summaryrefslogtreecommitdiff
path: root/compiler/cmm/CmmOpt.hs
blob: c454ff4c6a6c980fbf3f7db050e09b5011ef42f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
-----------------------------------------------------------------------------
--
-- Cmm optimisation
--
-- (c) The University of Glasgow 2006
--
-----------------------------------------------------------------------------

module CmmOpt (
	cmmMiniInline,
	cmmMachOpFold,
	cmmLoopifyForC,
 ) where

#include "HsVersions.h"

import Cmm
import CmmUtils	( hasNoGlobalRegs )
import CLabel	( entryLblToInfoLbl )
import MachOp
import SMRep	( tablesNextToCode )

import UniqFM
import Unique	( Unique )
import Panic	( panic )

import Outputable

import Bits
import Word
import Int
import GLAEXTS


-- -----------------------------------------------------------------------------
-- The mini-inliner

{-
This pass inlines assignments to temporaries that are used just
once.  It works as follows:

  - count uses of each temporary
  - for each temporary that occurs just once:
	- attempt to push it forward to the statement that uses it
        - only push forward past assignments to other temporaries
	  (assumes that temporaries are single-assignment)
	- if we reach the statement that uses it, inline the rhs
	  and delete the original assignment.

Possible generalisations: here is an example from factorial

Fac_zdwfac_entry:
    cmG:
        _smi = R2;
        if (_smi != 0) goto cmK;
        R1 = R3;
        jump I64[Sp];
    cmK:
        _smn = _smi * R3;
        R2 = _smi + (-1);
        R3 = _smn;
        jump Fac_zdwfac_info;

We want to inline _smi and _smn.  To inline _smn:

   - we must be able to push forward past assignments to global regs.
     We can do this if the rhs of the assignment we are pushing
     forward doesn't refer to the global reg being assigned to; easy
     to test.

To inline _smi:

   - It is a trivial replacement, reg for reg, but it occurs more than
     once.
   - We can inline trivial assignments even if the temporary occurs
     more than once, as long as we don't eliminate the original assignment
     (this doesn't help much on its own).
   - We need to be able to propagate the assignment forward through jumps;
     if we did this, we would find that it can be inlined safely in all
     its occurrences.
-}

cmmMiniInline :: [CmmBasicBlock] -> [CmmBasicBlock]
cmmMiniInline blocks = map do_inline blocks 
  where 
	blockUses (BasicBlock _ stmts)
	 = foldr (plusUFM_C (+)) emptyUFM (map getStmtUses stmts)

	uses = foldr (plusUFM_C (+)) emptyUFM (map blockUses blocks)

	do_inline (BasicBlock id stmts)
	 = BasicBlock id (cmmMiniInlineStmts uses stmts)


cmmMiniInlineStmts :: UniqFM Int -> [CmmStmt] -> [CmmStmt]
cmmMiniInlineStmts uses [] = []
cmmMiniInlineStmts uses (stmt@(CmmAssign (CmmLocal (LocalReg u _)) expr) : stmts)
  | Just 1 <- lookupUFM uses u,
    Just stmts' <- lookForInline u expr stmts
  = 
#ifdef NCG_DEBUG
     trace ("nativeGen: inlining " ++ showSDoc (pprStmt stmt)) $
#endif
     cmmMiniInlineStmts uses stmts'

cmmMiniInlineStmts uses (stmt:stmts)
  = stmt : cmmMiniInlineStmts uses stmts


-- Try to inline a temporary assignment.  We can skip over assignments to
-- other tempoararies, because we know that expressions aren't side-effecting
-- and temporaries are single-assignment.
lookForInline u expr (stmt@(CmmAssign (CmmLocal (LocalReg u' _)) rhs) : rest)
  | u /= u' 
  = case lookupUFM (getExprUses rhs) u of
	Just 1 -> Just (inlineStmt u expr stmt : rest)
	_other -> case lookForInline u expr rest of
		     Nothing    -> Nothing
		     Just stmts -> Just (stmt:stmts)

lookForInline u expr (CmmNop : rest)
  = lookForInline u expr rest

lookForInline u expr (stmt:stmts)
  = case lookupUFM (getStmtUses stmt) u of
	Just 1 | ok_to_inline -> Just (inlineStmt u expr stmt : stmts)
	_other -> Nothing
  where
	-- we don't inline into CmmCall if the expression refers to global
	-- registers.  This is a HACK to avoid global registers clashing with
	-- C argument-passing registers, really the back-end ought to be able
	-- to handle it properly, but currently neither PprC nor the NCG can
	-- do it.  See also CgForeignCall:load_args_into_temps.
    ok_to_inline = case stmt of
		     CmmCall{} -> hasNoGlobalRegs expr
		     _ -> True

-- -----------------------------------------------------------------------------
-- Boring Cmm traversals for collecting usage info and substitutions.

getStmtUses :: CmmStmt -> UniqFM Int
getStmtUses (CmmAssign _ e) = getExprUses e
getStmtUses (CmmStore e1 e2) = plusUFM_C (+) (getExprUses e1) (getExprUses e2)
getStmtUses (CmmCall target _ es _)
   = plusUFM_C (+) (uses target) (getExprsUses (map fst es))
   where uses (CmmForeignCall e _) = getExprUses e
	 uses _ = emptyUFM
getStmtUses (CmmCondBranch e _) = getExprUses e
getStmtUses (CmmSwitch e _) = getExprUses e
getStmtUses (CmmJump e _) = getExprUses e
getStmtUses _ = emptyUFM

getExprUses :: CmmExpr -> UniqFM Int
getExprUses (CmmReg (CmmLocal (LocalReg u _))) = unitUFM u 1
getExprUses (CmmRegOff (CmmLocal (LocalReg u _)) _) = unitUFM u 1
getExprUses (CmmLoad e _) = getExprUses e
getExprUses (CmmMachOp _ es) = getExprsUses es
getExprUses _other = emptyUFM

getExprsUses es = foldr (plusUFM_C (+)) emptyUFM (map getExprUses es)

inlineStmt :: Unique -> CmmExpr -> CmmStmt -> CmmStmt
inlineStmt u a (CmmAssign r e) = CmmAssign r (inlineExpr u a e)
inlineStmt u a (CmmStore e1 e2) = CmmStore (inlineExpr u a e1) (inlineExpr u a e2)
inlineStmt u a (CmmCall target regs es vols)
   = CmmCall (infn target) regs es' vols
   where infn (CmmForeignCall fn cconv) = CmmForeignCall fn cconv
	 infn (CmmPrim p) = CmmPrim p
	 es' = [ (inlineExpr u a e, hint) | (e,hint) <- es ]
inlineStmt u a (CmmCondBranch e d) = CmmCondBranch (inlineExpr u a e) d
inlineStmt u a (CmmSwitch e d) = CmmSwitch (inlineExpr u a e) d
inlineStmt u a (CmmJump e d) = CmmJump (inlineExpr u a e) d
inlineStmt u a other_stmt = other_stmt

inlineExpr :: Unique -> CmmExpr -> CmmExpr -> CmmExpr
inlineExpr u a e@(CmmReg (CmmLocal (LocalReg u' _)))
  | u == u' = a
  | otherwise = e
inlineExpr u a e@(CmmRegOff (CmmLocal (LocalReg u' rep)) off)
  | u == u' = CmmMachOp (MO_Add rep) [a, CmmLit (CmmInt (fromIntegral off) rep)]
  | otherwise = e
inlineExpr u a (CmmLoad e rep) = CmmLoad (inlineExpr u a e) rep
inlineExpr u a (CmmMachOp op es) = CmmMachOp op (map (inlineExpr u a) es)
inlineExpr u a other_expr = other_expr

-- -----------------------------------------------------------------------------
-- MachOp constant folder

-- Now, try to constant-fold the MachOps.  The arguments have already
-- been optimized and folded.

cmmMachOpFold
    :: MachOp	    	-- The operation from an CmmMachOp
    -> [CmmExpr]   	-- The optimized arguments
    -> CmmExpr

cmmMachOpFold op arg@[CmmLit (CmmInt x rep)]
  = case op of
      MO_S_Neg r -> CmmLit (CmmInt (-x) rep)
      MO_Not r   -> CmmLit (CmmInt (complement x) rep)

	-- these are interesting: we must first narrow to the 
	-- "from" type, in order to truncate to the correct size.
	-- The final narrow/widen to the destination type
	-- is implicit in the CmmLit.
      MO_S_Conv from to
	   | isFloatingRep to -> CmmLit (CmmFloat (fromInteger x) to)
	   | otherwise        -> CmmLit (CmmInt (narrowS from x) to)
      MO_U_Conv from to -> CmmLit (CmmInt (narrowU from x) to)

      _ -> panic "cmmMachOpFold: unknown unary op"


-- Eliminate conversion NOPs
cmmMachOpFold (MO_S_Conv rep1 rep2) [x] | rep1 == rep2 = x
cmmMachOpFold (MO_U_Conv rep1 rep2) [x] | rep1 == rep2 = x

-- Eliminate nested conversions where possible
cmmMachOpFold conv_outer args@[CmmMachOp conv_inner [x]]
  | Just (rep1,rep2,signed1) <- isIntConversion conv_inner,
    Just (_,   rep3,signed2) <- isIntConversion conv_outer
  = case () of
	-- widen then narrow to the same size is a nop
      _ | rep1 < rep2 && rep1 == rep3 -> x
	-- Widen then narrow to different size: collapse to single conversion
	-- but remember to use the signedness from the widening, just in case
	-- the final conversion is a widen.
	| rep1 < rep2 && rep2 > rep3 ->
	    cmmMachOpFold (intconv signed1 rep1 rep3) [x]
	-- Nested widenings: collapse if the signedness is the same
	| rep1 < rep2 && rep2 < rep3 && signed1 == signed2 ->
	    cmmMachOpFold (intconv signed1 rep1 rep3) [x]
	-- Nested narrowings: collapse
	| rep1 > rep2 && rep2 > rep3 ->
	    cmmMachOpFold (MO_U_Conv rep1 rep3) [x]
	| otherwise ->
	    CmmMachOp conv_outer args
  where
	isIntConversion (MO_U_Conv rep1 rep2) 
	  | not (isFloatingRep rep1) && not (isFloatingRep rep2) 
	  = Just (rep1,rep2,False)
	isIntConversion (MO_S_Conv rep1 rep2)
	  | not (isFloatingRep rep1) && not (isFloatingRep rep2) 
	  = Just (rep1,rep2,True)
	isIntConversion _ = Nothing

	intconv True  = MO_S_Conv
	intconv False = MO_U_Conv

-- ToDo: a narrow of a load can be collapsed into a narrow load, right?
-- but what if the architecture only supports word-sized loads, should
-- we do the transformation anyway?

cmmMachOpFold mop args@[CmmLit (CmmInt x xrep), CmmLit (CmmInt y _)]
  = case mop of
	-- for comparisons: don't forget to narrow the arguments before
	-- comparing, since they might be out of range.
    	MO_Eq r   -> CmmLit (CmmInt (if x_u == y_u then 1 else 0) wordRep)
    	MO_Ne r   -> CmmLit (CmmInt (if x_u /= y_u then 1 else 0) wordRep)

    	MO_U_Gt r -> CmmLit (CmmInt (if x_u >  y_u then 1 else 0) wordRep)
    	MO_U_Ge r -> CmmLit (CmmInt (if x_u >= y_u then 1 else 0) wordRep)
    	MO_U_Lt r -> CmmLit (CmmInt (if x_u <  y_u then 1 else 0) wordRep)
    	MO_U_Le r -> CmmLit (CmmInt (if x_u <= y_u then 1 else 0) wordRep)

    	MO_S_Gt r -> CmmLit (CmmInt (if x_s >  y_s then 1 else 0) wordRep) 
    	MO_S_Ge r -> CmmLit (CmmInt (if x_s >= y_s then 1 else 0) wordRep)
    	MO_S_Lt r -> CmmLit (CmmInt (if x_s <  y_s then 1 else 0) wordRep)
    	MO_S_Le r -> CmmLit (CmmInt (if x_s <= y_s then 1 else 0) wordRep)

    	MO_Add r -> CmmLit (CmmInt (x + y) r)
    	MO_Sub r -> CmmLit (CmmInt (x - y) r)
    	MO_Mul r -> CmmLit (CmmInt (x * y) r)
    	MO_S_Quot r | y /= 0 -> CmmLit (CmmInt (x `quot` y) r)
    	MO_S_Rem  r | y /= 0 -> CmmLit (CmmInt (x `rem` y) r)

	MO_And   r -> CmmLit (CmmInt (x .&. y) r)
	MO_Or    r -> CmmLit (CmmInt (x .|. y) r)
	MO_Xor   r -> CmmLit (CmmInt (x `xor` y) r)

        MO_Shl   r -> CmmLit (CmmInt (x `shiftL` fromIntegral y) r)
        MO_U_Shr r -> CmmLit (CmmInt (x_u `shiftR` fromIntegral y) r)
        MO_S_Shr r -> CmmLit (CmmInt (x `shiftR` fromIntegral y) r)

	other      -> CmmMachOp mop args

   where
	x_u = narrowU xrep x
	y_u = narrowU xrep y
	x_s = narrowS xrep x
	y_s = narrowS xrep y
	

-- When possible, shift the constants to the right-hand side, so that we
-- can match for strength reductions.  Note that the code generator will
-- also assume that constants have been shifted to the right when
-- possible.

cmmMachOpFold op [x@(CmmLit _), y]
   | not (isLit y) && isCommutableMachOp op 
   = cmmMachOpFold op [y, x]

-- Turn (a+b)+c into a+(b+c) where possible.  Because literals are
-- moved to the right, it is more likely that we will find
-- opportunities for constant folding when the expression is
-- right-associated.
--
-- ToDo: this appears to introduce a quadratic behaviour due to the
-- nested cmmMachOpFold.  Can we fix this?
--
-- Why do we check isLit arg1?  If arg1 is a lit, it means that arg2
-- is also a lit (otherwise arg1 would be on the right).  If we
-- put arg1 on the left of the rearranged expression, we'll get into a
-- loop:  (x1+x2)+x3 => x1+(x2+x3)  => (x2+x3)+x1 => x2+(x3+x1) ...
--
cmmMachOpFold mop1 [CmmMachOp mop2 [arg1,arg2], arg3]
   | mop1 == mop2 && isAssociativeMachOp mop1 && not (isLit arg1)
   = cmmMachOpFold mop1 [arg1, cmmMachOpFold mop2 [arg2,arg3]]

-- Make a RegOff if we can
cmmMachOpFold (MO_Add _) [CmmReg reg, CmmLit (CmmInt n rep)]
  = CmmRegOff reg (fromIntegral (narrowS rep n))
cmmMachOpFold (MO_Add _) [CmmRegOff reg off, CmmLit (CmmInt n rep)]
  = CmmRegOff reg (off + fromIntegral (narrowS rep n))
cmmMachOpFold (MO_Sub _) [CmmReg reg, CmmLit (CmmInt n rep)]
  = CmmRegOff reg (- fromIntegral (narrowS rep n))
cmmMachOpFold (MO_Sub _) [CmmRegOff reg off, CmmLit (CmmInt n rep)]
  = CmmRegOff reg (off - fromIntegral (narrowS rep n))

-- Fold label(+/-)offset into a CmmLit where possible

cmmMachOpFold (MO_Add _) [CmmLit (CmmLabel lbl), CmmLit (CmmInt i rep)]
  = CmmLit (CmmLabelOff lbl (fromIntegral (narrowU rep i)))
cmmMachOpFold (MO_Add _) [CmmLit (CmmInt i rep), CmmLit (CmmLabel lbl)]
  = CmmLit (CmmLabelOff lbl (fromIntegral (narrowU rep i)))
cmmMachOpFold (MO_Sub _) [CmmLit (CmmLabel lbl), CmmLit (CmmInt i rep)]
  = CmmLit (CmmLabelOff lbl (fromIntegral (negate (narrowU rep i))))

-- We can often do something with constants of 0 and 1 ...

cmmMachOpFold mop args@[x, y@(CmmLit (CmmInt 0 _))]
  = case mop of
    	MO_Add   r -> x
    	MO_Sub   r -> x
    	MO_Mul   r -> y
    	MO_And   r -> y
    	MO_Or    r -> x
    	MO_Xor   r -> x
    	MO_Shl   r -> x
    	MO_S_Shr r -> x
    	MO_U_Shr r -> x
        MO_Ne    r | isComparisonExpr x -> x
	MO_Eq    r | Just x' <- maybeInvertConditionalExpr x -> x'
	MO_U_Gt  r | isComparisonExpr x -> x
	MO_S_Gt  r | isComparisonExpr x -> x
	MO_U_Lt  r | isComparisonExpr x -> CmmLit (CmmInt 0 wordRep)
	MO_S_Lt  r | isComparisonExpr x -> CmmLit (CmmInt 0 wordRep)
	MO_U_Ge  r | isComparisonExpr x -> CmmLit (CmmInt 1 wordRep)
	MO_S_Ge  r | isComparisonExpr x -> CmmLit (CmmInt 1 wordRep)
	MO_U_Le  r | Just x' <- maybeInvertConditionalExpr x -> x'
	MO_S_Le  r | Just x' <- maybeInvertConditionalExpr x -> x'
    	other    -> CmmMachOp mop args

cmmMachOpFold mop args@[x, y@(CmmLit (CmmInt 1 rep))]
  = case mop of
    	MO_Mul    r -> x
    	MO_S_Quot r -> x
    	MO_U_Quot r -> x
    	MO_S_Rem  r -> CmmLit (CmmInt 0 rep)
    	MO_U_Rem  r -> CmmLit (CmmInt 0 rep)
        MO_Ne    r | Just x' <- maybeInvertConditionalExpr x -> x'
	MO_Eq    r | isComparisonExpr x -> x
	MO_U_Lt  r | Just x' <- maybeInvertConditionalExpr x -> x'
	MO_S_Lt  r | Just x' <- maybeInvertConditionalExpr x -> x'
	MO_U_Gt  r | isComparisonExpr x -> CmmLit (CmmInt 0 wordRep)
	MO_S_Gt  r | isComparisonExpr x -> CmmLit (CmmInt 0 wordRep)
	MO_U_Le  r | isComparisonExpr x -> CmmLit (CmmInt 1 wordRep)
	MO_S_Le  r | isComparisonExpr x -> CmmLit (CmmInt 1 wordRep)
	MO_U_Ge  r | isComparisonExpr x -> x
	MO_S_Ge  r | isComparisonExpr x -> x
    	other       -> CmmMachOp mop args

-- Now look for multiplication/division by powers of 2 (integers).

cmmMachOpFold mop args@[x, y@(CmmLit (CmmInt n _))]
  = case mop of
    	MO_Mul rep
           -> case exactLog2 n of
                 Nothing -> unchanged
                 Just p  -> CmmMachOp (MO_Shl rep) [x, CmmLit (CmmInt p rep)]
    	MO_S_Quot rep
           -> case exactLog2 n of
                 Nothing -> unchanged
                 Just p  -> CmmMachOp (MO_S_Shr rep) [x, CmmLit (CmmInt p rep)]
    	other 
           -> unchanged
    where
       unchanged = CmmMachOp mop args

-- Anything else is just too hard.

cmmMachOpFold mop args = CmmMachOp mop args

-- -----------------------------------------------------------------------------
-- exactLog2

-- This algorithm for determining the $\log_2$ of exact powers of 2 comes
-- from GCC.  It requires bit manipulation primitives, and we use GHC
-- extensions.  Tough.
-- 
-- Used to be in MachInstrs --SDM.
-- ToDo: remove use of unboxery --SDM.

w2i x = word2Int# x
i2w x = int2Word# x

exactLog2 :: Integer -> Maybe Integer
exactLog2 x
  = if (x <= 0 || x >= 2147483648) then
       Nothing
    else
       case fromInteger x of { I# x# ->
       if (w2i ((i2w x#) `and#` (i2w (0# -# x#))) /=# x#) then
	  Nothing
       else
	  Just (toInteger (I# (pow2 x#)))
       }
  where
    pow2 x# | x# ==# 1# = 0#
            | otherwise = 1# +# pow2 (w2i (i2w x# `shiftRL#` 1#))


-- -----------------------------------------------------------------------------
-- widening / narrowing

narrowU :: MachRep -> Integer -> Integer
narrowU I8  x = fromIntegral (fromIntegral x :: Word8)
narrowU I16 x = fromIntegral (fromIntegral x :: Word16)
narrowU I32 x = fromIntegral (fromIntegral x :: Word32)
narrowU I64 x = fromIntegral (fromIntegral x :: Word64)
narrowU _ _ = panic "narrowTo"

narrowS :: MachRep -> Integer -> Integer
narrowS I8  x = fromIntegral (fromIntegral x :: Int8)
narrowS I16 x = fromIntegral (fromIntegral x :: Int16)
narrowS I32 x = fromIntegral (fromIntegral x :: Int32)
narrowS I64 x = fromIntegral (fromIntegral x :: Int64)
narrowS _ _ = panic "narrowTo"

-- -----------------------------------------------------------------------------
-- Loopify for C

{-
 This is a simple pass that replaces tail-recursive functions like this:

   fac() {
     ...
     jump fac();
   }

 with this:

  fac() {
   L:
     ...
     goto L;
  }

  the latter generates better C code, because the C compiler treats it
  like a loop, and brings full loop optimisation to bear.

  In my measurements this makes little or no difference to anything
  except factorial, but what the hell.
-}

cmmLoopifyForC :: CmmTop -> CmmTop
cmmLoopifyForC p@(CmmProc info entry_lbl [] blocks@(BasicBlock top_id _ : _))
  | null info = p  -- only if there's an info table, ignore case alts
  | otherwise =  
--  pprTrace "jump_lbl" (ppr jump_lbl <+> ppr entry_lbl) $
  CmmProc info entry_lbl [] blocks' 
  where blocks' = [ BasicBlock id (map do_stmt stmts)
		  | BasicBlock id stmts <- blocks ]

        do_stmt (CmmJump (CmmLit (CmmLabel lbl)) _) | lbl == jump_lbl
		= CmmBranch top_id
	do_stmt stmt = stmt

	jump_lbl | tablesNextToCode = entryLblToInfoLbl entry_lbl
		 | otherwise        = entry_lbl

cmmLoopifyForC top = top

-- -----------------------------------------------------------------------------
-- Utils

isLit (CmmLit _) = True
isLit _          = False

isComparisonExpr :: CmmExpr -> Bool
isComparisonExpr (CmmMachOp op _) = isComparisonMachOp op
isComparisonExpr _other 	    = False

maybeInvertConditionalExpr :: CmmExpr -> Maybe CmmExpr
maybeInvertConditionalExpr (CmmMachOp op args) 
  | Just op' <- maybeInvertComparison op = Just (CmmMachOp op' args)
maybeInvertConditionalExpr _ = Nothing