1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
|
{-# LANGUAGE CPP, GADTs, RankNTypes #-}
-----------------------------------------------------------------------------
--
-- Cmm utilities.
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
module CmmUtils(
-- CmmType
primRepCmmType, primRepForeignHint,
typeCmmType, typeForeignHint,
-- CmmLit
zeroCLit, mkIntCLit,
mkWordCLit, packHalfWordsCLit,
mkByteStringCLit,
mkDataLits, mkRODataLits,
mkStgWordCLit,
-- CmmExpr
mkIntExpr, zeroExpr,
mkLblExpr,
cmmRegOff, cmmOffset, cmmLabelOff, cmmOffsetLit, cmmOffsetExpr,
cmmRegOffB, cmmOffsetB, cmmLabelOffB, cmmOffsetLitB, cmmOffsetExprB,
cmmRegOffW, cmmOffsetW, cmmLabelOffW, cmmOffsetLitW, cmmOffsetExprW,
cmmIndex, cmmIndexExpr, cmmLoadIndex, cmmLoadIndexW,
cmmNegate,
cmmULtWord, cmmUGeWord, cmmUGtWord, cmmSubWord,
cmmNeWord, cmmEqWord, cmmOrWord, cmmAndWord,
cmmUShrWord, cmmAddWord, cmmMulWord, cmmQuotWord,
cmmToWord,
isTrivialCmmExpr, hasNoGlobalRegs,
-- Statics
blankWord,
-- Tagging
cmmTagMask, cmmPointerMask, cmmUntag, cmmIsTagged,
cmmConstrTag1,
-- Liveness and bitmaps
mkLiveness,
-- * Operations that probably don't belong here
modifyGraph,
ofBlockMap, toBlockMap, insertBlock,
ofBlockList, toBlockList, bodyToBlockList,
toBlockListEntryFirst, toBlockListEntryFirstFalseFallthrough,
foldGraphBlocks, mapGraphNodes, postorderDfs, mapGraphNodes1,
analFwd, analBwd, analRewFwd, analRewBwd,
dataflowPassFwd, dataflowPassBwd, dataflowAnalFwd, dataflowAnalBwd,
dataflowAnalFwdBlocks
) where
#include "HsVersions.h"
import TyCon ( PrimRep(..), PrimElemRep(..) )
import Type ( UnaryType, typePrimRep )
import SMRep
import Cmm
import BlockId
import CLabel
import Outputable
import Unique
import UniqSupply
import DynFlags
import Util
import Data.Word
import Data.Maybe
import Data.Bits
import Hoopl
---------------------------------------------------
--
-- CmmTypes
--
---------------------------------------------------
primRepCmmType :: DynFlags -> PrimRep -> CmmType
primRepCmmType _ VoidRep = panic "primRepCmmType:VoidRep"
primRepCmmType dflags PtrRep = gcWord dflags
primRepCmmType dflags IntRep = bWord dflags
primRepCmmType dflags WordRep = bWord dflags
primRepCmmType _ Int64Rep = b64
primRepCmmType _ Word64Rep = b64
primRepCmmType dflags AddrRep = bWord dflags
primRepCmmType _ FloatRep = f32
primRepCmmType _ DoubleRep = f64
primRepCmmType _ (VecRep len rep) = vec len (primElemRepCmmType rep)
primElemRepCmmType :: PrimElemRep -> CmmType
primElemRepCmmType Int8ElemRep = b8
primElemRepCmmType Int16ElemRep = b16
primElemRepCmmType Int32ElemRep = b32
primElemRepCmmType Int64ElemRep = b64
primElemRepCmmType Word8ElemRep = b8
primElemRepCmmType Word16ElemRep = b16
primElemRepCmmType Word32ElemRep = b32
primElemRepCmmType Word64ElemRep = b64
primElemRepCmmType FloatElemRep = f32
primElemRepCmmType DoubleElemRep = f64
typeCmmType :: DynFlags -> UnaryType -> CmmType
typeCmmType dflags ty = primRepCmmType dflags (typePrimRep ty)
primRepForeignHint :: PrimRep -> ForeignHint
primRepForeignHint VoidRep = panic "primRepForeignHint:VoidRep"
primRepForeignHint PtrRep = AddrHint
primRepForeignHint IntRep = SignedHint
primRepForeignHint WordRep = NoHint
primRepForeignHint Int64Rep = SignedHint
primRepForeignHint Word64Rep = NoHint
primRepForeignHint AddrRep = AddrHint -- NB! AddrHint, but NonPtrArg
primRepForeignHint FloatRep = NoHint
primRepForeignHint DoubleRep = NoHint
primRepForeignHint (VecRep {}) = NoHint
typeForeignHint :: UnaryType -> ForeignHint
typeForeignHint = primRepForeignHint . typePrimRep
---------------------------------------------------
--
-- CmmLit
--
---------------------------------------------------
-- XXX: should really be Integer, since Int doesn't necessarily cover
-- the full range of target Ints.
mkIntCLit :: DynFlags -> Int -> CmmLit
mkIntCLit dflags i = CmmInt (toInteger i) (wordWidth dflags)
mkIntExpr :: DynFlags -> Int -> CmmExpr
mkIntExpr dflags i = CmmLit $! mkIntCLit dflags i
zeroCLit :: DynFlags -> CmmLit
zeroCLit dflags = CmmInt 0 (wordWidth dflags)
zeroExpr :: DynFlags -> CmmExpr
zeroExpr dflags = CmmLit (zeroCLit dflags)
mkWordCLit :: DynFlags -> Integer -> CmmLit
mkWordCLit dflags wd = CmmInt wd (wordWidth dflags)
mkByteStringCLit :: Unique -> [Word8] -> (CmmLit, GenCmmDecl CmmStatics info stmt)
-- We have to make a top-level decl for the string,
-- and return a literal pointing to it
mkByteStringCLit uniq bytes
= (CmmLabel lbl, CmmData ReadOnlyData $ Statics lbl [CmmString bytes])
where
lbl = mkStringLitLabel uniq
mkDataLits :: Section -> CLabel -> [CmmLit] -> GenCmmDecl CmmStatics info stmt
-- Build a data-segment data block
mkDataLits section lbl lits
= CmmData section (Statics lbl $ map CmmStaticLit lits)
mkRODataLits :: CLabel -> [CmmLit] -> GenCmmDecl CmmStatics info stmt
-- Build a read-only data block
mkRODataLits lbl lits
= mkDataLits section lbl lits
where
section | any needsRelocation lits = RelocatableReadOnlyData
| otherwise = ReadOnlyData
needsRelocation (CmmLabel _) = True
needsRelocation (CmmLabelOff _ _) = True
needsRelocation _ = False
mkStgWordCLit :: DynFlags -> StgWord -> CmmLit
mkStgWordCLit dflags wd = CmmInt (fromStgWord wd) (wordWidth dflags)
packHalfWordsCLit :: DynFlags -> StgHalfWord -> StgHalfWord -> CmmLit
-- Make a single word literal in which the lower_half_word is
-- at the lower address, and the upper_half_word is at the
-- higher address
-- ToDo: consider using half-word lits instead
-- but be careful: that's vulnerable when reversed
packHalfWordsCLit dflags lower_half_word upper_half_word
= if wORDS_BIGENDIAN dflags
then mkWordCLit dflags ((l `shiftL` hALF_WORD_SIZE_IN_BITS dflags) .|. u)
else mkWordCLit dflags (l .|. (u `shiftL` hALF_WORD_SIZE_IN_BITS dflags))
where l = fromStgHalfWord lower_half_word
u = fromStgHalfWord upper_half_word
---------------------------------------------------
--
-- CmmExpr
--
---------------------------------------------------
mkLblExpr :: CLabel -> CmmExpr
mkLblExpr lbl = CmmLit (CmmLabel lbl)
cmmOffsetExpr :: DynFlags -> CmmExpr -> CmmExpr -> CmmExpr
-- assumes base and offset have the same CmmType
cmmOffsetExpr dflags e (CmmLit (CmmInt n _)) = cmmOffset dflags e (fromInteger n)
cmmOffsetExpr dflags e byte_off = CmmMachOp (MO_Add (cmmExprWidth dflags e)) [e, byte_off]
-- NB. Do *not* inspect the value of the offset in these smart constructors!!!
-- because the offset is sometimes involved in a loop in the code generator
-- (we don't know the real Hp offset until we've generated code for the entire
-- basic block, for example). So we cannot eliminate zero offsets at this
-- stage; they're eliminated later instead (either during printing or
-- a later optimisation step on Cmm).
--
cmmOffset :: DynFlags -> CmmExpr -> Int -> CmmExpr
cmmOffset _ e 0 = e
cmmOffset _ (CmmReg reg) byte_off = cmmRegOff reg byte_off
cmmOffset _ (CmmRegOff reg m) byte_off = cmmRegOff reg (m+byte_off)
cmmOffset _ (CmmLit lit) byte_off = CmmLit (cmmOffsetLit lit byte_off)
cmmOffset _ (CmmStackSlot area off) byte_off
= CmmStackSlot area (off - byte_off)
-- note stack area offsets increase towards lower addresses
cmmOffset _ (CmmMachOp (MO_Add rep) [expr, CmmLit (CmmInt byte_off1 _rep)]) byte_off2
= CmmMachOp (MO_Add rep)
[expr, CmmLit (CmmInt (byte_off1 + toInteger byte_off2) rep)]
cmmOffset dflags expr byte_off
= CmmMachOp (MO_Add width) [expr, CmmLit (CmmInt (toInteger byte_off) width)]
where
width = cmmExprWidth dflags expr
-- Smart constructor for CmmRegOff. Same caveats as cmmOffset above.
cmmRegOff :: CmmReg -> Int -> CmmExpr
cmmRegOff reg 0 = CmmReg reg
cmmRegOff reg byte_off = CmmRegOff reg byte_off
cmmOffsetLit :: CmmLit -> Int -> CmmLit
cmmOffsetLit (CmmLabel l) byte_off = cmmLabelOff l byte_off
cmmOffsetLit (CmmLabelOff l m) byte_off = cmmLabelOff l (m+byte_off)
cmmOffsetLit (CmmLabelDiffOff l1 l2 m) byte_off
= CmmLabelDiffOff l1 l2 (m+byte_off)
cmmOffsetLit (CmmInt m rep) byte_off = CmmInt (m + fromIntegral byte_off) rep
cmmOffsetLit _ byte_off = pprPanic "cmmOffsetLit" (ppr byte_off)
cmmLabelOff :: CLabel -> Int -> CmmLit
-- Smart constructor for CmmLabelOff
cmmLabelOff lbl 0 = CmmLabel lbl
cmmLabelOff lbl byte_off = CmmLabelOff lbl byte_off
-- | Useful for creating an index into an array, with a staticaly known offset.
-- The type is the element type; used for making the multiplier
cmmIndex :: DynFlags
-> Width -- Width w
-> CmmExpr -- Address of vector of items of width w
-> Int -- Which element of the vector (0 based)
-> CmmExpr -- Address of i'th element
cmmIndex dflags width base idx = cmmOffset dflags base (idx * widthInBytes width)
-- | Useful for creating an index into an array, with an unknown offset.
cmmIndexExpr :: DynFlags
-> Width -- Width w
-> CmmExpr -- Address of vector of items of width w
-> CmmExpr -- Which element of the vector (0 based)
-> CmmExpr -- Address of i'th element
cmmIndexExpr dflags width base (CmmLit (CmmInt n _)) = cmmIndex dflags width base (fromInteger n)
cmmIndexExpr dflags width base idx =
cmmOffsetExpr dflags base byte_off
where
idx_w = cmmExprWidth dflags idx
byte_off = CmmMachOp (MO_Shl idx_w) [idx, mkIntExpr dflags (widthInLog width)]
cmmLoadIndex :: DynFlags -> CmmType -> CmmExpr -> Int -> CmmExpr
cmmLoadIndex dflags ty expr ix = CmmLoad (cmmIndex dflags (typeWidth ty) expr ix) ty
-- The "B" variants take byte offsets
cmmRegOffB :: CmmReg -> ByteOff -> CmmExpr
cmmRegOffB = cmmRegOff
cmmOffsetB :: DynFlags -> CmmExpr -> ByteOff -> CmmExpr
cmmOffsetB = cmmOffset
cmmOffsetExprB :: DynFlags -> CmmExpr -> CmmExpr -> CmmExpr
cmmOffsetExprB = cmmOffsetExpr
cmmLabelOffB :: CLabel -> ByteOff -> CmmLit
cmmLabelOffB = cmmLabelOff
cmmOffsetLitB :: CmmLit -> ByteOff -> CmmLit
cmmOffsetLitB = cmmOffsetLit
-----------------------
-- The "W" variants take word offsets
cmmOffsetExprW :: DynFlags -> CmmExpr -> CmmExpr -> CmmExpr
-- The second arg is a *word* offset; need to change it to bytes
cmmOffsetExprW dflags e (CmmLit (CmmInt n _)) = cmmOffsetW dflags e (fromInteger n)
cmmOffsetExprW dflags e wd_off = cmmIndexExpr dflags (wordWidth dflags) e wd_off
cmmOffsetW :: DynFlags -> CmmExpr -> WordOff -> CmmExpr
cmmOffsetW dflags e n = cmmOffsetB dflags e (wordsToBytes dflags n)
cmmRegOffW :: DynFlags -> CmmReg -> WordOff -> CmmExpr
cmmRegOffW dflags reg wd_off = cmmRegOffB reg (wordsToBytes dflags wd_off)
cmmOffsetLitW :: DynFlags -> CmmLit -> WordOff -> CmmLit
cmmOffsetLitW dflags lit wd_off = cmmOffsetLitB lit (wordsToBytes dflags wd_off)
cmmLabelOffW :: DynFlags -> CLabel -> WordOff -> CmmLit
cmmLabelOffW dflags lbl wd_off = cmmLabelOffB lbl (wordsToBytes dflags wd_off)
cmmLoadIndexW :: DynFlags -> CmmExpr -> Int -> CmmType -> CmmExpr
cmmLoadIndexW dflags base off ty = CmmLoad (cmmOffsetW dflags base off) ty
-----------------------
cmmULtWord, cmmUGeWord, cmmUGtWord, cmmSubWord,
cmmNeWord, cmmEqWord, cmmOrWord, cmmAndWord,
cmmUShrWord, cmmAddWord, cmmMulWord, cmmQuotWord
:: DynFlags -> CmmExpr -> CmmExpr -> CmmExpr
cmmOrWord dflags e1 e2 = CmmMachOp (mo_wordOr dflags) [e1, e2]
cmmAndWord dflags e1 e2 = CmmMachOp (mo_wordAnd dflags) [e1, e2]
cmmNeWord dflags e1 e2 = CmmMachOp (mo_wordNe dflags) [e1, e2]
cmmEqWord dflags e1 e2 = CmmMachOp (mo_wordEq dflags) [e1, e2]
cmmULtWord dflags e1 e2 = CmmMachOp (mo_wordULt dflags) [e1, e2]
cmmUGeWord dflags e1 e2 = CmmMachOp (mo_wordUGe dflags) [e1, e2]
cmmUGtWord dflags e1 e2 = CmmMachOp (mo_wordUGt dflags) [e1, e2]
--cmmShlWord dflags e1 e2 = CmmMachOp (mo_wordShl dflags) [e1, e2]
cmmUShrWord dflags e1 e2 = CmmMachOp (mo_wordUShr dflags) [e1, e2]
cmmAddWord dflags e1 e2 = CmmMachOp (mo_wordAdd dflags) [e1, e2]
cmmSubWord dflags e1 e2 = CmmMachOp (mo_wordSub dflags) [e1, e2]
cmmMulWord dflags e1 e2 = CmmMachOp (mo_wordMul dflags) [e1, e2]
cmmQuotWord dflags e1 e2 = CmmMachOp (mo_wordUQuot dflags) [e1, e2]
cmmNegate :: DynFlags -> CmmExpr -> CmmExpr
cmmNegate _ (CmmLit (CmmInt n rep)) = CmmLit (CmmInt (-n) rep)
cmmNegate dflags e = CmmMachOp (MO_S_Neg (cmmExprWidth dflags e)) [e]
blankWord :: DynFlags -> CmmStatic
blankWord dflags = CmmUninitialised (wORD_SIZE dflags)
cmmToWord :: DynFlags -> CmmExpr -> CmmExpr
cmmToWord dflags e
| w == word = e
| otherwise = CmmMachOp (MO_UU_Conv w word) [e]
where
w = cmmExprWidth dflags e
word = wordWidth dflags
---------------------------------------------------
--
-- CmmExpr predicates
--
---------------------------------------------------
isTrivialCmmExpr :: CmmExpr -> Bool
isTrivialCmmExpr (CmmLoad _ _) = False
isTrivialCmmExpr (CmmMachOp _ _) = False
isTrivialCmmExpr (CmmLit _) = True
isTrivialCmmExpr (CmmReg _) = True
isTrivialCmmExpr (CmmRegOff _ _) = True
isTrivialCmmExpr (CmmStackSlot _ _) = panic "isTrivialCmmExpr CmmStackSlot"
hasNoGlobalRegs :: CmmExpr -> Bool
hasNoGlobalRegs (CmmLoad e _) = hasNoGlobalRegs e
hasNoGlobalRegs (CmmMachOp _ es) = all hasNoGlobalRegs es
hasNoGlobalRegs (CmmLit _) = True
hasNoGlobalRegs (CmmReg (CmmLocal _)) = True
hasNoGlobalRegs (CmmRegOff (CmmLocal _) _) = True
hasNoGlobalRegs _ = False
---------------------------------------------------
--
-- Tagging
--
---------------------------------------------------
-- Tag bits mask
--cmmTagBits = CmmLit (mkIntCLit tAG_BITS)
cmmTagMask, cmmPointerMask :: DynFlags -> CmmExpr
cmmTagMask dflags = mkIntExpr dflags (tAG_MASK dflags)
cmmPointerMask dflags = mkIntExpr dflags (complement (tAG_MASK dflags))
-- Used to untag a possibly tagged pointer
-- A static label need not be untagged
cmmUntag :: DynFlags -> CmmExpr -> CmmExpr
cmmUntag _ e@(CmmLit (CmmLabel _)) = e
-- Default case
cmmUntag dflags e = cmmAndWord dflags e (cmmPointerMask dflags)
-- Test if a closure pointer is untagged
cmmIsTagged :: DynFlags -> CmmExpr -> CmmExpr
cmmIsTagged dflags e = cmmNeWord dflags (cmmAndWord dflags e (cmmTagMask dflags)) (zeroExpr dflags)
cmmConstrTag1 :: DynFlags -> CmmExpr -> CmmExpr
-- Get constructor tag, but one based.
cmmConstrTag1 dflags e = cmmAndWord dflags e (cmmTagMask dflags)
--------------------------------------------
--
-- mkLiveness
--
---------------------------------------------
mkLiveness :: DynFlags -> [Maybe LocalReg] -> Liveness
mkLiveness _ [] = []
mkLiveness dflags (reg:regs)
= take sizeW bits ++ mkLiveness dflags regs
where
sizeW = case reg of
Nothing -> 1
Just r -> (widthInBytes (typeWidth (localRegType r)) + wORD_SIZE dflags - 1)
`quot` wORD_SIZE dflags
-- number of words, rounded up
bits = repeat $ is_non_ptr reg -- True <=> Non Ptr
is_non_ptr Nothing = True
is_non_ptr (Just reg) = not $ isGcPtrType (localRegType reg)
-- ============================================== -
-- ============================================== -
-- ============================================== -
---------------------------------------------------
--
-- Manipulating CmmGraphs
--
---------------------------------------------------
modifyGraph :: (Graph n C C -> Graph n' C C) -> GenCmmGraph n -> GenCmmGraph n'
modifyGraph f g = CmmGraph {g_entry=g_entry g, g_graph=f (g_graph g)}
toBlockMap :: CmmGraph -> BlockEnv CmmBlock
toBlockMap (CmmGraph {g_graph=GMany NothingO body NothingO}) = body
ofBlockMap :: BlockId -> BlockEnv CmmBlock -> CmmGraph
ofBlockMap entry bodyMap = CmmGraph {g_entry=entry, g_graph=GMany NothingO bodyMap NothingO}
insertBlock :: CmmBlock -> BlockEnv CmmBlock -> BlockEnv CmmBlock
insertBlock block map =
ASSERT(isNothing $ mapLookup id map)
mapInsert id block map
where id = entryLabel block
toBlockList :: CmmGraph -> [CmmBlock]
toBlockList g = mapElems $ toBlockMap g
-- | like 'toBlockList', but the entry block always comes first
toBlockListEntryFirst :: CmmGraph -> [CmmBlock]
toBlockListEntryFirst g
| mapNull m = []
| otherwise = entry_block : others
where
m = toBlockMap g
entry_id = g_entry g
Just entry_block = mapLookup entry_id m
others = filter ((/= entry_id) . entryLabel) (mapElems m)
-- | Like 'toBlockListEntryFirst', but we strive to ensure that we order blocks
-- so that the false case of a conditional jumps to the next block in the output
-- list of blocks. This matches the way OldCmm blocks were output since in
-- OldCmm the false case was a fallthrough, whereas in Cmm conditional branches
-- have both true and false successors. Block ordering can make a big difference
-- in performance in the LLVM backend. Note that we rely crucially on the order
-- of successors returned for CmmCondBranch by the NonLocal instance for CmmNode
-- defind in cmm/CmmNode.hs. -GBM
toBlockListEntryFirstFalseFallthrough :: CmmGraph -> [CmmBlock]
toBlockListEntryFirstFalseFallthrough g
| mapNull m = []
| otherwise = dfs setEmpty [entry_block]
where
m = toBlockMap g
entry_id = g_entry g
Just entry_block = mapLookup entry_id m
dfs :: LabelSet -> [CmmBlock] -> [CmmBlock]
dfs _ [] = []
dfs visited (block:bs)
| id `setMember` visited = dfs visited bs
| otherwise = block : dfs (setInsert id visited) bs'
where id = entryLabel block
bs' = foldr add_id bs (successors block)
add_id id bs = case mapLookup id m of
Just b -> b : bs
Nothing -> bs
ofBlockList :: BlockId -> [CmmBlock] -> CmmGraph
ofBlockList entry blocks = CmmGraph { g_entry = entry
, g_graph = GMany NothingO body NothingO }
where body = foldr addBlock emptyBody blocks
bodyToBlockList :: Body CmmNode -> [CmmBlock]
bodyToBlockList body = mapElems body
mapGraphNodes :: ( CmmNode C O -> CmmNode C O
, CmmNode O O -> CmmNode O O
, CmmNode O C -> CmmNode O C)
-> CmmGraph -> CmmGraph
mapGraphNodes funs@(mf,_,_) g =
ofBlockMap (entryLabel $ mf $ CmmEntry $ g_entry g) $ mapMap (mapBlock3' funs) $ toBlockMap g
mapGraphNodes1 :: (forall e x. CmmNode e x -> CmmNode e x) -> CmmGraph -> CmmGraph
mapGraphNodes1 f = modifyGraph (mapGraph f)
foldGraphBlocks :: (CmmBlock -> a -> a) -> a -> CmmGraph -> a
foldGraphBlocks k z g = mapFold k z $ toBlockMap g
postorderDfs :: CmmGraph -> [CmmBlock]
postorderDfs g = {-# SCC "postorderDfs" #-} postorder_dfs_from (toBlockMap g) (g_entry g)
-------------------------------------------------
-- Running dataflow analysis and/or rewrites
-- Constructing forward and backward analysis-only pass
analFwd :: DataflowLattice f -> FwdTransfer n f -> FwdPass UniqSM n f
analBwd :: DataflowLattice f -> BwdTransfer n f -> BwdPass UniqSM n f
analFwd lat xfer = analRewFwd lat xfer noFwdRewrite
analBwd lat xfer = analRewBwd lat xfer noBwdRewrite
-- Constructing forward and backward analysis + rewrite pass
analRewFwd :: DataflowLattice f -> FwdTransfer n f
-> FwdRewrite UniqSM n f
-> FwdPass UniqSM n f
analRewBwd :: DataflowLattice f
-> BwdTransfer n f
-> BwdRewrite UniqSM n f
-> BwdPass UniqSM n f
analRewFwd lat xfer rew = FwdPass {fp_lattice = lat, fp_transfer = xfer, fp_rewrite = rew}
analRewBwd lat xfer rew = BwdPass {bp_lattice = lat, bp_transfer = xfer, bp_rewrite = rew}
-- Running forward and backward dataflow analysis + optional rewrite
dataflowPassFwd :: NonLocal n =>
GenCmmGraph n -> [(BlockId, f)]
-> FwdPass UniqSM n f
-> UniqSM (GenCmmGraph n, BlockEnv f)
dataflowPassFwd (CmmGraph {g_entry=entry, g_graph=graph}) facts fwd = do
(graph, facts, NothingO) <- analyzeAndRewriteFwd fwd (JustC [entry]) graph (mkFactBase (fp_lattice fwd) facts)
return (CmmGraph {g_entry=entry, g_graph=graph}, facts)
dataflowAnalFwd :: NonLocal n =>
GenCmmGraph n -> [(BlockId, f)]
-> FwdPass UniqSM n f
-> BlockEnv f
dataflowAnalFwd (CmmGraph {g_entry=entry, g_graph=graph}) facts fwd =
analyzeFwd fwd (JustC [entry]) graph (mkFactBase (fp_lattice fwd) facts)
dataflowAnalFwdBlocks :: NonLocal n =>
GenCmmGraph n -> [(BlockId, f)]
-> FwdPass UniqSM n f
-> UniqSM (BlockEnv f)
dataflowAnalFwdBlocks (CmmGraph {g_entry=entry, g_graph=graph}) facts fwd = do
-- (graph, facts, NothingO) <- analyzeAndRewriteFwd fwd (JustC [entry]) graph (mkFactBase (fp_lattice fwd) facts)
-- return facts
return (analyzeFwdBlocks fwd (JustC [entry]) graph (mkFactBase (fp_lattice fwd) facts))
dataflowAnalBwd :: NonLocal n =>
GenCmmGraph n -> [(BlockId, f)]
-> BwdPass UniqSM n f
-> BlockEnv f
dataflowAnalBwd (CmmGraph {g_entry=entry, g_graph=graph}) facts bwd =
analyzeBwd bwd (JustC [entry]) graph (mkFactBase (bp_lattice bwd) facts)
dataflowPassBwd :: NonLocal n =>
GenCmmGraph n -> [(BlockId, f)]
-> BwdPass UniqSM n f
-> UniqSM (GenCmmGraph n, BlockEnv f)
dataflowPassBwd (CmmGraph {g_entry=entry, g_graph=graph}) facts bwd = do
(graph, facts, NothingO) <- analyzeAndRewriteBwd bwd (JustC [entry]) graph (mkFactBase (bp_lattice bwd) facts)
return (CmmGraph {g_entry=entry, g_graph=graph}, facts)
|