *
        The Simple Optimiser
*                                                                      *
************************************************************************

Note [The simple optimiser]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The simple optimiser is a lightweight, pure (non-monadic) function
that rapidly does a lot of simple optimisations, including

  - inlining things that occur just once,
      or whose RHS turns out to be trivial
  - beta reduction
  - case of known constructor
  - dead code elimination

It does NOT do any call-site inlining; it only inlines a function if
it can do so unconditionally, dropping the binding.  It thereby
guarantees to leave no un-reduced beta-redexes.

It is careful to follow the guidance of "Secrets of the GHC inliner",
and in particular the pre-inline-unconditionally and
post-inline-unconditionally story, to do effective beta reduction on
functions called precisely once, without repeatedly optimising the same
expression.  In fact, the simple optimiser is a good example of this
little dance in action; the full Simplifier is a lot more complicated.

-}

simpleOptExpr :: CoreExpr -> CoreExpr
-- See Note [The simple optimiser]
-- Do simple optimisation on an expression
-- The optimisation is very straightforward: just
-- inline non-recursive bindings that are used only once,
-- or where the RHS is trivial
--
-- We also inline bindings that bind a Eq# box: see
-- See Note [Getting the map/coerce RULE to work].
--
-- Also we convert functions to join points where possible (as
-- the occurrence analyser does most of the work anyway).
--
-- The result is NOT guaranteed occurrence-analysed, because
-- in  (let x = y in ....) we substitute for x; so y's occ-info
-- may change radically

simpleOptExpr expr
  = -- pprTrace "simpleOptExpr" (ppr init_subst $$ ppr expr)
    simpleOptExprWith init_subst expr
  where
    init_subst = mkEmptySubst (mkInScopeSet (exprFreeVars expr))
        -- It's potentially important to make a proper in-scope set
        -- Consider  let x = ..y.. in \y. ...x...
        -- Then we should remember to clone y before substituting
        -- for x.  It's very unlikely to occur, because we probably
        -- won't *be* substituting for x if it occurs inside a
        -- lambda.
        --
        -- It's a bit painful to call exprFreeVars, because it makes
        -- three passes instead of two (occ-anal, and go)

simpleOptExprWith :: Subst -> InExpr -> OutExpr
-- See Note [The simple optimiser]
simpleOptExprWith subst expr
  = simple_opt_expr init_env (occurAnalyseExpr expr)
  where
    init_env = SOE { soe_inl = emptyVarEnv, soe_subst = subst }

----------------------
simpleOptPgm :: DynFlags -> Module
             -> CoreProgram -> [CoreRule] -> [CoreVect]
             -> IO (CoreProgram, [CoreRule], [CoreVect])
-- See Note [The simple optimiser]
simpleOptPgm dflags this_mod binds rules vects
  = do { dumpIfSet_dyn dflags Opt_D_dump_occur_anal "Occurrence analysis"
                       (pprCoreBindings occ_anald_binds $$ pprRules rules );

       ; return (reverse binds', rules', vects') }
  where
    occ_anald_binds  = occurAnalysePgm this_mod
                          (\_ -> True)  {- All unfoldings active -}
                          (\_ -> False) {- No rules active -}
                          rules vects emptyVarSet binds

    (final_env, binds') = foldl do_one (emptyEnv, []) occ_anald_binds
    final_subst = soe_subst final_env

    rules' = substRulesForImportedIds final_subst rules
    vects' = substVects final_subst vects
             -- We never unconditionally inline into rules,
             -- hence paying just a substitution

    do_one (env, binds') bind
      = case simple_opt_bind env bind of
          (env', Nothing)    -> (env', binds')
          (env', Just bind') -> (env', bind':binds')

-- In these functions the substitution maps InVar -> OutExpr

----------------------
type SimpleClo = (SimpleOptEnv, InExpr)

data SimpleOptEnv
  = SOE { soe_inl   :: IdEnv SimpleClo
             -- Deals with preInlineUnconditionally; things
             -- that occur exactly once and are inlined
             -- without having first been simplified

        , soe_subst :: Subst
             -- Deals with cloning; includes the InScopeSet
        }

instance Outputable SimpleOptEnv where
  ppr (SOE { soe_inl = inl, soe_subst = subst })
    = text "SOE {" <+> vcat [ text "soe_inl   =" <+> ppr inl
                            , text "soe_subst =" <+> ppr subst ]
                   <+> text "}"

emptyEnv :: SimpleOptEnv
emptyEnv = SOE { soe_inl = emptyVarEnv
               , soe_subst = emptySubst }

soeZapSubst :: SimpleOptEnv -> SimpleOptEnv
soeZapSubst (SOE { soe_subst = subst })
  = SOE { soe_inl = emptyVarEnv, soe_subst = zapSubstEnv subst }

soeSetInScope :: SimpleOptEnv -> SimpleOptEnv -> SimpleOptEnv
-- Take in-scope set from env1, and the rest from env2
soeSetInScope (SOE { soe_subst = subst1 })
              env2@(SOE { soe_subst = subst2 })
  = env2 { soe_subst = setInScope subst2 (substInScope subst1) }

---------------
simple_opt_clo :: SimpleOptEnv -> SimpleClo -> OutExpr
simple_opt_clo env (e_env, e)
  = simple_opt_expr (soeSetInScope env e_env) e

simple_opt_expr :: SimpleOptEnv -> InExpr -> OutExpr
simple_opt_expr env expr
  = go expr
  where
    subst        = soe_subst env
    in_scope     = substInScope subst
    in_scope_env = (in_scope, simpleUnfoldingFun)

    go (Var v)
       | Just clo <- lookupVarEnv (soe_inl env) v
       = simple_opt_clo env clo
       | otherwise
       = lookupIdSubst (text "simpleOptExpr") (soe_subst env) v

    go (App e1 e2)      = simple_app env e1 [(env,e2)]
    go (Type ty)        = Type     (substTy subst ty)
    go (Coercion co)    = Coercion (optCoercion (getTCvSubst subst) co)
    go (Lit lit)        = Lit lit
    go (Tick tickish e) = mkTick (substTickish subst tickish) (go e)
    go (Cast e co)      | isReflCo co' = go e
                        | otherwise    = Cast (go e) co'
                        where
                          co' = optCoercion (getTCvSubst subst) co

    go (Let bind body) = case simple_opt_bind env bind of
                           (env', Nothing)   -> simple_opt_expr env' body
                           (env', Just bind) -> Let bind (simple_opt_expr env' body)

    go lam@(Lam {})     = go_lam env [] lam
    go (Case e b ty as)
       -- See Note [Getting the map/coerce RULE to work]
      | isDeadBinder b
      , Just (con, _tys, es) <- exprIsConApp_maybe in_scope_env e'
      , Just (altcon, bs, rhs) <- findAlt (DataAlt con) as
      = case altcon of
          DEFAULT -> go rhs
          _       -> foldr wrapLet (simple_opt_expr env' rhs) mb_prs
            where
              (env', mb_prs) = mapAccumL simple_out_bind env $
                               zipEqual "simpleOptExpr" bs es

         -- Note [Getting the map/coerce RULE to work]
      | isDeadBinder b
      , [(DEFAULT, _, rhs)] <- as
      , isCoercionType (varType b)
      , (Var fun, _args) <- collectArgs e
      , fun `hasKey` coercibleSCSelIdKey
         -- without this last check, we get #11230
      = go rhs

      | otherwise
      = Case e' b' (substTy subst ty)
                   (map (go_alt env') as)
      where
        e' = go e
        (env', b') = subst_opt_bndr env b

    ----------------------
    go_alt env (con, bndrs, rhs)
      = (con, bndrs', simple_opt_expr env' rhs)
      where
        (env', bndrs') = subst_opt_bndrs env bndrs

    ----------------------
    -- go_lam tries eta reduction
    go_lam env bs' (Lam b e)
       = go_lam env' (b':bs') e
       where
         (env', b') = subst_opt_bndr env b
    go_lam env bs' e
       | Just etad_e <- tryEtaReduce bs e' = etad_e
       | otherwise                         = mkLams bs e'
       where
         bs = reverse bs'
         e' = simple_opt_expr env e

----------------------
-- simple_app collects arguments for beta reduction
simple_app :: SimpleOptEnv -> InExpr -> [SimpleClo] -> CoreExpr

simple_app env (Var v) as
  | Just (env', e) <- lookupVarEnv (soe_inl env) v
  = simple_app (soeSetInScope env env') e as

  | let unf = idUnfolding v
  , isCompulsoryUnfolding (idUnfolding v)
  , isAlwaysActive (idInlineActivation v)
    -- See Note [Unfold compulsory unfoldings in LHSs]
  = simple_app (soeZapSubst env) (unfoldingTemplate unf) as

  | otherwise
  , let out_fn = lookupIdSubst (text "simple_app") (soe_subst env) v
  = finish_app env out_fn as

simple_app env (App e1 e2) as
  = simple_app env e1 ((env, e2) : as)

simple_app env (Lam b e) (a:as)
  = wrapLet mb_pr (simple_app env' e as)
  where
     (env', mb_pr) = simple_bind_pair env b Nothing a

simple_app env (Tick t e) as
  -- Okay to do "(Tick t e) x ==> Tick t (e x)"?
  | t `tickishScopesLike` SoftScope
  = mkTick t $ simple_app env e as

simple_app env e as
  = finish_app env (simple_opt_expr env e) as

finish_app :: SimpleOptEnv -> OutExpr -> [SimpleClo] -> OutExpr
finish_app _ fun []
  = fun
finish_app env fun (arg:args)
  = finish_app env (App fun (simple_opt_clo env arg)) args

----------------------
simple_opt_bind :: SimpleOptEnv -> InBind
                -> (SimpleOptEnv, Maybe OutBind)
simple_opt_bind env (NonRec b r)
  = (env', case mb_pr of
            Nothing    -> Nothing
            Just (b,r) -> Just (NonRec b r))
  where
    (b', r') = joinPointBinding_maybe b r `orElse` (b, r)
    (env', mb_pr) = simple_bind_pair env b' Nothing (env,r')

simple_opt_bind env (Rec prs)
  = (env'', res_bind)
  where
    res_bind          = Just (Rec (reverse rev_prs'))
    prs'              = joinPointBindings_maybe prs `orElse` prs
    (env', bndrs')    = subst_opt_bndrs env (map fst prs')
    (env'', rev_prs') = foldl do_pr (env', []) (prs' `zip` bndrs')
    do_pr (env, prs) ((b,r), b')
       = (env', case mb_pr of
                  Just pr -> pr : prs
                  Nothing -> prs)
       where
         (env', mb_pr) = simple_bind_pair env b (Just b') (env,r)

----------------------
simple_bind_pair :: SimpleOptEnv
                 -> InVar -> Maybe OutVar
                 -> SimpleClo
                 -> (SimpleOptEnv, Maybe (OutVar, OutExpr))
    -- (simple_bind_pair subst in_var out_rhs)
    --   either extends subst with (in_var -> out_rhs)
    --   or     returns Nothing
simple_bind_pair env@(SOE { soe_inl = inl_env, soe_subst = subst })
                 in_bndr mb_out_bndr clo@(rhs_env, in_rhs)
  | Type ty <- in_rhs        -- let a::* = TYPE ty in <body>
  , let out_ty = substTy (soe_subst rhs_env) ty
  = ASSERT( isTyVar in_bndr )
    (env { soe_subst = extendTvSubst subst in_bndr out_ty }, Nothing)

  | Coercion co <- in_rhs
  , let out_co = optCoercion (getTCvSubst (soe_subst rhs_env)) co
  = ASSERT( isCoVar in_bndr )
    (env { soe_subst = extendCvSubst subst in_bndr out_co }, Nothing)

  | pre_inline_unconditionally
  = (env { soe_inl = extendVarEnv inl_env in_bndr clo }, Nothing)

  | otherwise
  = simple_out_bind_pair env in_bndr mb_out_bndr
                         (simple_opt_clo env clo)
                         occ active stable_unf
  where
    stable_unf = isStableUnfolding (idUnfolding in_bndr)
    active     = isAlwaysActive (idInlineActivation in_bndr)
    occ        = idOccInfo in_bndr

    pre_inline_unconditionally :: Bool
    pre_inline_unconditionally
       | isCoVar in_bndr          = False    -- See Note [Do not inline CoVars unconditionally]
       | isExportedId in_bndr     = False    --     in SimplUtils
       | stable_unf               = False
       | not active               = False    -- Note [Inline prag in simplOpt]
       | not (safe_to_inline occ) = False
       | otherwise = True

        -- Unconditionally safe to inline
    safe_to_inline :: OccInfo -> Bool
    safe_to_inline (IAmALoopBreaker {}) = False
    safe_to_inline IAmDead              = True
    safe_to_inline occ@(OneOcc {})      =  not (occ_in_lam occ)
                                        && occ_one_br occ
    safe_to_inline (ManyOccs {})        = False

-------------------
simple_out_bind :: SimpleOptEnv -> (InVar, OutExpr)
                -> (SimpleOptEnv, Maybe (OutVar, OutExpr))
simple_out_bind env@(SOE { soe_subst = subst }) (in_bndr, out_rhs)
  | Type out_ty <- out_rhs
  = ASSERT( isTyVar in_bndr )
    (env { soe_subst = extendTvSubst subst in_bndr out_ty }, Nothing)

  | Coercion out_co <- out_rhs
  = ASSERT( isCoVar in_bndr )
    (env { soe_subst = extendCvSubst subst in_bndr out_co }, Nothing)

  | otherwise
  = simple_out_bind_pair env in_bndr Nothing out_rhs
                         (idOccInfo in_bndr) True False

-------------------
simple_out_bind_pair :: SimpleOptEnv
                     -> InId -> Maybe OutId -> OutExpr
                     -> OccInfo -> Bool -> Bool
                     -> (SimpleOptEnv, Maybe (OutVar, OutExpr))
simple_out_bind_pair env in_bndr mb_out_bndr out_rhs
                     occ_info active stable_unf
  | post_inline_unconditionally
  = ( env' { soe_subst = extendIdSubst (soe_subst env) in_bndr out_rhs }
    , Nothing)

  | otherwise
  = ( env', Just (out_bndr, out_rhs) )
  where
    (env', bndr1) = case mb_out_bndr of
                      Just out_bndr -> (env, out_bndr)
                      Nothing       -> subst_opt_bndr env in_bndr
    out_bndr = add_info env' in_bndr bndr1

    post_inline_unconditionally :: Bool
    post_inline_unconditionally
       | not active                  = False
       | isWeakLoopBreaker occ_info  = False -- If it's a loop-breaker of any kind, don't inline
                                             -- because it might be referred to "earlier"
       | stable_unf                  = False -- Note [Stable unfoldings and postInlineUnconditionally]
       | isExportedId in_bndr        = False -- Note [Exported Ids and trivial RHSs]
       | exprIsTrivial out_rhs       = True
       | coercible_hack              = True
       | otherwise                   = False

    -- See Note [Getting the map/coerce RULE to work]
    coercible_hack | (Var fun, args) <- collectArgs out_rhs
                   , Just dc <- isDataConWorkId_maybe fun
                   , dc `hasKey` heqDataConKey || dc `hasKey` coercibleDataConKey
                   = all exprIsTrivial args
                   | otherwise
                   = False

{- Note [Exported Ids and trivial RHSs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We obviously do not want to unconditionally inline an Id that is exported.
In SimplUtils, Note [Top level and postInlineUnconditionally], we
explain why we don't inline /any/ top-level things unconditionally, even
trivial ones.  But we do here!  Why?  In the simple optimiser

  * We do no rule rewrites
  * We do no call-site inlining

Those differences obviate the reasons for not inlining a trivial rhs,
and increase the benefit for doing so.  So we unconditionally inline trivial
rhss here.
-}

----------------------
subst_opt_bndrs :: SimpleOptEnv -> [InVar] -> (SimpleOptEnv, [OutVar])
subst_opt_bndrs env bndrs = mapAccumL subst_opt_bndr env bndrs

subst_opt_bndr :: SimpleOptEnv -> InVar -> (SimpleOptEnv, OutVar)
subst_opt_bndr env bndr
  | isTyVar bndr  = (env { soe_subst = subst_tv }, tv')
  | isCoVar bndr  = (env { soe_subst = subst_cv }, cv')
  | otherwise     = subst_opt_id_bndr env bndr
  where
    subst           = soe_subst env
    (subst_tv, tv') = substTyVarBndr subst bndr
    (subst_cv, cv') = substCoVarBndr subst bndr

subst_opt_id_bndr :: SimpleOptEnv -> InId -> (SimpleOptEnv, OutId)
-- Nuke all fragile IdInfo, unfolding, and RULES;
--    it gets added back later by add_info
-- Rather like SimplEnv.substIdBndr
--
-- It's important to zap fragile OccInfo (which CoreSubst.substIdBndr
-- carefully does not do) because simplOptExpr invalidates it

subst_opt_id_bndr (SOE { soe_subst = subst, soe_inl = inl }) old_id
  = (SOE { soe_subst = new_subst, soe_inl = new_inl }, new_id)
  where
    Subst in_scope id_subst tv_subst cv_subst = subst

    id1    = uniqAway in_scope old_id
    id2    = setIdType id1 (substTy subst (idType old_id))
    new_id = zapFragileIdInfo id2
             -- Zaps rules, unfolding, and fragile OccInfo
             -- The unfolding and rules will get added back later, by add_info

    new_in_scope = in_scope `extendInScopeSet` new_id

    no_change = new_id == old_id

        -- Extend the substitution if the unique has changed,
        -- See the notes with substTyVarBndr for the delSubstEnv
    new_id_subst
      | no_change = delVarEnv id_subst old_id
      | otherwise = extendVarEnv id_subst old_id (Var new_id)

    new_subst = Subst new_in_scope new_id_subst tv_subst cv_subst
    new_inl   = delVarEnv inl old_id

----------------------
add_info :: SimpleOptEnv -> InVar -> OutVar -> OutVar
add_info env old_bndr new_bndr
 | isTyVar old_bndr = new_bndr
 | otherwise        = maybeModifyIdInfo mb_new_info new_bndr
 where
   subst = soe_subst env
   mb_new_info = substIdInfo subst new_bndr (idInfo old_bndr)

simpleUnfoldingFun :: IdUnfoldingFun
simpleUnfoldingFun id
  | isAlwaysActive (idInlineActivation id) = idUnfolding id
  | otherwise                              = noUnfolding

wrapLet :: Maybe (Id,CoreExpr) -> CoreExpr -> CoreExpr
wrapLet Nothing      body = body
wrapLet (Just (b,r)) body = Let (NonRec b r) body

------------------
substVects :: Subst -> [CoreVect] -> [CoreVect]
substVects subst = map (substVect subst)

------------------
substVect :: Subst -> CoreVect -> CoreVect
substVect subst  (Vect v rhs)        = Vect v (simpleOptExprWith subst rhs)
substVect _subst vd@(NoVect _)       = vd
substVect _subst vd@(VectType _ _ _) = vd
substVect _subst vd@(VectClass _)    = vd
substVect _subst vd@(VectInst _)     = vd

{-
Note [Inline prag in simplOpt]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If there's an INLINE/NOINLINE pragma that restricts the phase in
which the binder can be inlined, we don't inline here; after all,
we don't know what phase we're in.  Here's an example

  foo :: Int -> Int -> Int
  {-# INLINE foo #-}
  foo m n = inner m
     where
       {-# INLINE [1] inner #-}
       inner m = m+n

  bar :: Int -> Int
  bar n = foo n 1

When inlining 'foo' in 'bar' we want the let-binding for 'inner'
to remain visible until Phase 1

Note [Unfold compulsory unfoldings in LHSs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the user writes `RULES map coerce = coerce` as a rule, the rule
will only ever match if simpleOptExpr replaces coerce by its unfolding
on the LHS, because that is the core that the rule matching engine
will find. So do that for everything that has a compulsory
unfolding. Also see Note [Desugaring coerce as cast] in Desugar.

However, we don't want to inline 'seq', which happens to also have a
compulsory unfolding, so we only do this unfolding only for things
that are always-active.  See Note [User-defined RULES for seq] in MkId.

Note [Getting the map/coerce RULE to work]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We wish to allow the "map/coerce" RULE to fire:

  {-# RULES "map/coerce" map coerce = coerce #-}

The naive core produced for this is

  forall a b (dict :: Coercible * a b).
    map @a @b (coerce @a @b @dict) = coerce @[a] @[b] @dict'

  where dict' :: Coercible [a] [b]
        dict' = ...

This matches literal uses of `map coerce` in code, but that's not what we
want. We want it to match, say, `map MkAge` (where newtype Age = MkAge Int)
too. Some of this is addressed by compulsorily unfolding coerce on the LHS,
yielding

  forall a b (dict :: Coercible * a b).
    map @a @b (\(x :: a) -> case dict of
      MkCoercible (co :: a ~R# b) -> x |> co) = ...

Getting better. But this isn't exactly what gets produced. This is because
Coercible essentially has ~R# as a superclass, and superclasses get eagerly
extracted during solving. So we get this:

  forall a b (dict :: Coercible * a b).
    case Coercible_SCSel @* @a @b dict of
      _ [Dead] -> map @a @b (\(x :: a) -> case dict of
                               MkCoercible (co :: a ~R# b) -> x |> co) = ...

Unfortunately, this still abstracts over a Coercible dictionary. We really
want it to abstract over the ~R# evidence. So, we have Desugar.unfold_coerce,
which transforms the above to (see also Note [Desugaring coerce as cast] in
Desugar)

  forall a b (co :: a ~R# b).
    let dict = MkCoercible @* @a @b co in
    case Coercible_SCSel @* @a @b dict of
      _ [Dead] -> map @a @b (\(x :: a) -> case dict of
         MkCoercible (co :: a ~R# b) -> x |> co) = let dict = ... in ...

Now, we need simpleOptExpr to fix this up. It does so by taking three
separate actions:
  1. Inline certain non-recursive bindings. The choice whether to inline
     is made in simple_bind_pair. Note the rather specific check for
     MkCoercible in there.

  2. Stripping case expressions like the Coercible_SCSel one.
     See the `Case` case of simple_opt_expr's `go` function.

  3. Look for case expressions that unpack something that was
     just packed and inline them. This is also done in simple_opt_expr's
     `go` function.

This is all a fair amount of special-purpose hackery, but it's for
a good cause. And it won't hurt other RULES and such that it comes across.


************************************************************************
*                                                                      *
                Join points
*                                                                      *
************************************************************************
-}

-- | Returns Just (bndr,rhs) if the binding is a join point:
-- If it's a JoinId, just return it
-- If it's not yet a JoinId but is always tail-called,
--    make it into a JoinId and return it.
-- In the latter case, eta-expand the RHS if necessary, to make the
-- lambdas explicit, as is required for join points
--
-- Precondition: the InBndr has been occurrence-analysed,
--               so its OccInfo is valid
joinPointBinding_maybe :: InBndr -> InExpr -> Maybe (InBndr, InExpr)
joinPointBinding_maybe bndr rhs
  | not (isId bndr)
  = Nothing

  | isJoinId bndr
  = Just (bndr, rhs)

  | AlwaysTailCalled join_arity <- tailCallInfo (idOccInfo bndr)
  , (bndrs, body) <- etaExpandToJoinPoint join_arity rhs
  = Just (bndr `asJoinId` join_arity, mkLams bndrs body)

  | otherwise
  = Nothing

joinPointBindings_maybe :: [(InBndr, InExpr)] -> Maybe [(InBndr, InExpr)]
joinPointBindings_maybe bndrs
  = mapM (uncurry joinPointBinding_maybe) bndrs


{- *********************************************************************
*                                                                      *
         exprIsConApp_maybe
*                                                                      *
************************************************************************

Note [exprIsConApp_maybe]
~~~~~~~~~~~~~~~~~~~~~~~~~
exprIsConApp_maybe is a very important function.  There are two principal
uses:
  * case e of { .... }
  * cls_op e, where cls_op is a class operation

In both cases you want to know if e is of form (C e1..en) where C is
a data constructor.

However e might not *look* as if


Note [exprIsConApp_maybe on literal strings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #9400 and #13317.

Conceptually, a string literal "abc" is just ('a':'b':'c':[]), but in Core
they are represented as unpackCString# "abc"# by MkCore.mkStringExprFS, or
unpackCStringUtf8# when the literal contains multi-byte UTF8 characters.

For optimizations we want to be able to treat it as a list, so they can be
decomposed when used in a case-statement. exprIsConApp_maybe detects those
calls to unpackCString# and returns:

Just (':', [Char], ['a', unpackCString# "bc"]).

We need to be careful about UTF8 strings here. ""# contains a ByteString, so
we must parse it back into a FastString to split off the first character.
That way we can treat unpackCString# and unpackCStringUtf8# in the same way.

We must also be caeful about
   lvl = "foo"#
   ...(unpackCString# lvl)...
to ensure that we see through the let-binding for 'lvl'.  Hence the
(exprIsLiteral_maybe .. arg) in the guard before the call to
dealWithStringLiteral.

Note [Push coercions in exprIsConApp_maybe]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In Trac #13025 I found a case where we had
    op (df @t1 @t2)     -- op is a ClassOp
where
    df = (/\a b. K e1 e2) |> g

To get this to come out we need to simplify on the fly
   ((/\a b. K e1 e2) |> g) @t1 @t2

Hence the use of pushCoArgs.
-}

data ConCont = CC [CoreExpr] Coercion
                  -- Substitution already applied

-- | Returns @Just (dc, [t1..tk], [x1..xn])@ if the argument expression is
-- a *saturated* constructor application of the form @dc t1..tk x1 .. xn@,
-- where t1..tk are the *universally-quantified* type args of 'dc'
exprIsConApp_maybe :: InScopeEnv -> CoreExpr -> Maybe (DataCon, [Type], [CoreExpr])
exprIsConApp_maybe (in_scope, id_unf) expr
  = go (Left in_scope) expr (CC [] (mkRepReflCo (exprType expr)))
  where
    go :: Either InScopeSet Subst
             -- Left in-scope  means "empty substitution"
             -- Right subst    means "apply this substitution to the CoreExpr"
       -> CoreExpr -> ConCont
       -> Maybe (DataCon, [Type], [CoreExpr])
    go subst (Tick t expr) cont
       | not (tickishIsCode t) = go subst expr cont
    go subst (Cast expr co1) (CC args co2)
       | Just (args', m_co1') <- pushCoArgs (subst_co subst co1) args
            -- See Note [Push coercions in exprIsConApp_maybe]
       = case m_co1' of
           Just co1' -> go subst expr (CC args' (co1' `mkTransCo` co2))
           Nothing   -> go subst expr (CC args' co2)
    go subst (App fun arg) (CC args co)
       = go subst fun (CC (subst_arg subst arg : args) co)
    go subst (Lam var body) (CC (arg:args) co)
       | exprIsTrivial arg          -- Don't duplicate stuff!
       = go (extend subst var arg) body (CC args co)
    go (Right sub) (Var v) cont
       = go (Left (substInScope sub))
            (lookupIdSubst (text "exprIsConApp" <+> ppr expr) sub v)
            cont

    go (Left in_scope) (Var fun) cont@(CC args co)

        | Just con <- isDataConWorkId_maybe fun
        , count isValArg args == idArity fun
        = pushCoDataCon con args co

        -- Look through dictionary functions; see Note [Unfolding DFuns]
        | DFunUnfolding { df_bndrs = bndrs, df_con = con, df_args = dfun_args } <- unfolding
        , bndrs `equalLength` args    -- See Note [DFun arity check]
        , let subst = mkOpenSubst in_scope (bndrs `zip` args)
        = pushCoDataCon con (map (substExpr (text "exprIsConApp1") subst) dfun_args) co

        -- Look through unfoldings, but only arity-zero one;
        -- if arity > 0 we are effectively inlining a function call,
        -- and that is the business of callSiteInline.
        -- In practice, without this test, most of the "hits" were
        -- CPR'd workers getting inlined back into their wrappers,
        | idArity fun == 0
        , Just rhs <- expandUnfolding_maybe unfolding
        , let in_scope' = extendInScopeSetSet in_scope (exprFreeVars rhs)
        = go (Left in_scope') rhs cont

        -- See Note [exprIsConApp_maybe on literal strings]
        | (fun `hasKey` unpackCStringIdKey) ||
          (fun `hasKey` unpackCStringUtf8IdKey)
        , [arg]              <- args
        , Just (MachStr str) <- exprIsLiteral_maybe (in_scope, id_unf) arg
        = dealWithStringLiteral fun str co
        where
          unfolding = id_unf fun

    go _ _ _ = Nothing

    ----------------------------
    -- Operations on the (Either InScopeSet CoreSubst)
    -- The Left case is wildly dominant
    subst_co (Left {}) co = co
    subst_co (Right s) co = CoreSubst.substCo s co

    subst_arg (Left {}) e = e
    subst_arg (Right s) e = substExpr (text "exprIsConApp2") s e

    extend (Left in_scope) v e = Right (extendSubst (mkEmptySubst in_scope) v e)
    extend (Right s)       v e = Right (extendSubst s v e)


-- See Note [exprIsConApp_maybe on literal strings]
dealWithStringLiteral :: Var -> BS.ByteString -> Coercion
                      -> Maybe (DataCon, [Type], [CoreExpr])

-- This is not possible with user-supplied empty literals, MkCore.mkStringExprFS
-- turns those into [] automatically, but just in case something else in GHC
-- generates a string literal directly.
dealWithStringLiteral _   str co
  | BS.null str
  = pushCoDataCon nilDataCon [Type charTy] co

dealWithStringLiteral fun str co
  = let strFS = mkFastStringByteString str

        char = mkConApp charDataCon [mkCharLit (headFS strFS)]
        charTail = fastStringToByteString (tailFS strFS)

        -- In singleton strings, just add [] instead of unpackCstring# ""#.
        rest = if BS.null charTail
                 then mkConApp nilDataCon [Type charTy]
                 else App (Var fun)
                          (Lit (MachStr charTail))

    in pushCoDataCon consDataCon [Type charTy, char, rest] co

{-
Note [Unfolding DFuns]
~~~~~~~~~~~~~~~~~~~~~~
DFuns look like

  df :: forall a b. (Eq a, Eq b) -> Eq (a,b)
  df a b d_a d_b = MkEqD (a,b) ($c1 a b d_a d_b)
                               ($c2 a b d_a d_b)

So to split it up we just need to apply the ops $c1, $c2 etc
to the very same args as the dfun.  It takes a little more work
to compute the type arguments to the dictionary constructor.

Note [DFun arity check]
~~~~~~~~~~~~~~~~~~~~~~~
Here we check that the total number of supplied arguments (inclding
type args) matches what the dfun is expecting.  This may be *less*
than the ordinary arity of the dfun: see Note [DFun unfoldings] in CoreSyn
-}

exprIsLiteral_maybe :: InScopeEnv -> CoreExpr -> Maybe Literal
-- Same deal as exprIsConApp_maybe, but much simpler
-- Nevertheless we do need to look through unfoldings for
-- Integer and string literals, which are vigorously hoisted to top level
-- and not subsequently inlined
exprIsLiteral_maybe env@(_, id_unf) e
  = case e of
      Lit l     -> Just l
      Tick _ e' -> exprIsLiteral_maybe env e' -- dubious?
      Var v     | Just rhs <- expandUnfolding_maybe (id_unf v)
                -> exprIsLiteral_maybe env rhs
      _         -> Nothing

{-
Note [exprIsLambda_maybe]
~~~~~~~~~~~~~~~~~~~~~~~~~~
exprIsLambda_maybe will, given an expression `e`, try to turn it into the form
`Lam v e'` (returned as `Just (v,e')`). Besides using lambdas, it looks through
casts (using the Push rule), and it unfolds function calls if the unfolding
has a greater arity than arguments are present.

Currently, it is used in Rules.match, and is required to make
"map coerce = coerce" match.
-}

exprIsLambda_maybe :: InScopeEnv -> CoreExpr
                      -> Maybe (Var, CoreExpr,[Tickish Id])
    -- See Note [exprIsLambda_maybe]

-- The simple case: It is a lambda already
exprIsLambda_maybe _ (Lam x e)
    = Just (x, e, [])

-- Still straightforward: Ticks that we can float out of the way
exprIsLambda_maybe (in_scope_set, id_unf) (Tick t e)
    | tickishFloatable t
    , Just (x, e, ts) <- exprIsLambda_maybe (in_scope_set, id_unf) e
    = Just (x, e, t:ts)

-- Also possible: A casted lambda. Push the coercion inside
exprIsLambda_maybe (in_scope_set, id_unf) (Cast casted_e co)
    | Just (x, e,ts) <- exprIsLambda_maybe (in_scope_set, id_unf) casted_e
    -- Only do value lambdas.
    -- this implies that x is not in scope in gamma (makes this code simpler)
    , not (isTyVar x) && not (isCoVar x)
    , ASSERT( not $ x `elemVarSet` tyCoVarsOfCo co) True
    , Just (x',e') <- pushCoercionIntoLambda in_scope_set x e co
    , let res = Just (x',e',ts)
    = --pprTrace "exprIsLambda_maybe:Cast" (vcat [ppr casted_e,ppr co,ppr res)])
      res

-- Another attempt: See if we find a partial unfolding
exprIsLambda_maybe (in_scope_set, id_unf) e
    | (Var f, as, ts) <- collectArgsTicks tickishFloatable e
    , idArity f > count isValArg as
    -- Make sure there is hope to get a lambda
    , Just rhs <- expandUnfolding_maybe (id_unf f)
    -- Optimize, for beta-reduction
    , let e' =  simpleOptExprWith (mkEmptySubst in_scope_set) (rhs `mkApps` as)
    -- Recurse, because of possible casts
    , Just (x', e'', ts') <- exprIsLambda_maybe (in_scope_set, id_unf) e'
    , let res = Just (x', e'', ts++ts')
    = -- pprTrace "exprIsLambda_maybe:Unfold" (vcat [ppr e, ppr (x',e'')])
      res

exprIsLambda_maybe _ _e
    = -- pprTrace "exprIsLambda_maybe:Fail" (vcat [ppr _e])
      Nothing


{- *********************************************************************
*                                                                      *
              The "push rules"
*                                                                      *
************************************************************************

Here we implement the "push rules" from FC papers:

* The push-argument rules, where we can move a coercion past an argument.
  We have
      (fun |> co) arg
  and we want to transform it to
    (fun arg') |> co'
  for some suitable co' and tranformed arg'.

* The PushK rule for data constructors.  We have
       (K e1 .. en) |> co
  and we want to tranform to
       (K e1' .. en')
  by pushing the coercion into the arguments
-}

pushCoArgs :: CoercionR -> [CoreArg] -> Maybe ([CoreArg], Maybe Coercion)
pushCoArgs co []         = return ([], Just co)
pushCoArgs co (arg:args) = do { (arg',  m_co1) <- pushCoArg  co  arg
                              ; case m_co1 of
                                  Just co1 -> do { (args', m_co2) <- pushCoArgs co1 args
                                                 ; return (arg':args', m_co2) }
                                  Nothing  -> return (arg':args, Nothing) }

pushCoArg :: CoercionR -> CoreArg -> Maybe (CoreArg, Maybe Coercion)
-- We have (fun |> co) arg, and we want to transform it to
--         (fun arg) |> co
-- This may fail, e.g. if (fun :: N) where N is a newtype
-- C.f. simplCast in Simplify.hs
-- 'co' is always Representational
-- If the returned coercion is Nothing, then it would have been reflexive
pushCoArg co (Type ty) = do { (ty', m_co') <- pushCoTyArg co ty
                            ; return (Type ty', m_co') }
pushCoArg co val_arg   = do { (arg_co, m_co') <- pushCoValArg co
                            ; return (val_arg `mkCast` arg_co, m_co') }

pushCoTyArg :: CoercionR -> Type -> Maybe (Type, Maybe CoercionR)
-- We have (fun |> co) @ty
-- Push the coercion through to return
--         (fun @ty') |> co'
-- 'co' is always Representational
-- If the returned coercion is Nothing, then it would have been reflexive;
-- it's faster not to compute it, though.
pushCoTyArg co ty
  -- The following is inefficient - don't do `eqType` here, the coercion
  -- optimizer will take care of it. See Trac #14737.
  -- -- | tyL `eqType` tyR
  -- -- = Just (ty, Nothing)

  | isForAllTy tyL
  = ASSERT2( isForAllTy tyR, ppr co $$ ppr ty )
    Just (ty `mkCastTy` mkSymCo co1, Just co2)

  | otherwise
  = Nothing
  where
    Pair tyL tyR = coercionKind co
       -- co :: tyL ~ tyR
       -- tyL = forall (a1 :: k1). ty1
       -- tyR = forall (a2 :: k2). ty2

    co1 = mkNthCo Nominal 0 co
       -- co1 :: k1 ~N k2
       -- Note that NthCo can extract a Nominal equality between the
       -- kinds of the types related by a coercion between forall-types.
       -- See the NthCo case in CoreLint.

    co2 = mkInstCo co (mkCoherenceLeftCo (mkNomReflCo ty) co1)
        -- co2 :: ty1[ (ty|>co1)/a1 ] ~ ty2[ ty/a2 ]
        -- Arg of mkInstCo is always nominal, hence mkNomReflCo

pushCoValArg :: CoercionR -> Maybe (Coercion, Maybe Coercion)
-- We have (fun |> co) arg
-- Push the coercion through to return
--         (fun (arg |> co_arg)) |> co_res
-- 'co' is always Representational
-- If the second returned Coercion is actually Nothing, then no cast is necessary;
-- the returned coercion would have been reflexive.
pushCoValArg co
  -- The following is inefficient - don't do `eqType` here, the coercion
  -- optimizer will take care of it. See Trac #14737.
  -- -- | tyL `eqType` tyR
  -- -- = Just (mkRepReflCo arg, Nothing)

  | isFunTy tyL
  , (co1, co2) <- decomposeFunCo Representational co
              -- If   co  :: (tyL1 -> tyL2) ~ (tyR1 -> tyR2)
              -- then co1 :: tyL1 ~ tyR1
              --      co2 :: tyL2 ~ tyR2
  = ASSERT2( isFunTy tyR, ppr co $$ ppr arg )
    Just (mkSymCo co1, Just co2)

  | otherwise
  = Nothing
  where
    arg = funArgTy tyR
    Pair tyL tyR = coercionKind co

pushCoercionIntoLambda
    :: InScopeSet -> Var -> CoreExpr -> CoercionR -> Maybe (Var, CoreExpr)
-- This implements the Push rule from the paper on coercions
--    (\x. e) |> co
-- ===>
--    (\x'. e |> co')
pushCoercionIntoLambda in_scope x e co
    | ASSERT(not (isTyVar x) && not (isCoVar x)) True
    , Pair s1s2 t1t2 <- coercionKind co
    , Just (_s1,_s2) <- splitFunTy_maybe s1s2
    , Just (t1,_t2) <- splitFunTy_maybe t1t2
    = let (co1, co2) = decomposeFunCo Representational co
          -- Should we optimize the coercions here?
          -- Otherwise they might not match too well
          x' = x `setIdType` t1
          in_scope' = in_scope `extendInScopeSet` x'
          subst = extendIdSubst (mkEmptySubst in_scope')
                                x
                                (mkCast (Var x') co1)
      in Just (x', substExpr (text "pushCoercionIntoLambda") subst e `mkCast` co2)
    | otherwise
    = pprTrace "exprIsLambda_maybe: Unexpected lambda in case" (ppr (Lam x e))
      Nothing

pushCoDataCon :: DataCon -> [CoreExpr] -> Coercion
              -> Maybe (DataCon
                       , [Type]      -- Universal type args
                       , [CoreExpr]) -- All other args incl existentials
-- Implement the KPush reduction rule as described in "Down with kinds"
-- The transformation applies iff we have
--      (C e1 ... en) `cast` co
-- where co :: (T t1 .. tn) ~ to_ty
-- The left-hand one must be a T, because exprIsConApp returned True
-- but the right-hand one might not be.  (Though it usually will.)
pushCoDataCon dc dc_args co
  | isReflCo co || from_ty `eqType` to_ty  -- try cheap test first
  , let (univ_ty_args, rest_args) = splitAtList (dataConUnivTyVars dc) dc_args
  = Just (dc, map exprToType univ_ty_args, rest_args)

  | Just (to_tc, to_tc_arg_tys) <- splitTyConApp_maybe to_ty
  , to_tc == dataConTyCon dc
        -- These two tests can fail; we might see
        --      (C x y) `cast` (g :: T a ~ S [a]),
        -- where S is a type function.  In fact, exprIsConApp
        -- will probably not be called in such circumstances,
        -- but there's nothing wrong with it

  = let
        tc_arity       = tyConArity to_tc
        dc_univ_tyvars = dataConUnivTyVars dc
        dc_ex_tyvars   = dataConExTyVars dc
        arg_tys        = dataConRepArgTys dc

        non_univ_args  = dropList dc_univ_tyvars dc_args
        (ex_args, val_args) = splitAtList dc_ex_tyvars non_univ_args

        -- Make the "Psi" from the paper
        omegas = decomposeCo tc_arity co (tyConRolesRepresentational to_tc)
        (psi_subst, to_ex_arg_tys)
          = liftCoSubstWithEx Representational
                              dc_univ_tyvars
                              omegas
                              dc_ex_tyvars
                              (map exprToType ex_args)

          -- Cast the value arguments (which include dictionaries)
        new_val_args = zipWith cast_arg arg_tys val_args
        cast_arg arg_ty arg = mkCast arg (psi_subst arg_ty)

        to_ex_args = map Type to_ex_arg_tys

        dump_doc = vcat [ppr dc,      ppr dc_univ_tyvars, ppr dc_ex_tyvars,
                         ppr arg_tys, ppr dc_args,
                         ppr ex_args, ppr val_args, ppr co, ppr from_ty, ppr to_ty, ppr to_tc ]
    in
    ASSERT2( eqType from_ty (mkTyConApp to_tc (map exprToType $ takeList dc_univ_tyvars dc_args)), dump_doc )
    ASSERT2( equalLength val_args arg_tys, dump_doc )
    Just (dc, to_tc_arg_tys, to_ex_args ++ new_val_args)

  | otherwise
  = Nothing

  where
    Pair from_ty to_ty = coercionKind co

collectBindersPushingCo :: CoreExpr -> ([Var], CoreExpr)
-- Collect lambda binders, pushing coercions inside if possible
-- E.g.   (\x.e) |> g         g :: <Int> -> blah
--        = (\x. e |> Nth 1 g)
--
-- That is,
--
-- collectBindersPushingCo ((\x.e) |> g) === ([x], e |> Nth 1 g)
collectBindersPushingCo e
  = go [] e
  where
    -- Peel off lambdas until we hit a cast.
    go :: [Var] -> CoreExpr -> ([Var], CoreExpr)
    -- The accumulator is in reverse order
    go bs (Lam b e)   = go (b:bs) e
    go bs (Cast e co) = go_c bs e co
    go bs e           = (reverse bs, e)

    -- We are in a cast; peel off casts until we hit a lambda.
    go_c :: [Var] -> CoreExpr -> CoercionR -> ([Var], CoreExpr)
    -- (go_c bs e c) is same as (go bs e (e |> c))
    go_c bs (Cast e co1) co2 = go_c bs e (co1 `mkTransCo` co2)
    go_c bs (Lam b e)    co  = go_lam bs b e co
    go_c bs e            co  = (reverse bs, mkCast e co)

    -- We are in a lambda under a cast; peel off lambdas and build a
    -- new coercion for the body.
    go_lam :: [Var] -> Var -> CoreExpr -> CoercionR -> ([Var], CoreExpr)
    -- (go_lam bs b e c) is same as (go_c bs (\b.e) c)
    go_lam bs b e co
      | isTyVar b
      , let Pair tyL tyR = coercionKind co
      , ASSERT( isForAllTy tyL )
        isForAllTy tyR
      , isReflCo (mkNthCo Nominal 0 co)  -- See Note [collectBindersPushingCo]
      = go_c (b:bs) e (mkInstCo co (mkNomReflCo (mkTyVarTy b)))

      | isId b
      , let Pair tyL tyR = coercionKind co
      , ASSERT( isFunTy tyL) isFunTy tyR
      , (co_arg, co_res) <- decomposeFunCo Representational co
      , isReflCo co_arg  -- See Note [collectBindersPushingCo]
      = go_c (b:bs) e co_res

      | otherwise = (reverse bs, mkCast (Lam b e) co)

{- Note [collectBindersPushingCo]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We just look for coercions of form
   <type> -> blah
(and similarly for foralls) to keep this function simple.  We could do
more elaborate stuff, but it'd involve substitution etc.
-}