summaryrefslogtreecommitdiff
path: root/compiler/basicTypes/MkId.lhs
blob: 84b3546e622f1b1f4421b6bc544caaca89a89b4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
%
% (c) The AQUA Project, Glasgow University, 1998
%
\section[StdIdInfo]{Standard unfoldings}

This module contains definitions for the IdInfo for things that
have a standard form, namely:

	* data constructors
	* record selectors
	* method and superclass selectors
	* primitive operations

\begin{code}
module MkId (
	mkDictFunId, mkDefaultMethodId,
	mkDictSelId, 

	mkDataConIds,
	mkRecordSelId, 
	mkPrimOpId, mkFCallId,

	mkReboxingAlt, mkNewTypeBody,

	-- And some particular Ids; see below for why they are wired in
	wiredInIds, ghcPrimIds,
	unsafeCoerceId, realWorldPrimId, voidArgId, nullAddrId, seqId,
	lazyId, lazyIdUnfolding, lazyIdKey,

	mkRuntimeErrorApp,
	rEC_CON_ERROR_ID, iRREFUT_PAT_ERROR_ID, rUNTIME_ERROR_ID,
	nON_EXHAUSTIVE_GUARDS_ERROR_ID,	nO_METHOD_BINDING_ERROR_ID,
	pAT_ERROR_ID, eRROR_ID,

        unsafeCoerceName
    ) where

#include "HsVersions.h"


import BasicTypes	( Arity, StrictnessMark(..), isMarkedUnboxed, isMarkedStrict )
import Rules		( mkSpecInfo )
import TysPrim		( openAlphaTyVars, alphaTyVar, alphaTy, 
			  realWorldStatePrimTy, addrPrimTy
			)
import TysWiredIn	( charTy, mkListTy )
import PrelRules	( primOpRules )
import Type		( TyThing(..), mkForAllTy, tyVarsOfTypes )
import TcType		( Type, ThetaType, mkDictTy, mkPredTys, mkPredTy, 
			  mkTyConApp, mkTyVarTys, mkClassPred, 
			  mkFunTys, mkFunTy, mkSigmaTy, tcSplitSigmaTy, 
			  isUnLiftedType, mkForAllTys, mkTyVarTy, tyVarsOfType,
			  tcSplitFunTys, tcSplitForAllTys, dataConsStupidTheta
			)
import CoreUtils	( exprType )
import CoreUnfold 	( mkTopUnfolding, mkCompulsoryUnfolding )
import Literal		( nullAddrLit, mkStringLit )
import TyCon		( TyCon, isNewTyCon, tyConDataCons, FieldLabel,
                          tyConStupidTheta, isProductTyCon, isDataTyCon, isRecursiveTyCon )
import Class		( Class, classTyCon, classSelIds )
import Var		( Id, TyVar, Var )
import VarSet		( isEmptyVarSet, subVarSet, varSetElems )
import Name		( mkFCallName, mkWiredInName, Name, BuiltInSyntax(..) )
import OccName		( mkOccNameFS, varName )
import PrimOp		( PrimOp, primOpSig, primOpOcc, primOpTag )
import ForeignCall	( ForeignCall )
import DataCon		( DataCon, DataConIds(..), dataConTyVars,
			  dataConFieldLabels, dataConRepArity, dataConResTys,
			  dataConRepArgTys, dataConRepType, 
			  dataConSig, dataConStrictMarks, dataConExStricts, 
			  splitProductType, isVanillaDataCon, dataConFieldType,
			  dataConInstOrigArgTys
			)
import Id		( idType, mkGlobalId, mkVanillaGlobal, mkSysLocal, 
			  mkTemplateLocals, mkTemplateLocalsNum, mkExportedLocalId,
			  mkTemplateLocal, idName
			)
import IdInfo		( IdInfo, noCafIdInfo,  setUnfoldingInfo, 
			  setArityInfo, setSpecInfo, setCafInfo,
			  setAllStrictnessInfo, vanillaIdInfo,
			  GlobalIdDetails(..), CafInfo(..)
			)
import NewDemand	( mkStrictSig, DmdResult(..),
			  mkTopDmdType, topDmd, evalDmd, lazyDmd, retCPR,
			  Demand(..), Demands(..) )
import DmdAnal		( dmdAnalTopRhs )
import CoreSyn
import Unique		( mkBuiltinUnique, mkPrimOpIdUnique )
import Maybes
import PrelNames
import Util             ( dropList, isSingleton )
import Outputable
import FastString
import ListSetOps	( assoc )
\end{code}		

%************************************************************************
%*									*
\subsection{Wired in Ids}
%*									*
%************************************************************************

\begin{code}
wiredInIds
  = [ 	-- These error-y things are wired in because we don't yet have
	-- a way to express in an interface file that the result type variable
	-- is 'open'; that is can be unified with an unboxed type
	-- 
	-- [The interface file format now carry such information, but there's
	-- no way yet of expressing at the definition site for these 
	-- error-reporting functions that they have an 'open' 
	-- result type. -- sof 1/99]

    eRROR_ID,	-- This one isn't used anywhere else in the compiler
		-- But we still need it in wiredInIds so that when GHC
		-- compiles a program that mentions 'error' we don't
		-- import its type from the interface file; we just get
		-- the Id defined here.  Which has an 'open-tyvar' type.

    rUNTIME_ERROR_ID,
    iRREFUT_PAT_ERROR_ID,
    nON_EXHAUSTIVE_GUARDS_ERROR_ID,
    nO_METHOD_BINDING_ERROR_ID,
    pAT_ERROR_ID,
    rEC_CON_ERROR_ID,

    lazyId
    ] ++ ghcPrimIds

-- These Ids are exported from GHC.Prim
ghcPrimIds
  = [ 	-- These can't be defined in Haskell, but they have
	-- perfectly reasonable unfoldings in Core
    realWorldPrimId,
    unsafeCoerceId,
    nullAddrId,
    seqId
    ]
\end{code}

%************************************************************************
%*									*
\subsection{Data constructors}
%*									*
%************************************************************************

The wrapper for a constructor is an ordinary top-level binding that evaluates
any strict args, unboxes any args that are going to be flattened, and calls
the worker.

We're going to build a constructor that looks like:

	data (Data a, C b) =>  T a b = T1 !a !Int b

	T1 = /\ a b -> 
	     \d1::Data a, d2::C b ->
	     \p q r -> case p of { p ->
		       case q of { q ->
		       Con T1 [a,b] [p,q,r]}}

Notice that

* d2 is thrown away --- a context in a data decl is used to make sure
  one *could* construct dictionaries at the site the constructor
  is used, but the dictionary isn't actually used.

* We have to check that we can construct Data dictionaries for
  the types a and Int.  Once we've done that we can throw d1 away too.

* We use (case p of q -> ...) to evaluate p, rather than "seq" because
  all that matters is that the arguments are evaluated.  "seq" is 
  very careful to preserve evaluation order, which we don't need
  to be here.

  You might think that we could simply give constructors some strictness
  info, like PrimOps, and let CoreToStg do the let-to-case transformation.
  But we don't do that because in the case of primops and functions strictness
  is a *property* not a *requirement*.  In the case of constructors we need to
  do something active to evaluate the argument.

  Making an explicit case expression allows the simplifier to eliminate
  it in the (common) case where the constructor arg is already evaluated.


\begin{code}
mkDataConIds :: Name -> Name -> DataCon -> DataConIds
	-- Makes the *worker* for the data constructor; that is, the function
	-- that takes the reprsentation arguments and builds the constructor.
mkDataConIds wrap_name wkr_name data_con
  | isNewTyCon tycon
  = NewDC nt_wrap_id

  | any isMarkedStrict all_strict_marks		-- Algebraic, needs wrapper
  = AlgDC (Just alg_wrap_id) wrk_id

  | otherwise					-- Algebraic, no wrapper
  = AlgDC Nothing wrk_id
  where
    (tyvars, theta, orig_arg_tys, tycon, res_tys) = dataConSig data_con

    dict_tys    = mkPredTys theta
    all_arg_tys = dict_tys ++ orig_arg_tys
    result_ty   = mkTyConApp tycon res_tys

    wrap_ty = mkForAllTys tyvars (mkFunTys all_arg_tys result_ty)
	-- We used to include the stupid theta in the wrapper's args
	-- but now we don't.  Instead the type checker just injects these
	-- extra constraints where necessary.

	----------- Worker (algebraic data types only) --------------
    wrk_id = mkGlobalId (DataConWorkId data_con) wkr_name
	 		(dataConRepType data_con) wkr_info

    wkr_arity = dataConRepArity data_con
    wkr_info  = noCafIdInfo
	        `setArityInfo`		wkr_arity
	        `setAllStrictnessInfo`	Just wkr_sig
		`setUnfoldingInfo`      evaldUnfolding	-- Record that it's evaluated,
							-- even if arity = 0

    wkr_sig = mkStrictSig (mkTopDmdType (replicate wkr_arity topDmd) cpr_info)
	-- Notice that we do *not* say the worker is strict
	-- even if the data constructor is declared strict
	--	e.g. 	data T = MkT !(Int,Int)
	-- Why?  Because the *wrapper* is strict (and its unfolding has case
	-- expresssions that do the evals) but the *worker* itself is not.
	-- If we pretend it is strict then when we see
	--	case x of y -> $wMkT y
	-- the simplifier thinks that y is "sure to be evaluated" (because
	--  $wMkT is strict) and drops the case.  No, $wMkT is not strict.
	--
	-- When the simplifer sees a pattern 
	--	case e of MkT x -> ...
	-- it uses the dataConRepStrictness of MkT to mark x as evaluated;
	-- but that's fine... dataConRepStrictness comes from the data con
	-- not from the worker Id.

    cpr_info | isProductTyCon tycon && 
	       isDataTyCon tycon    &&
	       wkr_arity > 0 	    &&
	       wkr_arity <= mAX_CPR_SIZE	= retCPR
	     | otherwise 			= TopRes
	-- RetCPR is only true for products that are real data types;
	-- that is, not unboxed tuples or [non-recursive] newtypes

	----------- Wrappers for newtypes --------------
    nt_wrap_id   = mkGlobalId (DataConWrapId data_con) wrap_name wrap_ty nt_wrap_info
    nt_wrap_info = noCafIdInfo		-- The NoCaf-ness is set by noCafIdInfo
		  `setArityInfo` 1	-- Arity 1
		  `setUnfoldingInfo`     newtype_unf
    newtype_unf  = ASSERT( isVanillaDataCon data_con &&
			   isSingleton orig_arg_tys )
	  	   -- No existentials on a newtype, but it can have a context
	  	   -- e.g. 	newtype Eq a => T a = MkT (...)
	  	   mkTopUnfolding $ Note InlineMe $
	  	   mkLams tyvars $ Lam id_arg1 $ 
	  	   mkNewTypeBody tycon result_ty (Var id_arg1)

    id_arg1 = mkTemplateLocal 1 (head orig_arg_tys)

	----------- Wrappers for algebraic data types -------------- 
    alg_wrap_id = mkGlobalId (DataConWrapId data_con) wrap_name wrap_ty alg_wrap_info
    alg_wrap_info = noCafIdInfo		-- The NoCaf-ness is set by noCafIdInfo
		    `setArityInfo` 	   alg_arity
			-- It's important to specify the arity, so that partial
			-- applications are treated as values
		    `setUnfoldingInfo`     alg_unf
		    `setAllStrictnessInfo` Just wrap_sig

    all_strict_marks = dataConExStricts data_con ++ dataConStrictMarks data_con
    wrap_sig = mkStrictSig (mkTopDmdType arg_dmds cpr_info)
    arg_dmds = map mk_dmd all_strict_marks
    mk_dmd str | isMarkedStrict str = evalDmd
	       | otherwise	    = lazyDmd
	-- The Cpr info can be important inside INLINE rhss, where the
	-- wrapper constructor isn't inlined.
	-- And the argument strictness can be important too; we
	-- may not inline a contructor when it is partially applied.
	-- For example:
	--	data W = C !Int !Int !Int
	--	...(let w = C x in ...(w p q)...)...
	-- we want to see that w is strict in its two arguments

    alg_unf = mkTopUnfolding $ Note InlineMe $
	      mkLams tyvars $ 
	      mkLams dict_args $ mkLams id_args $
	      foldr mk_case con_app 
		    (zip (dict_args ++ id_args) all_strict_marks)
		    i3 []

    con_app i rep_ids = mkApps (Var wrk_id)
			       (map varToCoreExpr (tyvars ++ reverse rep_ids))

    (dict_args,i2) = mkLocals 1  dict_tys
    (id_args,i3)   = mkLocals i2 orig_arg_tys
    alg_arity	   = i3-1

    mk_case 
	   :: (Id, StrictnessMark)	-- Arg, strictness
	   -> (Int -> [Id] -> CoreExpr) -- Body
	   -> Int			-- Next rep arg id
	   -> [Id]			-- Rep args so far, reversed
	   -> CoreExpr
    mk_case (arg,strict) body i rep_args
  	  = case strict of
		NotMarkedStrict -> body i (arg:rep_args)
		MarkedStrict 
		   | isUnLiftedType (idType arg) -> body i (arg:rep_args)
		   | otherwise ->
			Case (Var arg) arg result_ty [(DEFAULT,[], body i (arg:rep_args))]

		MarkedUnboxed
		   -> case splitProductType "do_unbox" (idType arg) of
			   (tycon, tycon_args, con, tys) ->
				   Case (Var arg) arg result_ty  
					[(DataAlt con, 
					  con_args,
					  body i' (reverse con_args ++ rep_args))]
			      where 
				(con_args, i') = mkLocals i tys

mAX_CPR_SIZE :: Arity
mAX_CPR_SIZE = 10
-- We do not treat very big tuples as CPR-ish:
--	a) for a start we get into trouble because there aren't 
--	   "enough" unboxed tuple types (a tiresome restriction, 
--	   but hard to fix), 
--	b) more importantly, big unboxed tuples get returned mainly
--	   on the stack, and are often then allocated in the heap
--	   by the caller.  So doing CPR for them may in fact make
--	   things worse.

mkLocals i tys = (zipWith mkTemplateLocal [i..i+n-1] tys, i+n)
	       where
		 n = length tys
\end{code}


%************************************************************************
%*									*
\subsection{Record selectors}
%*									*
%************************************************************************

We're going to build a record selector unfolding that looks like this:

	data T a b c = T1 { ..., op :: a, ...}
		     | T2 { ..., op :: a, ...}
		     | T3

	sel = /\ a b c -> \ d -> case d of
				    T1 ... x ... -> x
				    T2 ... x ... -> x
				    other	 -> error "..."

Similarly for newtypes

	newtype N a = MkN { unN :: a->a }

	unN :: N a -> a -> a
	unN n = coerce (a->a) n
	
We need to take a little care if the field has a polymorphic type:

	data R = R { f :: forall a. a->a }

Then we want

	f :: forall a. R -> a -> a
	f = /\ a \ r = case r of
			  R f -> f a

(not f :: R -> forall a. a->a, which gives the type inference mechanism 
problems at call sites)

Similarly for (recursive) newtypes

	newtype N = MkN { unN :: forall a. a->a }

	unN :: forall b. N -> b -> b
	unN = /\b -> \n:N -> (coerce (forall a. a->a) n)


Note [Naughty record selectors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A "naughty" field is one for which we can't define a record 
selector, because an existential type variable would escape.  For example:
	data T = forall a. MkT { x,y::a }
We obviously can't define	
	x (MkT v _) = v
Nevertheless we *do* put a RecordSelId into the type environment
so that if the user tries to use 'x' as a selector we can bleat
helpfully, rather than saying unhelpfully that 'x' is not in scope.
Hence the sel_naughty flag, to identify record selcectors that don't really exist.

In general, a field is naughty if its type mentions a type variable that
isn't in the result type of the constructor.

For GADTs, we require that all constructors with a common field 'f' have the same
result type (modulo alpha conversion).  [Checked in TcTyClsDecls.checkValidTyCon]
E.g. 
	data T where
	  T1 { f :: a } :: T [a]
	  T2 { f :: a, y :: b  } :: T [a]
and now the selector takes that type as its argument:
	f :: forall a. T [a] -> a
	f t = case t of
		T1 { f = v } -> v
		T2 { f = v } -> v
Note the forall'd tyvars of the selector are just the free tyvars
of the result type; there may be other tyvars in the constructor's
type (e.g. 'b' in T2).

\begin{code}

-- XXX - autrijus -
-- Plan: 1. Determine naughtiness by comparing field type vs result type
--       2. Install naughty ones with selector_ty of type _|_ and fill in mzero for info
--       3. If it's not naughty, do the normal plan.

mkRecordSelId :: TyCon -> FieldLabel -> Id
mkRecordSelId tycon field_label
	-- Assumes that all fields with the same field label have the same type
  | is_naughty = naughty_id
  | otherwise  = sel_id
  where
    is_naughty = not (tyVarsOfType field_ty `subVarSet` tyvar_set)
    sel_id_details = RecordSelId tycon field_label is_naughty

    -- Escapist case here for naughty construcotrs
    -- We give it no IdInfo, and a type of forall a.a (never looked at)
    naughty_id = mkGlobalId sel_id_details field_label forall_a_a noCafIdInfo
    forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

    -- Normal case starts here
    sel_id = mkGlobalId sel_id_details field_label selector_ty info
    data_cons  	      = tyConDataCons tycon	
    data_cons_w_field = filter has_field data_cons	-- Can't be empty!
    has_field con     = field_label `elem` dataConFieldLabels con

    con1	= head data_cons_w_field
    res_tys	= dataConResTys con1
    tyvar_set	= tyVarsOfTypes res_tys
    tyvars	= varSetElems tyvar_set
    data_ty	= mkTyConApp tycon res_tys
    field_ty	= dataConFieldType con1 field_label
    
	-- *Very* tiresomely, the selectors are (unnecessarily!) overloaded over
	-- just the dictionaries in the types of the constructors that contain
	-- the relevant field.  [The Report says that pattern matching on a
	-- constructor gives the same constraints as applying it.]  Urgh.  
	--
	-- However, not all data cons have all constraints (because of
	-- BuildTyCl.mkDataConStupidTheta).  So we need to find all the data cons 
	-- involved in the pattern match and take the union of their constraints.
    stupid_dict_tys = mkPredTys (dataConsStupidTheta data_cons_w_field)
    n_stupid_dicts  = length stupid_dict_tys

    (field_tyvars,field_theta,field_tau) = tcSplitSigmaTy field_ty
    field_dict_tys			 = mkPredTys field_theta
    n_field_dict_tys			 = length field_dict_tys
	-- If the field has a universally quantified type we have to 
	-- be a bit careful.  Suppose we have
	--	data R = R { op :: forall a. Foo a => a -> a }
	-- Then we can't give op the type
	--	op :: R -> forall a. Foo a => a -> a
	-- because the typechecker doesn't understand foralls to the
	-- right of an arrow.  The "right" type to give it is
	--	op :: forall a. Foo a => R -> a -> a
	-- But then we must generate the right unfolding too:
	--	op = /\a -> \dfoo -> \ r ->
	--	     case r of
	--		R op -> op a dfoo
	-- Note that this is exactly the type we'd infer from a user defn
	--	op (R op) = op

    selector_ty :: Type
    selector_ty  = mkForAllTys tyvars $ mkForAllTys field_tyvars $
		   mkFunTys stupid_dict_tys  $  mkFunTys field_dict_tys $
		   mkFunTy data_ty field_tau
      
    arity = 1 + n_stupid_dicts + n_field_dict_tys

    (strict_sig, rhs_w_str) = dmdAnalTopRhs sel_rhs
	-- Use the demand analyser to work out strictness.
	-- With all this unpackery it's not easy!

    info = noCafIdInfo
	   `setCafInfo`		  caf_info
	   `setArityInfo`	  arity
	   `setUnfoldingInfo`     mkTopUnfolding rhs_w_str
	   `setAllStrictnessInfo` Just strict_sig

	-- Allocate Ids.  We do it a funny way round because field_dict_tys is
	-- almost always empty.  Also note that we use max_dict_tys
 	-- rather than n_dict_tys, because the latter gives an infinite loop:
	-- n_dict tys depends on the_alts, which depens on arg_ids, which depends
	-- on arity, which depends on n_dict tys.  Sigh!  Mega sigh!
    stupid_dict_ids  = mkTemplateLocalsNum 1 stupid_dict_tys
    max_stupid_dicts = length (tyConStupidTheta tycon)
    field_dict_base  = max_stupid_dicts + 1
    field_dict_ids   = mkTemplateLocalsNum field_dict_base field_dict_tys
    dict_id_base     = field_dict_base + n_field_dict_tys
    data_id	     = mkTemplateLocal dict_id_base data_ty
    arg_base	     = dict_id_base + 1

    the_alts :: [CoreAlt]
    the_alts   = map mk_alt data_cons_w_field	-- Already sorted by data-con
    no_default = length data_cons == length data_cons_w_field	-- No default needed

    default_alt | no_default = []
		| otherwise  = [(DEFAULT, [], error_expr)]

	-- The default branch may have CAF refs, because it calls recSelError etc.
    caf_info    | no_default = NoCafRefs
	        | otherwise  = MayHaveCafRefs

    sel_rhs = mkLams tyvars   $ mkLams field_tyvars $ 
	      mkLams stupid_dict_ids $ mkLams field_dict_ids $
	      Lam data_id     $ sel_body

    sel_body | isNewTyCon tycon = mk_result (mkNewTypeBody tycon field_ty (Var data_id))
	     | otherwise	= Case (Var data_id) data_id field_tau (default_alt ++ the_alts)

    mk_result poly_result = mkVarApps (mkVarApps poly_result field_tyvars) field_dict_ids
	-- We pull the field lambdas to the top, so we need to 
	-- apply them in the body.  For example:
	--	data T = MkT { foo :: forall a. a->a }
	--
	--	foo :: forall a. T -> a -> a
	--	foo = /\a. \t:T. case t of { MkT f -> f a }

    mk_alt data_con 
      = 	-- In the non-vanilla case, the pattern must bind type variables and
		-- the context stuff; hence the arg_prefix binding below
	  mkReboxingAlt uniqs data_con (arg_prefix ++ arg_ids)
			(mk_result (Var the_arg_id))
      where
	(arg_prefix, arg_ids)
	   | isVanillaDataCon data_con	 	-- Instantiate from commmon base
	   = ([], mkTemplateLocalsNum arg_base (dataConInstOrigArgTys data_con res_tys))
	   | otherwise		-- The case pattern binds type variables, which are used
				-- in the types of the arguments of the pattern
	   = (dc_tyvars ++ mkTemplateLocalsNum arg_base (mkPredTys dc_theta),
	      mkTemplateLocalsNum arg_base' dc_arg_tys)

	(dc_tyvars, dc_theta, dc_arg_tys, _, _) = dataConSig data_con
	arg_base' = arg_base + length dc_theta

	unpack_base = arg_base' + length dc_arg_tys
	uniqs = map mkBuiltinUnique [unpack_base..]

    	the_arg_id  = assoc "mkRecordSelId:mk_alt" (field_lbls `zip` arg_ids) field_label
    	field_lbls  = dataConFieldLabels data_con

    error_expr = mkRuntimeErrorApp rEC_SEL_ERROR_ID field_tau full_msg
    full_msg   = showSDoc (sep [text "No match in record selector", ppr sel_id]) 


-- (mkReboxingAlt us con xs rhs) basically constructs the case
-- alternative	(con, xs, rhs)
-- but it does the reboxing necessary to construct the *source* 
-- arguments, xs, from the representation arguments ys.
-- For example:
--	data T = MkT !(Int,Int) Bool
--
-- mkReboxingAlt MkT [x,b] r 
--	= (DataAlt MkT, [y::Int,z::Int,b], let x = (y,z) in r)
--
-- mkDataAlt should really be in DataCon, but it can't because
-- it manipulates CoreSyn.

mkReboxingAlt
  :: [Unique]			-- Uniques for the new Ids
  -> DataCon
  -> [Var]			-- Source-level args, including existential dicts
  -> CoreExpr			-- RHS
  -> CoreAlt

mkReboxingAlt us con args rhs
  | not (any isMarkedUnboxed stricts)
  = (DataAlt con, args, rhs)

  | otherwise
  = let
	(binds, args') = go args stricts us
    in
    (DataAlt con, args', mkLets binds rhs)

  where
    stricts = dataConExStricts con ++ dataConStrictMarks con

    go [] stricts us = ([], [])

	-- Type variable case
    go (arg:args) stricts us 
      | isTyVar arg
      = let (binds, args') = go args stricts us
	in  (binds, arg:args')

	-- Term variable case
    go (arg:args) (str:stricts) us
      | isMarkedUnboxed str
      = let
	  (_, tycon_args, pack_con, con_arg_tys)
	 	 = splitProductType "mkReboxingAlt" (idType arg)

	  unpacked_args  = zipWith (mkSysLocal FSLIT("rb")) us con_arg_tys
	  (binds, args') = go args stricts (dropList con_arg_tys us)
	  con_app	 = mkConApp pack_con (map Type tycon_args ++ map Var unpacked_args)
	in
	(NonRec arg con_app : binds, unpacked_args ++ args')

      | otherwise
      = let (binds, args') = go args stricts us
        in  (binds, arg:args')
\end{code}


%************************************************************************
%*									*
\subsection{Dictionary selectors}
%*									*
%************************************************************************

Selecting a field for a dictionary.  If there is just one field, then
there's nothing to do.  

Dictionary selectors may get nested forall-types.  Thus:

	class Foo a where
	  op :: forall b. Ord b => a -> b -> b

Then the top-level type for op is

	op :: forall a. Foo a => 
	      forall b. Ord b => 
	      a -> b -> b

This is unlike ordinary record selectors, which have all the for-alls
at the outside.  When dealing with classes it's very convenient to
recover the original type signature from the class op selector.

\begin{code}
mkDictSelId :: Name -> Class -> Id
mkDictSelId name clas
  = mkGlobalId (ClassOpId clas) name sel_ty info
  where
    sel_ty = mkForAllTys tyvars (mkFunTy (idType dict_id) (idType the_arg_id))
	-- We can't just say (exprType rhs), because that would give a type
	--	C a -> C a
	-- for a single-op class (after all, the selector is the identity)
	-- But it's type must expose the representation of the dictionary
	-- to gat (say)		C a -> (a -> a)

    info = noCafIdInfo
		`setArityInfo`	    	1
		`setUnfoldingInfo`  	mkTopUnfolding rhs
		`setAllStrictnessInfo`	Just strict_sig

	-- We no longer use 'must-inline' on record selectors.  They'll
	-- inline like crazy if they scrutinise a constructor

	-- The strictness signature is of the form U(AAAVAAAA) -> T
 	-- where the V depends on which item we are selecting
	-- It's worth giving one, so that absence info etc is generated
	-- even if the selector isn't inlined
    strict_sig = mkStrictSig (mkTopDmdType [arg_dmd] TopRes)
    arg_dmd | isNewTyCon tycon = evalDmd
	    | otherwise	       = Eval (Prod [ if the_arg_id == id then evalDmd else Abs
					    | id <- arg_ids ])

    tycon      = classTyCon clas
    [data_con] = tyConDataCons tycon
    tyvars     = dataConTyVars data_con
    arg_tys    = dataConRepArgTys data_con
    the_arg_id = assoc "MkId.mkDictSelId" (map idName (classSelIds clas) `zip` arg_ids) name

    pred	      = mkClassPred clas (mkTyVarTys tyvars)
    (dict_id:arg_ids) = mkTemplateLocals (mkPredTy pred : arg_tys)

    rhs | isNewTyCon tycon = mkLams tyvars $ Lam dict_id $ 
			     mkNewTypeBody tycon (head arg_tys) (Var dict_id)
	| otherwise	   = mkLams tyvars $ Lam dict_id $
			     Case (Var dict_id) dict_id (idType the_arg_id)
			     	  [(DataAlt data_con, arg_ids, Var the_arg_id)]

mkNewTypeBody tycon result_ty result_expr
	-- Adds a coerce where necessary
	-- Used for both wrapping and unwrapping
  | isRecursiveTyCon tycon	-- Recursive case; use a coerce
  = Note (Coerce result_ty (exprType result_expr)) result_expr
  | otherwise			-- Normal case
  = result_expr
\end{code}


%************************************************************************
%*									*
\subsection{Primitive operations
%*									*
%************************************************************************

\begin{code}
mkPrimOpId :: PrimOp -> Id
mkPrimOpId prim_op 
  = id
  where
    (tyvars,arg_tys,res_ty, arity, strict_sig) = primOpSig prim_op
    ty   = mkForAllTys tyvars (mkFunTys arg_tys res_ty)
    name = mkWiredInName gHC_PRIM (primOpOcc prim_op) 
			 (mkPrimOpIdUnique (primOpTag prim_op))
			 Nothing (AnId id) UserSyntax
    id   = mkGlobalId (PrimOpId prim_op) name ty info
		
    info = noCafIdInfo
	   `setSpecInfo`	  mkSpecInfo (primOpRules prim_op name)
	   `setArityInfo` 	  arity
	   `setAllStrictnessInfo` Just strict_sig

-- For each ccall we manufacture a separate CCallOpId, giving it
-- a fresh unique, a type that is correct for this particular ccall,
-- and a CCall structure that gives the correct details about calling
-- convention etc.  
--
-- The *name* of this Id is a local name whose OccName gives the full
-- details of the ccall, type and all.  This means that the interface 
-- file reader can reconstruct a suitable Id

mkFCallId :: Unique -> ForeignCall -> Type -> Id
mkFCallId uniq fcall ty
  = ASSERT( isEmptyVarSet (tyVarsOfType ty) )
	-- A CCallOpId should have no free type variables; 
	-- when doing substitutions won't substitute over it
    mkGlobalId (FCallId fcall) name ty info
  where
    occ_str = showSDoc (braces (ppr fcall <+> ppr ty))
	-- The "occurrence name" of a ccall is the full info about the
	-- ccall; it is encoded, but may have embedded spaces etc!

    name = mkFCallName uniq occ_str

    info = noCafIdInfo
	   `setArityInfo` 		arity
	   `setAllStrictnessInfo`	Just strict_sig

    (_, tau) 	 = tcSplitForAllTys ty
    (arg_tys, _) = tcSplitFunTys tau
    arity	 = length arg_tys
    strict_sig   = mkStrictSig (mkTopDmdType (replicate arity evalDmd) TopRes)
\end{code}


%************************************************************************
%*									*
\subsection{DictFuns and default methods}
%*									*
%************************************************************************

Important notes about dict funs and default methods
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dict funs and default methods are *not* ImplicitIds.  Their definition
involves user-written code, so we can't figure out their strictness etc
based on fixed info, as we can for constructors and record selectors (say).

We build them as LocalIds, but with External Names.  This ensures that
they are taken to account by free-variable finding and dependency
analysis (e.g. CoreFVs.exprFreeVars).

Why shouldn't they be bound as GlobalIds?  Because, in particular, if
they are globals, the specialiser floats dict uses above their defns,
which prevents good simplifications happening.  Also the strictness
analyser treats a occurrence of a GlobalId as imported and assumes it
contains strictness in its IdInfo, which isn't true if the thing is
bound in the same module as the occurrence.

It's OK for dfuns to be LocalIds, because we form the instance-env to
pass on to the next module (md_insts) in CoreTidy, afer tidying
and globalising the top-level Ids.

BUT make sure they are *exported* LocalIds (mkExportedLocalId) so 
that they aren't discarded by the occurrence analyser.

\begin{code}
mkDefaultMethodId dm_name ty = mkExportedLocalId dm_name ty

mkDictFunId :: Name		-- Name to use for the dict fun;
	    -> [TyVar]
	    -> ThetaType
	    -> Class 
	    -> [Type]
	    -> Id

mkDictFunId dfun_name inst_tyvars dfun_theta clas inst_tys
  = mkExportedLocalId dfun_name dfun_ty
  where
    dfun_ty = mkSigmaTy inst_tyvars dfun_theta (mkDictTy clas inst_tys)

{-  1 dec 99: disable the Mark Jones optimisation for the sake
    of compatibility with Hugs.
    See `types/InstEnv' for a discussion related to this.

    (class_tyvars, sc_theta, _, _) = classBigSig clas
    not_const (clas, tys) = not (isEmptyVarSet (tyVarsOfTypes tys))
    sc_theta' = substClasses (zipTopTvSubst class_tyvars inst_tys) sc_theta
    dfun_theta = case inst_decl_theta of
		   []    -> []	-- If inst_decl_theta is empty, then we don't
				-- want to have any dict arguments, so that we can
				-- expose the constant methods.

		   other -> nub (inst_decl_theta ++ filter not_const sc_theta')
				-- Otherwise we pass the superclass dictionaries to
				-- the dictionary function; the Mark Jones optimisation.
				--
				-- NOTE the "nub".  I got caught by this one:
				--   class Monad m => MonadT t m where ...
				--   instance Monad m => MonadT (EnvT env) m where ...
				-- Here, the inst_decl_theta has (Monad m); but so
				-- does the sc_theta'!
				--
				-- NOTE the "not_const".  I got caught by this one too:
				--   class Foo a => Baz a b where ...
				--   instance Wob b => Baz T b where..
				-- Now sc_theta' has Foo T
-}
\end{code}


%************************************************************************
%*									*
\subsection{Un-definable}
%*									*
%************************************************************************

These Ids can't be defined in Haskell.  They could be defined in
unfoldings in the wired-in GHC.Prim interface file, but we'd have to
ensure that they were definitely, definitely inlined, because there is
no curried identifier for them.  That's what mkCompulsoryUnfolding
does.  If we had a way to get a compulsory unfolding from an interface
file, we could do that, but we don't right now.

unsafeCoerce# isn't so much a PrimOp as a phantom identifier, that
just gets expanded into a type coercion wherever it occurs.  Hence we
add it as a built-in Id with an unfolding here.

The type variables we use here are "open" type variables: this means
they can unify with both unlifted and lifted types.  Hence we provide
another gun with which to shoot yourself in the foot.

\begin{code}
mkWiredInIdName mod fs uniq id
 = mkWiredInName mod (mkOccNameFS varName fs) uniq Nothing (AnId id) UserSyntax

unsafeCoerceName = mkWiredInIdName gHC_PRIM FSLIT("unsafeCoerce#") unsafeCoerceIdKey  unsafeCoerceId
nullAddrName     = mkWiredInIdName gHC_PRIM FSLIT("nullAddr#")	   nullAddrIdKey      nullAddrId
seqName		 = mkWiredInIdName gHC_PRIM FSLIT("seq")	   seqIdKey	      seqId
realWorldName	 = mkWiredInIdName gHC_PRIM FSLIT("realWorld#")	   realWorldPrimIdKey realWorldPrimId
lazyIdName	 = mkWiredInIdName pREL_BASE FSLIT("lazy")         lazyIdKey	      lazyId

errorName		 = mkWiredInIdName pREL_ERR FSLIT("error")	     errorIdKey eRROR_ID
recSelErrorName		 = mkWiredInIdName pREL_ERR FSLIT("recSelError")     recSelErrorIdKey rEC_SEL_ERROR_ID
runtimeErrorName	 = mkWiredInIdName pREL_ERR FSLIT("runtimeError")    runtimeErrorIdKey rUNTIME_ERROR_ID
irrefutPatErrorName	 = mkWiredInIdName pREL_ERR FSLIT("irrefutPatError") irrefutPatErrorIdKey iRREFUT_PAT_ERROR_ID
recConErrorName		 = mkWiredInIdName pREL_ERR FSLIT("recConError")     recConErrorIdKey rEC_CON_ERROR_ID
patErrorName 		 = mkWiredInIdName pREL_ERR FSLIT("patError") 	     patErrorIdKey pAT_ERROR_ID
noMethodBindingErrorName = mkWiredInIdName pREL_ERR FSLIT("noMethodBindingError")
					   noMethodBindingErrorIdKey nO_METHOD_BINDING_ERROR_ID
nonExhaustiveGuardsErrorName 
  = mkWiredInIdName pREL_ERR FSLIT("nonExhaustiveGuardsError") 
		    nonExhaustiveGuardsErrorIdKey nON_EXHAUSTIVE_GUARDS_ERROR_ID
\end{code}

\begin{code}
-- unsafeCoerce# :: forall a b. a -> b
unsafeCoerceId
  = pcMiscPrelId unsafeCoerceName ty info
  where
    info = noCafIdInfo `setUnfoldingInfo` mkCompulsoryUnfolding rhs
	   

    ty  = mkForAllTys [openAlphaTyVar,openBetaTyVar]
		      (mkFunTy openAlphaTy openBetaTy)
    [x] = mkTemplateLocals [openAlphaTy]
    rhs = mkLams [openAlphaTyVar,openBetaTyVar,x] $
	  Note (Coerce openBetaTy openAlphaTy) (Var x)

-- nullAddr# :: Addr#
-- The reason is is here is because we don't provide 
-- a way to write this literal in Haskell.
nullAddrId 
  = pcMiscPrelId nullAddrName addrPrimTy info
  where
    info = noCafIdInfo `setUnfoldingInfo` 
	   mkCompulsoryUnfolding (Lit nullAddrLit)

seqId
  = pcMiscPrelId seqName ty info
  where
    info = noCafIdInfo `setUnfoldingInfo` mkCompulsoryUnfolding rhs
	   

    ty  = mkForAllTys [alphaTyVar,openBetaTyVar]
		      (mkFunTy alphaTy (mkFunTy openBetaTy openBetaTy))
    [x,y] = mkTemplateLocals [alphaTy, openBetaTy]
-- gaw 2004
    rhs = mkLams [alphaTyVar,openBetaTyVar,x,y] (Case (Var x) x openBetaTy [(DEFAULT, [], Var y)])

-- lazy :: forall a?. a? -> a?	 (i.e. works for unboxed types too)
-- Used to lazify pseq:		pseq a b = a `seq` lazy b
-- No unfolding: it gets "inlined" by the worker/wrapper pass
-- Also, no strictness: by being a built-in Id, it overrides all
-- the info in PrelBase.hi.  This is important, because the strictness
-- analyser will spot it as strict!
lazyId
  = pcMiscPrelId lazyIdName ty info
  where
    info = noCafIdInfo
    ty  = mkForAllTys [alphaTyVar] (mkFunTy alphaTy alphaTy)

lazyIdUnfolding :: CoreExpr	-- Used to expand LazyOp after strictness anal
lazyIdUnfolding = mkLams [openAlphaTyVar,x] (Var x)
		where
		  [x] = mkTemplateLocals [openAlphaTy]
\end{code}

@realWorld#@ used to be a magic literal, \tr{void#}.  If things get
nasty as-is, change it back to a literal (@Literal@).

voidArgId is a Local Id used simply as an argument in functions
where we just want an arg to avoid having a thunk of unlifted type.
E.g.
	x = \ void :: State# RealWorld -> (# p, q #)

This comes up in strictness analysis

\begin{code}
realWorldPrimId	-- :: State# RealWorld
  = pcMiscPrelId realWorldName realWorldStatePrimTy
		 (noCafIdInfo `setUnfoldingInfo` evaldUnfolding)
	-- The evaldUnfolding makes it look that realWorld# is evaluated
	-- which in turn makes Simplify.interestingArg return True,
	-- which in turn makes INLINE things applied to realWorld# likely
	-- to be inlined

voidArgId 	-- :: State# RealWorld
  = mkSysLocal FSLIT("void") voidArgIdKey realWorldStatePrimTy
\end{code}


%************************************************************************
%*									*
\subsection[PrelVals-error-related]{@error@ and friends; @trace@}
%*									*
%************************************************************************

GHC randomly injects these into the code.

@patError@ is just a version of @error@ for pattern-matching
failures.  It knows various ``codes'' which expand to longer
strings---this saves space!

@absentErr@ is a thing we put in for ``absent'' arguments.  They jolly
well shouldn't be yanked on, but if one is, then you will get a
friendly message from @absentErr@ (rather than a totally random
crash).

@parError@ is a special version of @error@ which the compiler does
not know to be a bottoming Id.  It is used in the @_par_@ and @_seq_@
templates, but we don't ever expect to generate code for it.

\begin{code}
mkRuntimeErrorApp 
	:: Id 		-- Should be of type (forall a. Addr# -> a)
			-- 	where Addr# points to a UTF8 encoded string
	-> Type 	-- The type to instantiate 'a'
	-> String	-- The string to print
	-> CoreExpr

mkRuntimeErrorApp err_id res_ty err_msg 
  = mkApps (Var err_id) [Type res_ty, err_string]
  where
    err_string = Lit (mkStringLit err_msg)

rEC_SEL_ERROR_ID		= mkRuntimeErrorId recSelErrorName
rUNTIME_ERROR_ID	 	= mkRuntimeErrorId runtimeErrorName
iRREFUT_PAT_ERROR_ID		= mkRuntimeErrorId irrefutPatErrorName
rEC_CON_ERROR_ID		= mkRuntimeErrorId recConErrorName
pAT_ERROR_ID			= mkRuntimeErrorId patErrorName
nO_METHOD_BINDING_ERROR_ID      = mkRuntimeErrorId noMethodBindingErrorName
nON_EXHAUSTIVE_GUARDS_ERROR_ID	= mkRuntimeErrorId nonExhaustiveGuardsErrorName

-- The runtime error Ids take a UTF8-encoded string as argument
mkRuntimeErrorId name = pc_bottoming_Id name runtimeErrorTy
runtimeErrorTy 	      = mkSigmaTy [openAlphaTyVar] [] (mkFunTy addrPrimTy openAlphaTy)
\end{code}

\begin{code}
eRROR_ID = pc_bottoming_Id errorName errorTy

errorTy  :: Type
errorTy  = mkSigmaTy [openAlphaTyVar] [] (mkFunTys [mkListTy charTy] openAlphaTy)
    -- Notice the openAlphaTyVar.  It says that "error" can be applied
    -- to unboxed as well as boxed types.  This is OK because it never
    -- returns, so the return type is irrelevant.
\end{code}


%************************************************************************
%*									*
\subsection{Utilities}
%*									*
%************************************************************************

\begin{code}
pcMiscPrelId :: Name -> Type -> IdInfo -> Id
pcMiscPrelId name ty info
  = mkVanillaGlobal name ty info
    -- We lie and say the thing is imported; otherwise, we get into
    -- a mess with dependency analysis; e.g., core2stg may heave in
    -- random calls to GHCbase.unpackPS__.  If GHCbase is the module
    -- being compiled, then it's just a matter of luck if the definition
    -- will be in "the right place" to be in scope.

pc_bottoming_Id name ty
 = pcMiscPrelId name ty bottoming_info
 where
    bottoming_info = vanillaIdInfo `setAllStrictnessInfo` Just strict_sig
	-- Do *not* mark them as NoCafRefs, because they can indeed have
	-- CAF refs.  For example, pAT_ERROR_ID calls GHC.Err.untangle,
	-- which has some CAFs
	-- In due course we may arrange that these error-y things are
	-- regarded by the GC as permanently live, in which case we
	-- can give them NoCaf info.  As it is, any function that calls
	-- any pc_bottoming_Id will itself have CafRefs, which bloats
	-- SRTs.

    strict_sig	   = mkStrictSig (mkTopDmdType [evalDmd] BotRes)
	-- These "bottom" out, no matter what their arguments

(openAlphaTyVar:openBetaTyVar:_) = openAlphaTyVars
openAlphaTy  = mkTyVarTy openAlphaTyVar
openBetaTy   = mkTyVarTy openBetaTyVar
\end{code}