summaryrefslogtreecommitdiff
path: root/compiler/basicTypes/MkId.hs
blob: 14a3cd85ec41a55a2c2e35c39677a76a5b50f058 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1998


This module contains definitions for the IdInfo for things that
have a standard form, namely:

- data constructors
- record selectors
- method and superclass selectors
- primitive operations
-}

{-# LANGUAGE CPP #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

module MkId (
        mkDictFunId, mkDictFunTy, mkDictSelId, mkDictSelRhs,

        mkPrimOpId, mkFCallId,

        unwrapNewTypeBody, wrapFamInstBody,
        DataConBoxer(..), mkDataConRep, mkDataConWorkId,

        -- And some particular Ids; see below for why they are wired in
        wiredInIds, ghcPrimIds,
        unsafeCoerceName, unsafeCoerceId, realWorldPrimId,
        voidPrimId, voidArgId,
        nullAddrId, seqId, lazyId, lazyIdKey,
        coercionTokenId, magicDictId, coerceId,
        proxyHashId, noinlineId, noinlineIdName,
        coerceName,

        -- Re-export error Ids
        module PrelRules
    ) where

#include "HsVersions.h"

import GhcPrelude

import Rules
import TysPrim
import TysWiredIn
import PrelRules
import Type
import FamInstEnv
import Coercion
import TcType
import MkCore
import CoreUtils        ( mkCast, mkDefaultCase )
import CoreUnfold
import Literal
import TyCon
import Class
import NameSet
import Name
import PrimOp
import ForeignCall
import DataCon
import Id
import IdInfo
import Demand
import CoreSyn
import Unique
import UniqSupply
import PrelNames
import BasicTypes       hiding ( SuccessFlag(..) )
import Util
import DynFlags
import Outputable
import FastString
import ListSetOps
import Var (VarBndr(Bndr))
import qualified GHC.LanguageExtensions as LangExt

import Data.Maybe       ( maybeToList )

{-
************************************************************************
*                                                                      *
\subsection{Wired in Ids}
*                                                                      *
************************************************************************

Note [Wired-in Ids]
~~~~~~~~~~~~~~~~~~~
A "wired-in" Id can be referred to directly in GHC (e.g. 'voidPrimId')
rather than by looking it up its name in some environment or fetching
it from an interface file.

There are several reasons why an Id might appear in the wiredInIds:

* ghcPrimIds: see Note [ghcPrimIds (aka pseudoops)]

* magicIds: see Note [magicIds]

* errorIds, defined in coreSyn/MkCore.hs.
  These error functions (e.g. rUNTIME_ERROR_ID) are wired in
  because the desugarer generates code that mentions them directly

In all cases except ghcPrimIds, there is a definition site in a
library module, which may be called (e.g. in higher order situations);
but the wired-in version means that the details are never read from
that module's interface file; instead, the full definition is right
here.

Note [ghcPrimIds (aka pseudoops)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ghcPrimIds

  * Are exported from GHC.Prim

  * Can't be defined in Haskell, and hence no Haskell binding site,
    but have perfectly reasonable unfoldings in Core

  * Either have a CompulsoryUnfolding (hence always inlined), or
        of an EvaldUnfolding and void representation (e.g. void#)

  * Are (or should be) defined in primops.txt.pp as 'pseudoop'
    Reason: that's how we generate documentation for them

Note [magicIds]
~~~~~~~~~~~~~~~
The magicIds

  * Are exported from GHC.Magic

  * Can be defined in Haskell (and are, in ghc-prim:GHC/Magic.hs).
    This definition at least generates Haddock documentation for them.

  * May or may not have a CompulsoryUnfolding.

  * But have some special behaviour that can't be done via an
    unfolding from an interface file
-}

wiredInIds :: [Id]
wiredInIds
  =  magicIds
  ++ ghcPrimIds
  ++ errorIds           -- Defined in MkCore

magicIds :: [Id]    -- See Note [magicIds]
magicIds = [lazyId, oneShotId, noinlineId]

ghcPrimIds :: [Id]  -- See Note [ghcPrimIds (aka pseudoops)]
ghcPrimIds
  = [ realWorldPrimId
    , voidPrimId
    , unsafeCoerceId
    , nullAddrId
    , seqId
    , magicDictId
    , coerceId
    , proxyHashId
    ]

{-
************************************************************************
*                                                                      *
\subsection{Data constructors}
*                                                                      *
************************************************************************

The wrapper for a constructor is an ordinary top-level binding that evaluates
any strict args, unboxes any args that are going to be flattened, and calls
the worker.

We're going to build a constructor that looks like:

        data (Data a, C b) =>  T a b = T1 !a !Int b

        T1 = /\ a b ->
             \d1::Data a, d2::C b ->
             \p q r -> case p of { p ->
                       case q of { q ->
                       Con T1 [a,b] [p,q,r]}}

Notice that

* d2 is thrown away --- a context in a data decl is used to make sure
  one *could* construct dictionaries at the site the constructor
  is used, but the dictionary isn't actually used.

* We have to check that we can construct Data dictionaries for
  the types a and Int.  Once we've done that we can throw d1 away too.

* We use (case p of q -> ...) to evaluate p, rather than "seq" because
  all that matters is that the arguments are evaluated.  "seq" is
  very careful to preserve evaluation order, which we don't need
  to be here.

  You might think that we could simply give constructors some strictness
  info, like PrimOps, and let CoreToStg do the let-to-case transformation.
  But we don't do that because in the case of primops and functions strictness
  is a *property* not a *requirement*.  In the case of constructors we need to
  do something active to evaluate the argument.

  Making an explicit case expression allows the simplifier to eliminate
  it in the (common) case where the constructor arg is already evaluated.

Note [Wrappers for data instance tycons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the case of data instances, the wrapper also applies the coercion turning
the representation type into the family instance type to cast the result of
the wrapper.  For example, consider the declarations

  data family Map k :: * -> *
  data instance Map (a, b) v = MapPair (Map a (Pair b v))

The tycon to which the datacon MapPair belongs gets a unique internal
name of the form :R123Map, and we call it the representation tycon.
In contrast, Map is the family tycon (accessible via
tyConFamInst_maybe). A coercion allows you to move between
representation and family type.  It is accessible from :R123Map via
tyConFamilyCoercion_maybe and has kind

  Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}

The wrapper and worker of MapPair get the types

        -- Wrapper
  $WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
  $WMapPair a b v = MapPair a b v `cast` sym (Co123Map a b v)

        -- Worker
  MapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v

This coercion is conditionally applied by wrapFamInstBody.

It's a bit more complicated if the data instance is a GADT as well!

   data instance T [a] where
        T1 :: forall b. b -> T [Maybe b]

Hence we translate to

        -- Wrapper
  $WT1 :: forall b. b -> T [Maybe b]
  $WT1 b v = T1 (Maybe b) b (Maybe b) v
                        `cast` sym (Co7T (Maybe b))

        -- Worker
  T1 :: forall c b. (c ~ Maybe b) => b -> :R7T c

        -- Coercion from family type to representation type
  Co7T a :: T [a] ~ :R7T a

Newtype instances through an additional wrinkle into the mix. Consider the
following example (adapted from #15318, comment:2):

  data family T a
  newtype instance T [a] = MkT [a]

Within the newtype instance, there are three distinct types at play:

1. The newtype's underlying type, [a].
2. The instance's representation type, TList a (where TList is the
   representation tycon).
3. The family type, T [a].

We need two coercions in order to cast from (1) to (3):

(a) A newtype coercion axiom:

      axiom coTList a :: TList a ~ [a]

    (Where TList is the representation tycon of the newtype instance.)

(b) A data family instance coercion axiom:

      axiom coT a :: T [a] ~ TList a

When we translate the newtype instance to Core, we obtain:

    -- Wrapper
  $WMkT :: forall a. [a] -> T [a]
  $WMkT a x = MkT a x |> Sym (coT a)

    -- Worker
  MkT :: forall a. [a] -> TList [a]
  MkT a x = x |> Sym (coTList a)

Unlike for data instances, the worker for a newtype instance is actually an
executable function which expands to a cast, but otherwise, the general
strategy is essentially the same as for data instances. Also note that we have
a wrapper, which is unusual for a newtype, but we make GHC produce one anyway
for symmetry with the way data instances are handled.

Note [Newtype datacons]
~~~~~~~~~~~~~~~~~~~~~~~
The "data constructor" for a newtype should always be vanilla.  At one
point this wasn't true, because the newtype arising from
     class C a => D a
looked like
       newtype T:D a = D:D (C a)
so the data constructor for T:C had a single argument, namely the
predicate (C a).  But now we treat that as an ordinary argument, not
part of the theta-type, so all is well.

Note [Newtype workers]
~~~~~~~~~~~~~~~~~~~~~~
A newtype does not really have a worker. Instead, newtype constructors
just unfold into a cast. But we need *something* for, say, MkAge to refer
to. So, we do this:

* The Id used as the newtype worker will have a compulsory unfolding to
  a cast. See Note [Compulsory newtype unfolding]

* This Id is labeled as a DataConWrapId. We don't want to use a DataConWorkId,
  as those have special treatment in the back end.

* There is no top-level binding, because the compulsory unfolding
  means that it will be inlined (to a cast) at every call site.

We probably should have a NewtypeWorkId, but these Ids disappear as soon as
we desugar anyway, so it seems a step too far.

Note [Compulsory newtype unfolding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Newtype wrappers, just like workers, have compulsory unfoldings.
This is needed so that two optimizations involving newtypes have the same
effect whether a wrapper is present or not:

(1) Case-of-known constructor.
    See Note [beta-reduction in exprIsConApp_maybe].

(2) Matching against the map/coerce RULE. Suppose we have the RULE

    {-# RULE "map/coerce" map coerce = ... #-}

    As described in Note [Getting the map/coerce RULE to work],
    the occurrence of 'coerce' is transformed into:

    {-# RULE "map/coerce" forall (c :: T1 ~R# T2).
                          map ((\v -> v) `cast` c) = ... #-}

    We'd like 'map Age' to match the LHS. For this to happen, Age
    must be unfolded, otherwise we'll be stuck. This is tested in T16208.

It also allows for the posssibility of levity polymorphic newtypes
with wrappers (with -XUnliftedNewtypes):

  newtype N (a :: TYPE r) = MkN a

With -XUnliftedNewtypes, this is allowed -- even though MkN is levity-
polymorphic. It's OK because MkN evaporates in the compiled code, becoming
just a cast. That is, it has a compulsory unfolding. As long as its
argument is not levity-polymorphic (which it can't be, according to
Note [Levity polymorphism invariants] in CoreSyn), and it's saturated,
no levity-polymorphic code ends up in the code generator. The saturation
condition is effectively checked by Note [Detecting forced eta expansion]
in DsExpr.

However, if we make a *wrapper* for a newtype, we get into trouble.
The saturation condition is no longer checked (because hasNoBinding
returns False) and indeed we generate a forbidden levity-polymorphic
binding.

The solution is simple, though: just make the newtype wrappers
as ephemeral as the newtype workers. In other words, give the wrappers
compulsory unfoldings and no bindings. The compulsory unfolding is given
in wrap_unf in mkDataConRep, and the lack of a binding happens in
GHC.Iface.Tidy.getTyConImplicitBinds, where we say that a newtype has no
implicit bindings.

************************************************************************
*                                                                      *
\subsection{Dictionary selectors}
*                                                                      *
************************************************************************

Selecting a field for a dictionary.  If there is just one field, then
there's nothing to do.

Dictionary selectors may get nested forall-types.  Thus:

        class Foo a where
          op :: forall b. Ord b => a -> b -> b

Then the top-level type for op is

        op :: forall a. Foo a =>
              forall b. Ord b =>
              a -> b -> b

-}

mkDictSelId :: Name          -- Name of one of the *value* selectors
                             -- (dictionary superclass or method)
            -> Class -> Id
mkDictSelId name clas
  = mkGlobalId (ClassOpId clas) name sel_ty info
  where
    tycon          = classTyCon clas
    sel_names      = map idName (classAllSelIds clas)
    new_tycon      = isNewTyCon tycon
    [data_con]     = tyConDataCons tycon
    tyvars         = dataConUserTyVarBinders data_con
    n_ty_args      = length tyvars
    arg_tys        = dataConRepArgTys data_con  -- Includes the dictionary superclasses
    val_index      = assoc "MkId.mkDictSelId" (sel_names `zip` [0..]) name

    sel_ty = mkForAllTys tyvars $
             mkInvisFunTy (mkClassPred clas (mkTyVarTys (binderVars tyvars))) $
             getNth arg_tys val_index

    base_info = noCafIdInfo
                `setArityInfo`          1
                `setStrictnessInfo`     strict_sig
                `setLevityInfoWithType` sel_ty

    info | new_tycon
         = base_info `setInlinePragInfo` alwaysInlinePragma
                     `setUnfoldingInfo`  mkInlineUnfoldingWithArity 1
                                           (mkDictSelRhs clas val_index)
                   -- See Note [Single-method classes] in TcInstDcls
                   -- for why alwaysInlinePragma

         | otherwise
         = base_info `setRuleInfo` mkRuleInfo [rule]
                   -- Add a magic BuiltinRule, but no unfolding
                   -- so that the rule is always available to fire.
                   -- See Note [ClassOp/DFun selection] in TcInstDcls

    -- This is the built-in rule that goes
    --      op (dfT d1 d2) --->  opT d1 d2
    rule = BuiltinRule { ru_name = fsLit "Class op " `appendFS`
                                     occNameFS (getOccName name)
                       , ru_fn    = name
                       , ru_nargs = n_ty_args + 1
                       , ru_try   = dictSelRule val_index n_ty_args }

        -- The strictness signature is of the form U(AAAVAAAA) -> T
        -- where the V depends on which item we are selecting
        -- It's worth giving one, so that absence info etc is generated
        -- even if the selector isn't inlined

    strict_sig = mkClosedStrictSig [arg_dmd] topRes
    arg_dmd | new_tycon = evalDmd
            | otherwise = mkManyUsedDmd $
                          mkProdDmd [ if name == sel_name then evalDmd else absDmd
                                    | sel_name <- sel_names ]

mkDictSelRhs :: Class
             -> Int         -- 0-indexed selector among (superclasses ++ methods)
             -> CoreExpr
mkDictSelRhs clas val_index
  = mkLams tyvars (Lam dict_id rhs_body)
  where
    tycon          = classTyCon clas
    new_tycon      = isNewTyCon tycon
    [data_con]     = tyConDataCons tycon
    tyvars         = dataConUnivTyVars data_con
    arg_tys        = dataConRepArgTys data_con  -- Includes the dictionary superclasses

    the_arg_id     = getNth arg_ids val_index
    pred           = mkClassPred clas (mkTyVarTys tyvars)
    dict_id        = mkTemplateLocal 1 pred
    arg_ids        = mkTemplateLocalsNum 2 arg_tys

    rhs_body | new_tycon = unwrapNewTypeBody tycon (mkTyVarTys tyvars)
                                                   (Var dict_id)
             | otherwise = mkSingleAltCase (Var dict_id) dict_id (DataAlt data_con)
                                           arg_ids (varToCoreExpr the_arg_id)
                                -- varToCoreExpr needed for equality superclass selectors
                                --   sel a b d = case x of { MkC _ (g:a~b) _ -> CO g }

dictSelRule :: Int -> Arity -> RuleFun
-- Tries to persuade the argument to look like a constructor
-- application, using exprIsConApp_maybe, and then selects
-- from it
--       sel_i t1..tk (D t1..tk op1 ... opm) = opi
--
dictSelRule val_index n_ty_args _ id_unf _ args
  | (dict_arg : _) <- drop n_ty_args args
  , Just (_, floats, _, _, con_args) <- exprIsConApp_maybe id_unf dict_arg
  = Just (wrapFloats floats $ getNth con_args val_index)
  | otherwise
  = Nothing

{-
************************************************************************
*                                                                      *
        Data constructors
*                                                                      *
************************************************************************
-}

mkDataConWorkId :: Name -> DataCon -> Id
mkDataConWorkId wkr_name data_con
  | isNewTyCon tycon
  = mkGlobalId (DataConWrapId data_con) wkr_name wkr_ty nt_work_info
      -- See Note [Newtype workers]

  | otherwise
  = mkGlobalId (DataConWorkId data_con) wkr_name wkr_ty alg_wkr_info

  where
    tycon  = dataConTyCon data_con  -- The representation TyCon
    wkr_ty = dataConRepType data_con

        ----------- Workers for data types --------------
    alg_wkr_info = noCafIdInfo
                   `setArityInfo`          wkr_arity
                   `setStrictnessInfo`     wkr_sig
                   `setUnfoldingInfo`      evaldUnfolding  -- Record that it's evaluated,
                                                           -- even if arity = 0
                   `setLevityInfoWithType` wkr_ty
                     -- NB: unboxed tuples have workers, so we can't use
                     -- setNeverLevPoly

    wkr_arity = dataConRepArity data_con
    wkr_sig   = mkClosedStrictSig (replicate wkr_arity topDmd) (dataConCPR data_con)
        --      Note [Data-con worker strictness]
        -- Notice that we do *not* say the worker Id is strict
        -- even if the data constructor is declared strict
        --      e.g.    data T = MkT !(Int,Int)
        -- Why?  Because the *wrapper* $WMkT is strict (and its unfolding has
        -- case expressions that do the evals) but the *worker* MkT itself is
        --  not. If we pretend it is strict then when we see
        --      case x of y -> MkT y
        -- the simplifier thinks that y is "sure to be evaluated" (because
        -- the worker MkT is strict) and drops the case.  No, the workerId
        -- MkT is not strict.
        --
        -- However, the worker does have StrictnessMarks.  When the simplifier
        -- sees a pattern
        --      case e of MkT x -> ...
        -- it uses the dataConRepStrictness of MkT to mark x as evaluated;
        -- but that's fine... dataConRepStrictness comes from the data con
        -- not from the worker Id.

        ----------- Workers for newtypes --------------
    univ_tvs = dataConUnivTyVars data_con
    arg_tys  = dataConRepArgTys  data_con  -- Should be same as dataConOrigArgTys
    nt_work_info = noCafIdInfo          -- The NoCaf-ness is set by noCafIdInfo
                  `setArityInfo` 1      -- Arity 1
                  `setInlinePragInfo`     alwaysInlinePragma
                  `setUnfoldingInfo`      newtype_unf
                  `setLevityInfoWithType` wkr_ty
    id_arg1      = mkTemplateLocal 1 (head arg_tys)
    res_ty_args  = mkTyCoVarTys univ_tvs
    newtype_unf  = ASSERT2( isVanillaDataCon data_con &&
                            isSingleton arg_tys
                          , ppr data_con  )
                              -- Note [Newtype datacons]
                   mkCompulsoryUnfolding $
                   mkLams univ_tvs $ Lam id_arg1 $
                   wrapNewTypeBody tycon res_ty_args (Var id_arg1)

dataConCPR :: DataCon -> DmdResult
dataConCPR con
  | isDataTyCon tycon     -- Real data types only; that is,
                          -- not unboxed tuples or newtypes
  , null (dataConExTyCoVars con)  -- No existentials
  , wkr_arity > 0
  , wkr_arity <= mAX_CPR_SIZE
  = if is_prod then vanillaCprProdRes (dataConRepArity con)
               else cprSumRes (dataConTag con)
  | otherwise
  = topRes
  where
    is_prod   = isProductTyCon tycon
    tycon     = dataConTyCon con
    wkr_arity = dataConRepArity con

    mAX_CPR_SIZE :: Arity
    mAX_CPR_SIZE = 10
    -- We do not treat very big tuples as CPR-ish:
    --      a) for a start we get into trouble because there aren't
    --         "enough" unboxed tuple types (a tiresome restriction,
    --         but hard to fix),
    --      b) more importantly, big unboxed tuples get returned mainly
    --         on the stack, and are often then allocated in the heap
    --         by the caller.  So doing CPR for them may in fact make
    --         things worse.

{-
-------------------------------------------------
--         Data constructor representation
--
-- This is where we decide how to wrap/unwrap the
-- constructor fields
--
--------------------------------------------------
-}

type Unboxer = Var -> UniqSM ([Var], CoreExpr -> CoreExpr)
  -- Unbox: bind rep vars by decomposing src var

data Boxer = UnitBox | Boxer (TCvSubst -> UniqSM ([Var], CoreExpr))
  -- Box:   build src arg using these rep vars

-- | Data Constructor Boxer
newtype DataConBoxer = DCB ([Type] -> [Var] -> UniqSM ([Var], [CoreBind]))
                       -- Bind these src-level vars, returning the
                       -- rep-level vars to bind in the pattern

{-
Note [Inline partially-applied constructor wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We allow the wrapper to inline when partially applied to avoid
boxing values unnecessarily. For example, consider

   data Foo a = Foo !Int a

   instance Traversable Foo where
     traverse f (Foo i a) = Foo i <$> f a

This desugars to

   traverse f foo = case foo of
        Foo i# a -> let i = I# i#
                    in map ($WFoo i) (f a)

If the wrapper `$WFoo` is not inlined, we get a fruitless reboxing of `i`.
But if we inline the wrapper, we get

   map (\a. case i of I# i# a -> Foo i# a) (f a)

and now case-of-known-constructor eliminates the redundant allocation.

-}

mkDataConRep :: DynFlags
             -> FamInstEnvs
             -> Name
             -> Maybe [HsImplBang]
                -- See Note [Bangs on imported data constructors]
             -> DataCon
             -> UniqSM DataConRep
mkDataConRep dflags fam_envs wrap_name mb_bangs data_con
  | not wrapper_reqd
  = return NoDataConRep

  | otherwise
  = do { wrap_args <- mapM newLocal wrap_arg_tys
       ; wrap_body <- mk_rep_app (wrap_args `zip` dropList eq_spec unboxers)
                                 initial_wrap_app

       ; let wrap_id = mkGlobalId (DataConWrapId data_con) wrap_name wrap_ty wrap_info
             wrap_info = noCafIdInfo
                         `setArityInfo`         wrap_arity
                             -- It's important to specify the arity, so that partial
                             -- applications are treated as values
                         `setInlinePragInfo`    wrap_prag
                         `setUnfoldingInfo`     wrap_unf
                         `setStrictnessInfo`    wrap_sig
                             -- We need to get the CAF info right here because GHC.Iface.Tidy
                             -- does not tidy the IdInfo of implicit bindings (like the wrapper)
                             -- so it not make sure that the CAF info is sane
                         `setLevityInfoWithType` wrap_ty

             wrap_sig = mkClosedStrictSig wrap_arg_dmds (dataConCPR data_con)

             wrap_arg_dmds =
               replicate (length theta) topDmd ++ map mk_dmd arg_ibangs
               -- Don't forget the dictionary arguments when building
               -- the strictness signature (#14290).

             mk_dmd str | isBanged str = evalDmd
                        | otherwise           = topDmd

             wrap_prag = alwaysInlinePragma `setInlinePragmaActivation`
                         activeDuringFinal
                         -- See Note [Activation for data constructor wrappers]

             -- The wrapper will usually be inlined (see wrap_unf), so its
             -- strictness and CPR info is usually irrelevant. But this is
             -- not always the case; GHC may choose not to inline it. In
             -- particular, the wrapper constructor is not inlined inside
             -- an INLINE rhs or when it is not applied to any arguments.
             -- See Note [Inline partially-applied constructor wrappers]
             -- Passing Nothing here allows the wrapper to inline when
             -- unsaturated.
             wrap_unf | isNewTyCon tycon = mkCompulsoryUnfolding wrap_rhs
                        -- See Note [Compulsory newtype unfolding]
                      | otherwise        = mkInlineUnfolding wrap_rhs
             wrap_rhs = mkLams wrap_tvs $
                        mkLams wrap_args $
                        wrapFamInstBody tycon res_ty_args $
                        wrap_body

       ; return (DCR { dcr_wrap_id = wrap_id
                     , dcr_boxer   = mk_boxer boxers
                     , dcr_arg_tys = rep_tys
                     , dcr_stricts = rep_strs
                       -- For newtypes, dcr_bangs is always [HsLazy].
                       -- See Note [HsImplBangs for newtypes].
                     , dcr_bangs   = arg_ibangs }) }

  where
    (univ_tvs, ex_tvs, eq_spec, theta, orig_arg_tys, _orig_res_ty)
      = dataConFullSig data_con
    wrap_tvs     = dataConUserTyVars data_con
    res_ty_args  = substTyVars (mkTvSubstPrs (map eqSpecPair eq_spec)) univ_tvs

    tycon        = dataConTyCon data_con       -- The representation TyCon (not family)
    wrap_ty      = dataConUserType data_con
    ev_tys       = eqSpecPreds eq_spec ++ theta
    all_arg_tys  = ev_tys ++ orig_arg_tys
    ev_ibangs    = map (const HsLazy) ev_tys
    orig_bangs   = dataConSrcBangs data_con

    wrap_arg_tys = theta ++ orig_arg_tys
    wrap_arity   = count isCoVar ex_tvs + length wrap_arg_tys
             -- The wrap_args are the arguments *other than* the eq_spec
             -- Because we are going to apply the eq_spec args manually in the
             -- wrapper

    new_tycon = isNewTyCon tycon
    arg_ibangs
      | new_tycon
      = ASSERT( isSingleton orig_arg_tys )
        [HsLazy] -- See Note [HsImplBangs for newtypes]
      | otherwise
      = case mb_bangs of
          Nothing    -> zipWith (dataConSrcToImplBang dflags fam_envs)
                                orig_arg_tys orig_bangs
          Just bangs -> bangs

    (rep_tys_w_strs, wrappers)
      = unzip (zipWith dataConArgRep all_arg_tys (ev_ibangs ++ arg_ibangs))

    (unboxers, boxers) = unzip wrappers
    (rep_tys, rep_strs) = unzip (concat rep_tys_w_strs)

    wrapper_reqd =
        (not new_tycon
                     -- (Most) newtypes have only a worker, with the exception
                     -- of some newtypes written with GADT syntax. See below.
         && (any isBanged (ev_ibangs ++ arg_ibangs)
                     -- Some forcing/unboxing (includes eq_spec)
             || (not $ null eq_spec))) -- GADT
      || isFamInstTyCon tycon -- Cast result
      || dataConUserTyVarsArePermuted data_con
                     -- If the data type was written with GADT syntax and
                     -- orders the type variables differently from what the
                     -- worker expects, it needs a data con wrapper to reorder
                     -- the type variables.
                     -- See Note [Data con wrappers and GADT syntax].

    initial_wrap_app = Var (dataConWorkId data_con)
                       `mkTyApps`  res_ty_args
                       `mkVarApps` ex_tvs
                       `mkCoApps`  map (mkReflCo Nominal . eqSpecType) eq_spec

    mk_boxer :: [Boxer] -> DataConBoxer
    mk_boxer boxers = DCB (\ ty_args src_vars ->
                      do { let (ex_vars, term_vars) = splitAtList ex_tvs src_vars
                               subst1 = zipTvSubst univ_tvs ty_args
                               subst2 = extendTCvSubstList subst1 ex_tvs
                                                           (mkTyCoVarTys ex_vars)
                         ; (rep_ids, binds) <- go subst2 boxers term_vars
                         ; return (ex_vars ++ rep_ids, binds) } )

    go _ [] src_vars = ASSERT2( null src_vars, ppr data_con ) return ([], [])
    go subst (UnitBox : boxers) (src_var : src_vars)
      = do { (rep_ids2, binds) <- go subst boxers src_vars
           ; return (src_var : rep_ids2, binds) }
    go subst (Boxer boxer : boxers) (src_var : src_vars)
      = do { (rep_ids1, arg)  <- boxer subst
           ; (rep_ids2, binds) <- go subst boxers src_vars
           ; return (rep_ids1 ++ rep_ids2, NonRec src_var arg : binds) }
    go _ (_:_) [] = pprPanic "mk_boxer" (ppr data_con)

    mk_rep_app :: [(Id,Unboxer)] -> CoreExpr -> UniqSM CoreExpr
    mk_rep_app [] con_app
      = return con_app
    mk_rep_app ((wrap_arg, unboxer) : prs) con_app
      = do { (rep_ids, unbox_fn) <- unboxer wrap_arg
           ; expr <- mk_rep_app prs (mkVarApps con_app rep_ids)
           ; return (unbox_fn expr) }

{- Note [Activation for data constructor wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Activation on a data constructor wrapper allows it to inline only in Phase
0. This way rules have a chance to fire if they mention a data constructor on
the left
   RULE "foo"  f (K a b) = ...
Since the LHS of rules are simplified with InitialPhase, we won't
inline the wrapper on the LHS either.

On the other hand, this means that exprIsConApp_maybe must be able to deal
with wrappers so that case-of-constructor is not delayed; see
Note [exprIsConApp_maybe on data constructors with wrappers] for details.

It used to activate in phases 2 (afterInitial) and later, but it makes it
awkward to write a RULE[1] with a constructor on the left: it would work if a
constructor has no wrapper, but whether a constructor has a wrapper depends, for
instance, on the order of type argument of that constructors. Therefore changing
the order of type argument could make previously working RULEs fail.

See also https://gitlab.haskell.org/ghc/ghc/issues/15840 .


Note [Bangs on imported data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We pass Maybe [HsImplBang] to mkDataConRep to make use of HsImplBangs
from imported modules.

- Nothing <=> use HsSrcBangs
- Just bangs <=> use HsImplBangs

For imported types we can't work it all out from the HsSrcBangs,
because we want to be very sure to follow what the original module
(where the data type was declared) decided, and that depends on what
flags were enabled when it was compiled. So we record the decisions in
the interface file.

The HsImplBangs passed are in 1-1 correspondence with the
dataConOrigArgTys of the DataCon.

Note [Data con wrappers and unlifted types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   data T = MkT !Int#

We certainly do not want to make a wrapper
   $WMkT x = case x of y { DEFAULT -> MkT y }

For a start, it's still to generate a no-op.  But worse, since wrappers
are currently injected at TidyCore, we don't even optimise it away!
So the stupid case expression stays there.  This actually happened for
the Integer data type (see #1600 comment:66)!

Note [Data con wrappers and GADT syntax]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider these two very similar data types:

  data T1 a b = MkT1 b

  data T2 a b where
    MkT2 :: forall b a. b -> T2 a b

Despite their similar appearance, T2 will have a data con wrapper but T1 will
not. What sets them apart? The types of their constructors, which are:

  MkT1 :: forall a b. b -> T1 a b
  MkT2 :: forall b a. b -> T2 a b

MkT2's use of GADT syntax allows it to permute the order in which `a` and `b`
would normally appear. See Note [DataCon user type variable binders] in DataCon
for further discussion on this topic.

The worker data cons for T1 and T2, however, both have types such that `a` is
expected to come before `b` as arguments. Because MkT2 permutes this order, it
needs a data con wrapper to swizzle around the type variables to be in the
order the worker expects.

A somewhat surprising consequence of this is that *newtypes* can have data con
wrappers! After all, a newtype can also be written with GADT syntax:

  newtype T3 a b where
    MkT3 :: forall b a. b -> T3 a b

Again, this needs a wrapper data con to reorder the type variables. It does
mean that this newtype constructor requires another level of indirection when
being called, but the inliner should make swift work of that.

Note [HsImplBangs for newtypes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Most of the time, we use the dataConSrctoImplBang function to decide what
strictness/unpackedness to use for the fields of a data type constructor. But
there is an exception to this rule: newtype constructors. You might not think
that newtypes would pose a challenge, since newtypes are seemingly forbidden
from having strictness annotations in the first place. But consider this
(from #16141):

  {-# LANGUAGE StrictData #-}
  {-# OPTIONS_GHC -O #-}
  newtype T a b where
    MkT :: forall b a. Int -> T a b

Because StrictData (plus optimization) is enabled, invoking
dataConSrcToImplBang would sneak in and unpack the field of type Int to Int#!
This would be disastrous, since the wrapper for `MkT` uses a coercion involving
Int, not Int#.

Bottom line: dataConSrcToImplBang should never be invoked for newtypes. In the
case of a newtype constructor, we simply hardcode its dcr_bangs field to
[HsLazy].
-}

-------------------------
newLocal :: Type -> UniqSM Var
newLocal ty = do { uniq <- getUniqueM
                 ; return (mkSysLocalOrCoVar (fsLit "dt") uniq ty) }
                 -- We should not have "OrCoVar" here, this is a bug (#17545)


-- | Unpack/Strictness decisions from source module.
--
-- This function should only ever be invoked for data constructor fields, and
-- never on the field of a newtype constructor.
-- See @Note [HsImplBangs for newtypes]@.
dataConSrcToImplBang
   :: DynFlags
   -> FamInstEnvs
   -> Type
   -> HsSrcBang
   -> HsImplBang

dataConSrcToImplBang dflags fam_envs arg_ty
                     (HsSrcBang ann unpk NoSrcStrict)
  | xopt LangExt.StrictData dflags -- StrictData => strict field
  = dataConSrcToImplBang dflags fam_envs arg_ty
                  (HsSrcBang ann unpk SrcStrict)
  | otherwise -- no StrictData => lazy field
  = HsLazy

dataConSrcToImplBang _ _ _ (HsSrcBang _ _ SrcLazy)
  = HsLazy

dataConSrcToImplBang dflags fam_envs arg_ty
                     (HsSrcBang _ unpk_prag SrcStrict)
  | isUnliftedType arg_ty
  = HsLazy  -- For !Int#, say, use HsLazy
            -- See Note [Data con wrappers and unlifted types]

  | not (gopt Opt_OmitInterfacePragmas dflags) -- Don't unpack if -fomit-iface-pragmas
          -- Don't unpack if we aren't optimising; rather arbitrarily,
          -- we use -fomit-iface-pragmas as the indication
  , let mb_co   = topNormaliseType_maybe fam_envs arg_ty
                     -- Unwrap type families and newtypes
        arg_ty' = case mb_co of { Just (_,ty) -> ty; Nothing -> arg_ty }
  , isUnpackableType dflags fam_envs arg_ty'
  , (rep_tys, _) <- dataConArgUnpack arg_ty'
  , case unpk_prag of
      NoSrcUnpack ->
        gopt Opt_UnboxStrictFields dflags
            || (gopt Opt_UnboxSmallStrictFields dflags
                && rep_tys `lengthAtMost` 1) -- See Note [Unpack one-wide fields]
      srcUnpack -> isSrcUnpacked srcUnpack
  = case mb_co of
      Nothing     -> HsUnpack Nothing
      Just (co,_) -> HsUnpack (Just co)

  | otherwise -- Record the strict-but-no-unpack decision
  = HsStrict


-- | Wrappers/Workers and representation following Unpack/Strictness
-- decisions
dataConArgRep
  :: Type
  -> HsImplBang
  -> ([(Type,StrictnessMark)] -- Rep types
     ,(Unboxer,Boxer))

dataConArgRep arg_ty HsLazy
  = ([(arg_ty, NotMarkedStrict)], (unitUnboxer, unitBoxer))

dataConArgRep arg_ty HsStrict
  = ([(arg_ty, MarkedStrict)], (seqUnboxer, unitBoxer))

dataConArgRep arg_ty (HsUnpack Nothing)
  | (rep_tys, wrappers) <- dataConArgUnpack arg_ty
  = (rep_tys, wrappers)

dataConArgRep _ (HsUnpack (Just co))
  | let co_rep_ty = coercionRKind co
  , (rep_tys, wrappers) <- dataConArgUnpack co_rep_ty
  = (rep_tys, wrapCo co co_rep_ty wrappers)


-------------------------
wrapCo :: Coercion -> Type -> (Unboxer, Boxer) -> (Unboxer, Boxer)
wrapCo co rep_ty (unbox_rep, box_rep)  -- co :: arg_ty ~ rep_ty
  = (unboxer, boxer)
  where
    unboxer arg_id = do { rep_id <- newLocal rep_ty
                        ; (rep_ids, rep_fn) <- unbox_rep rep_id
                        ; let co_bind = NonRec rep_id (Var arg_id `Cast` co)
                        ; return (rep_ids, Let co_bind . rep_fn) }
    boxer = Boxer $ \ subst ->
            do { (rep_ids, rep_expr)
                    <- case box_rep of
                         UnitBox -> do { rep_id <- newLocal (TcType.substTy subst rep_ty)
                                       ; return ([rep_id], Var rep_id) }
                         Boxer boxer -> boxer subst
               ; let sco = substCoUnchecked subst co
               ; return (rep_ids, rep_expr `Cast` mkSymCo sco) }

------------------------
seqUnboxer :: Unboxer
seqUnboxer v = return ([v], mkDefaultCase (Var v) v)

unitUnboxer :: Unboxer
unitUnboxer v = return ([v], \e -> e)

unitBoxer :: Boxer
unitBoxer = UnitBox

-------------------------
dataConArgUnpack
   :: Type
   ->  ( [(Type, StrictnessMark)]   -- Rep types
       , (Unboxer, Boxer) )

dataConArgUnpack arg_ty
  | Just (tc, tc_args) <- splitTyConApp_maybe arg_ty
  , Just con <- tyConSingleAlgDataCon_maybe tc
      -- NB: check for an *algebraic* data type
      -- A recursive newtype might mean that
      -- 'arg_ty' is a newtype
  , let rep_tys = dataConInstArgTys con tc_args
  = ASSERT( null (dataConExTyCoVars con) )
      -- Note [Unpacking GADTs and existentials]
    ( rep_tys `zip` dataConRepStrictness con
    ,( \ arg_id ->
       do { rep_ids <- mapM newLocal rep_tys
          ; let unbox_fn body
                  = mkSingleAltCase (Var arg_id) arg_id
                             (DataAlt con) rep_ids body
          ; return (rep_ids, unbox_fn) }
     , Boxer $ \ subst ->
       do { rep_ids <- mapM (newLocal . TcType.substTyUnchecked subst) rep_tys
          ; return (rep_ids, Var (dataConWorkId con)
                             `mkTyApps` (substTysUnchecked subst tc_args)
                             `mkVarApps` rep_ids ) } ) )
  | otherwise
  = pprPanic "dataConArgUnpack" (ppr arg_ty)
    -- An interface file specified Unpacked, but we couldn't unpack it

isUnpackableType :: DynFlags -> FamInstEnvs -> Type -> Bool
-- True if we can unpack the UNPACK the argument type
-- See Note [Recursive unboxing]
-- We look "deeply" inside rather than relying on the DataCons
-- we encounter on the way, because otherwise we might well
-- end up relying on ourselves!
isUnpackableType dflags fam_envs ty
  | Just data_con <- unpackable_type ty
  = ok_con_args emptyNameSet data_con
  | otherwise
  = False
  where
    ok_con_args dcs con
       | dc_name `elemNameSet` dcs
       = False
       | otherwise
       = all (ok_arg dcs')
             (dataConOrigArgTys con `zip` dataConSrcBangs con)
          -- NB: dataConSrcBangs gives the *user* request;
          -- We'd get a black hole if we used dataConImplBangs
       where
         dc_name = getName con
         dcs' = dcs `extendNameSet` dc_name

    ok_arg dcs (ty, bang)
      = not (attempt_unpack bang) || ok_ty dcs norm_ty
      where
        norm_ty = topNormaliseType fam_envs ty

    ok_ty dcs ty
      | Just data_con <- unpackable_type ty
      = ok_con_args dcs data_con
      | otherwise
      = True        -- NB True here, in contrast to False at top level

    attempt_unpack (HsSrcBang _ SrcUnpack NoSrcStrict)
      = xopt LangExt.StrictData dflags
    attempt_unpack (HsSrcBang _ SrcUnpack SrcStrict)
      = True
    attempt_unpack (HsSrcBang _  NoSrcUnpack SrcStrict)
      = True  -- Be conservative
    attempt_unpack (HsSrcBang _  NoSrcUnpack NoSrcStrict)
      = xopt LangExt.StrictData dflags -- Be conservative
    attempt_unpack _ = False

    unpackable_type :: Type -> Maybe DataCon
    -- Works just on a single level
    unpackable_type ty
      | Just (tc, _) <- splitTyConApp_maybe ty
      , Just data_con <- tyConSingleAlgDataCon_maybe tc
      , null (dataConExTyCoVars data_con)
          -- See Note [Unpacking GADTs and existentials]
      = Just data_con
      | otherwise
      = Nothing

{-
Note [Unpacking GADTs and existentials]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is nothing stopping us unpacking a data type with equality
components, like
  data Equal a b where
    Equal :: Equal a a

And it'd be fine to unpack a product type with existential components
too, but that would require a bit more plumbing, so currently we don't.

So for now we require: null (dataConExTyCoVars data_con)
See #14978

Note [Unpack one-wide fields]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The flag UnboxSmallStrictFields ensures that any field that can
(safely) be unboxed to a word-sized unboxed field, should be so unboxed.
For example:

    data A = A Int#
    newtype B = B A
    data C = C !B
    data D = D !C
    data E = E !()
    data F = F !D
    data G = G !F !F

All of these should have an Int# as their representation, except
G which should have two Int#s.

However

    data T = T !(S Int)
    data S = S !a

Here we can represent T with an Int#.

Note [Recursive unboxing]
~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  data R = MkR {-# UNPACK #-} !S Int
  data S = MkS {-# UNPACK #-} !Int
The representation arguments of MkR are the *representation* arguments
of S (plus Int); the rep args of MkS are Int#.  This is all fine.

But be careful not to try to unbox this!
        data T = MkT {-# UNPACK #-} !T Int
Because then we'd get an infinite number of arguments.

Here is a more complicated case:
        data S = MkS {-# UNPACK #-} !T Int
        data T = MkT {-# UNPACK #-} !S Int
Each of S and T must decide independently whether to unpack
and they had better not both say yes. So they must both say no.

Also behave conservatively when there is no UNPACK pragma
        data T = MkS !T Int
with -funbox-strict-fields or -funbox-small-strict-fields
we need to behave as if there was an UNPACK pragma there.

But it's the *argument* type that matters. This is fine:
        data S = MkS S !Int
because Int is non-recursive.

************************************************************************
*                                                                      *
        Wrapping and unwrapping newtypes and type families
*                                                                      *
************************************************************************
-}

wrapNewTypeBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
-- The wrapper for the data constructor for a newtype looks like this:
--      newtype T a = MkT (a,Int)
--      MkT :: forall a. (a,Int) -> T a
--      MkT = /\a. \(x:(a,Int)). x `cast` sym (CoT a)
-- where CoT is the coercion TyCon associated with the newtype
--
-- The call (wrapNewTypeBody T [a] e) returns the
-- body of the wrapper, namely
--      e `cast` (CoT [a])
--
-- If a coercion constructor is provided in the newtype, then we use
-- it, otherwise the wrap/unwrap are both no-ops

wrapNewTypeBody tycon args result_expr
  = ASSERT( isNewTyCon tycon )
    mkCast result_expr (mkSymCo co)
  where
    co = mkUnbranchedAxInstCo Representational (newTyConCo tycon) args []

-- When unwrapping, we do *not* apply any family coercion, because this will
-- be done via a CoPat by the type checker.  We have to do it this way as
-- computing the right type arguments for the coercion requires more than just
-- a splitting operation (cf, TcPat.tcConPat).

unwrapNewTypeBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
unwrapNewTypeBody tycon args result_expr
  = ASSERT( isNewTyCon tycon )
    mkCast result_expr (mkUnbranchedAxInstCo Representational (newTyConCo tycon) args [])

-- If the type constructor is a representation type of a data instance, wrap
-- the expression into a cast adjusting the expression type, which is an
-- instance of the representation type, to the corresponding instance of the
-- family instance type.
-- See Note [Wrappers for data instance tycons]
wrapFamInstBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
wrapFamInstBody tycon args body
  | Just co_con <- tyConFamilyCoercion_maybe tycon
  = mkCast body (mkSymCo (mkUnbranchedAxInstCo Representational co_con args []))
  | otherwise
  = body

{-
************************************************************************
*                                                                      *
\subsection{Primitive operations}
*                                                                      *
************************************************************************
-}

mkPrimOpId :: PrimOp -> Id
mkPrimOpId prim_op
  = id
  where
    (tyvars,arg_tys,res_ty, arity, strict_sig) = primOpSig prim_op
    ty   = mkSpecForAllTys tyvars (mkVisFunTys arg_tys res_ty)
    name = mkWiredInName gHC_PRIM (primOpOcc prim_op)
                         (mkPrimOpIdUnique (primOpTag prim_op))
                         UserSyntax
    id   = mkGlobalId (PrimOpId prim_op) name ty info

    info = noCafIdInfo
           `setRuleInfo`           mkRuleInfo (maybeToList $ primOpRules name prim_op)
           `setArityInfo`          arity
           `setStrictnessInfo`     strict_sig
           `setInlinePragInfo`     neverInlinePragma
           `setLevityInfoWithType` res_ty
               -- We give PrimOps a NOINLINE pragma so that we don't
               -- get silly warnings from Desugar.dsRule (the inline_shadows_rule
               -- test) about a RULE conflicting with a possible inlining
               -- cf #7287

-- For each ccall we manufacture a separate CCallOpId, giving it
-- a fresh unique, a type that is correct for this particular ccall,
-- and a CCall structure that gives the correct details about calling
-- convention etc.
--
-- The *name* of this Id is a local name whose OccName gives the full
-- details of the ccall, type and all.  This means that the interface
-- file reader can reconstruct a suitable Id

mkFCallId :: DynFlags -> Unique -> ForeignCall -> Type -> Id
mkFCallId dflags uniq fcall ty
  = ASSERT( noFreeVarsOfType ty )
    -- A CCallOpId should have no free type variables;
    -- when doing substitutions won't substitute over it
    mkGlobalId (FCallId fcall) name ty info
  where
    occ_str = showSDoc dflags (braces (ppr fcall <+> ppr ty))
    -- The "occurrence name" of a ccall is the full info about the
    -- ccall; it is encoded, but may have embedded spaces etc!

    name = mkFCallName uniq occ_str

    info = noCafIdInfo
           `setArityInfo`          arity
           `setStrictnessInfo`     strict_sig
           `setLevityInfoWithType` ty

    (bndrs, _) = tcSplitPiTys ty
    arity      = count isAnonTyCoBinder bndrs
    strict_sig = mkClosedStrictSig (replicate arity topDmd) topRes
    -- the call does not claim to be strict in its arguments, since they
    -- may be lifted (foreign import prim) and the called code doesn't
    -- necessarily force them. See #11076.
{-
************************************************************************
*                                                                      *
\subsection{DictFuns and default methods}
*                                                                      *
************************************************************************

Note [Dict funs and default methods]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dict funs and default methods are *not* ImplicitIds.  Their definition
involves user-written code, so we can't figure out their strictness etc
based on fixed info, as we can for constructors and record selectors (say).

NB: See also Note [Exported LocalIds] in Id
-}

mkDictFunId :: Name      -- Name to use for the dict fun;
            -> [TyVar]
            -> ThetaType
            -> Class
            -> [Type]
            -> Id
-- Implements the DFun Superclass Invariant (see TcInstDcls)
-- See Note [Dict funs and default methods]

mkDictFunId dfun_name tvs theta clas tys
  = mkExportedLocalId (DFunId is_nt)
                      dfun_name
                      dfun_ty
  where
    is_nt = isNewTyCon (classTyCon clas)
    dfun_ty = mkDictFunTy tvs theta clas tys

mkDictFunTy :: [TyVar] -> ThetaType -> Class -> [Type] -> Type
mkDictFunTy tvs theta clas tys
 = mkSpecSigmaTy tvs theta (mkClassPred clas tys)

{-
************************************************************************
*                                                                      *
\subsection{Un-definable}
*                                                                      *
************************************************************************

These Ids can't be defined in Haskell.  They could be defined in
unfoldings in the wired-in GHC.Prim interface file, but we'd have to
ensure that they were definitely, definitely inlined, because there is
no curried identifier for them.  That's what mkCompulsoryUnfolding
does.  If we had a way to get a compulsory unfolding from an interface
file, we could do that, but we don't right now.

unsafeCoerce# isn't so much a PrimOp as a phantom identifier, that
just gets expanded into a type coercion wherever it occurs.  Hence we
add it as a built-in Id with an unfolding here.

The type variables we use here are "open" type variables: this means
they can unify with both unlifted and lifted types.  Hence we provide
another gun with which to shoot yourself in the foot.
-}

unsafeCoerceName, nullAddrName, seqName,
   realWorldName, voidPrimIdName, coercionTokenName,
   magicDictName, coerceName, proxyName :: Name
unsafeCoerceName  = mkWiredInIdName gHC_PRIM  (fsLit "unsafeCoerce#")  unsafeCoerceIdKey
nullAddrName      = mkWiredInIdName gHC_PRIM  (fsLit "nullAddr#")      nullAddrIdKey
seqName           = mkWiredInIdName gHC_PRIM  (fsLit "seq")            seqIdKey
realWorldName     = mkWiredInIdName gHC_PRIM  (fsLit "realWorld#")     realWorldPrimIdKey
voidPrimIdName    = mkWiredInIdName gHC_PRIM  (fsLit "void#")          voidPrimIdKey
coercionTokenName = mkWiredInIdName gHC_PRIM  (fsLit "coercionToken#") coercionTokenIdKey
magicDictName     = mkWiredInIdName gHC_PRIM  (fsLit "magicDict")      magicDictKey
coerceName        = mkWiredInIdName gHC_PRIM  (fsLit "coerce")         coerceKey
proxyName         = mkWiredInIdName gHC_PRIM  (fsLit "proxy#")         proxyHashKey

lazyIdName, oneShotName, noinlineIdName :: Name
lazyIdName        = mkWiredInIdName gHC_MAGIC (fsLit "lazy")           lazyIdKey
oneShotName       = mkWiredInIdName gHC_MAGIC (fsLit "oneShot")        oneShotKey
noinlineIdName    = mkWiredInIdName gHC_MAGIC (fsLit "noinline")       noinlineIdKey

------------------------------------------------
proxyHashId :: Id
proxyHashId
  = pcMiscPrelId proxyName ty
       (noCafIdInfo `setUnfoldingInfo` evaldUnfolding -- Note [evaldUnfoldings]
                    `setNeverLevPoly`  ty )
  where
    -- proxy# :: forall {k} (a:k). Proxy# k a
    --
    -- The visibility of the `k` binder is Inferred to match the type of the
    -- Proxy data constructor (#16293).
    [kv,tv] = mkTemplateKiTyVars [liftedTypeKind] id
    kv_ty   = mkTyVarTy kv
    tv_ty   = mkTyVarTy tv
    ty      = mkInvForAllTy kv $ mkSpecForAllTy tv $ mkProxyPrimTy kv_ty tv_ty

------------------------------------------------
unsafeCoerceId :: Id
unsafeCoerceId
  = pcMiscPrelId unsafeCoerceName ty info
  where
    info = noCafIdInfo `setInlinePragInfo` alwaysInlinePragma
                       `setUnfoldingInfo`  mkCompulsoryUnfolding rhs

    -- unsafeCoerce# :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
    --                         (a :: TYPE r1) (b :: TYPE r2).
    --                         a -> b
    bndrs = mkTemplateKiTyVars [runtimeRepTy, runtimeRepTy]
                               (\ks -> map tYPE ks)

    [_, _, a, b] = mkTyVarTys bndrs

    ty  = mkSpecForAllTys bndrs (mkVisFunTy a b)

    [x] = mkTemplateLocals [a]
    rhs = mkLams (bndrs ++ [x]) $
          Cast (Var x) (mkUnsafeCo Representational a b)

------------------------------------------------
nullAddrId :: Id
-- nullAddr# :: Addr#
-- The reason it is here is because we don't provide
-- a way to write this literal in Haskell.
nullAddrId = pcMiscPrelId nullAddrName addrPrimTy info
  where
    info = noCafIdInfo `setInlinePragInfo` alwaysInlinePragma
                       `setUnfoldingInfo`  mkCompulsoryUnfolding (Lit nullAddrLit)
                       `setNeverLevPoly`   addrPrimTy

------------------------------------------------
seqId :: Id     -- See Note [seqId magic]
seqId = pcMiscPrelId seqName ty info
  where
    info = noCafIdInfo `setInlinePragInfo` inline_prag
                       `setUnfoldingInfo`  mkCompulsoryUnfolding rhs

    inline_prag
         = alwaysInlinePragma `setInlinePragmaActivation` ActiveAfter
                 NoSourceText 0
                  -- Make 'seq' not inline-always, so that simpleOptExpr
                  -- (see CoreSubst.simple_app) won't inline 'seq' on the
                  -- LHS of rules.  That way we can have rules for 'seq';
                  -- see Note [seqId magic]

    -- seq :: forall (r :: RuntimeRep) a (b :: TYPE r). a -> b -> b
    ty  =
      mkInvForAllTy runtimeRep2TyVar
      $ mkSpecForAllTys [alphaTyVar, openBetaTyVar]
      $ mkVisFunTy alphaTy (mkVisFunTy openBetaTy openBetaTy)

    [x,y] = mkTemplateLocals [alphaTy, openBetaTy]
    rhs = mkLams ([runtimeRep2TyVar, alphaTyVar, openBetaTyVar, x, y]) $
          Case (Var x) x openBetaTy [(DEFAULT, [], Var y)]

------------------------------------------------
lazyId :: Id    -- See Note [lazyId magic]
lazyId = pcMiscPrelId lazyIdName ty info
  where
    info = noCafIdInfo `setNeverLevPoly` ty
    ty  = mkSpecForAllTys [alphaTyVar] (mkVisFunTy alphaTy alphaTy)

noinlineId :: Id -- See Note [noinlineId magic]
noinlineId = pcMiscPrelId noinlineIdName ty info
  where
    info = noCafIdInfo `setNeverLevPoly` ty
    ty  = mkSpecForAllTys [alphaTyVar] (mkVisFunTy alphaTy alphaTy)

oneShotId :: Id -- See Note [The oneShot function]
oneShotId = pcMiscPrelId oneShotName ty info
  where
    info = noCafIdInfo `setInlinePragInfo` alwaysInlinePragma
                       `setUnfoldingInfo`  mkCompulsoryUnfolding rhs
    ty  = mkSpecForAllTys [ runtimeRep1TyVar, runtimeRep2TyVar
                          , openAlphaTyVar, openBetaTyVar ]
                          (mkVisFunTy fun_ty fun_ty)
    fun_ty = mkVisFunTy openAlphaTy openBetaTy
    [body, x] = mkTemplateLocals [fun_ty, openAlphaTy]
    x' = setOneShotLambda x  -- Here is the magic bit!
    rhs = mkLams [ runtimeRep1TyVar, runtimeRep2TyVar
                 , openAlphaTyVar, openBetaTyVar
                 , body, x'] $
          Var body `App` Var x

--------------------------------------------------------------------------------
magicDictId :: Id  -- See Note [magicDictId magic]
magicDictId = pcMiscPrelId magicDictName ty info
  where
  info = noCafIdInfo `setInlinePragInfo` neverInlinePragma
                     `setNeverLevPoly`   ty
  ty   = mkSpecForAllTys [alphaTyVar] alphaTy

--------------------------------------------------------------------------------

coerceId :: Id
coerceId = pcMiscPrelId coerceName ty info
  where
    info = noCafIdInfo `setInlinePragInfo` alwaysInlinePragma
                       `setUnfoldingInfo`  mkCompulsoryUnfolding rhs
    eqRTy     = mkTyConApp coercibleTyCon [ tYPE r , a, b ]
    eqRPrimTy = mkTyConApp eqReprPrimTyCon [ tYPE r, tYPE r, a, b ]
    ty        = mkForAllTys [ Bndr rv Inferred
                            , Bndr av Specified
                            , Bndr bv Specified
                            ] $
                mkInvisFunTy eqRTy $
                mkVisFunTy a b

    bndrs@[rv,av,bv] = mkTemplateKiTyVar runtimeRepTy
                        (\r -> [tYPE r, tYPE r])

    [r, a, b] = mkTyVarTys bndrs

    [eqR,x,eq] = mkTemplateLocals [eqRTy, a, eqRPrimTy]
    rhs = mkLams (bndrs ++ [eqR, x]) $
          mkWildCase (Var eqR) eqRTy b $
          [(DataAlt coercibleDataCon, [eq], Cast (Var x) (mkCoVarCo eq))]

{-
Note [Unsafe coerce magic]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We define a *primitive*
   GHC.Prim.unsafeCoerce#
and then in the base library we define the ordinary function
   Unsafe.Coerce.unsafeCoerce :: forall (a:*) (b:*). a -> b
   unsafeCoerce x = unsafeCoerce# x

Notice that unsafeCoerce has a civilized (albeit still dangerous)
polymorphic type, whose type args have kind *.  So you can't use it on
unboxed values (unsafeCoerce 3#).

In contrast unsafeCoerce# is even more dangerous because you *can* use
it on unboxed things, (unsafeCoerce# 3#) :: Int. Its type is
   forall (r1 :: RuntimeRep) (r2 :: RuntimeRep) (a: TYPE r1) (b: TYPE r2). a -> b

Note [seqId magic]
~~~~~~~~~~~~~~~~~~
'GHC.Prim.seq' is special in several ways.

a) Its fixity is set in GHC.Iface.Load.ghcPrimIface

b) It has quite a bit of desugaring magic.
   See DsUtils.hs Note [Desugaring seq (1)] and (2) and (3)

c) There is some special rule handing: Note [User-defined RULES for seq]

Historical note:
    In TcExpr we used to need a special typing rule for 'seq', to handle calls
    whose second argument had an unboxed type, e.g.  x `seq` 3#

    However, with levity polymorphism we can now give seq the type seq ::
    forall (r :: RuntimeRep) a (b :: TYPE r). a -> b -> b which handles this
    case without special treatment in the typechecker.

Note [User-defined RULES for seq]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roman found situations where he had
      case (f n) of _ -> e
where he knew that f (which was strict in n) would terminate if n did.
Notice that the result of (f n) is discarded. So it makes sense to
transform to
      case n of _ -> e

Rather than attempt some general analysis to support this, I've added
enough support that you can do this using a rewrite rule:

  RULE "f/seq" forall n.  seq (f n) = seq n

You write that rule.  When GHC sees a case expression that discards
its result, it mentally transforms it to a call to 'seq' and looks for
a RULE.  (This is done in Simplify.trySeqRules.)  As usual, the
correctness of the rule is up to you.

VERY IMPORTANT: to make this work, we give the RULE an arity of 1, not 2.
If we wrote
  RULE "f/seq" forall n e.  seq (f n) e = seq n e
with rule arity 2, then two bad things would happen:

  - The magical desugaring done in Note [seqId magic] item (b)
    for saturated application of 'seq' would turn the LHS into
    a case expression!

  - The code in Simplify.rebuildCase would need to actually supply
    the value argument, which turns out to be awkward.

See also: Note [User-defined RULES for seq] in Simplify.


Note [lazyId magic]
~~~~~~~~~~~~~~~~~~~
lazy :: forall a?. a? -> a?   (i.e. works for unboxed types too)

'lazy' is used to make sure that a sub-expression, and its free variables,
are truly used call-by-need, with no code motion.  Key examples:

* pseq:    pseq a b = a `seq` lazy b
  We want to make sure that the free vars of 'b' are not evaluated
  before 'a', even though the expression is plainly strict in 'b'.

* catch:   catch a b = catch# (lazy a) b
  Again, it's clear that 'a' will be evaluated strictly (and indeed
  applied to a state token) but we want to make sure that any exceptions
  arising from the evaluation of 'a' are caught by the catch (see
  #11555).

Implementing 'lazy' is a bit tricky:

* It must not have a strictness signature: by being a built-in Id,
  all the info about lazyId comes from here, not from GHC.Base.hi.
  This is important, because the strictness analyser will spot it as
  strict!

* It must not have an unfolding: it gets "inlined" by a HACK in
  CorePrep. It's very important to do this inlining *after* unfoldings
  are exposed in the interface file.  Otherwise, the unfolding for
  (say) pseq in the interface file will not mention 'lazy', so if we
  inline 'pseq' we'll totally miss the very thing that 'lazy' was
  there for in the first place. See #3259 for a real world
  example.

* Suppose CorePrep sees (catch# (lazy e) b).  At all costs we must
  avoid using call by value here:
     case e of r -> catch# r b
  Avoiding that is the whole point of 'lazy'.  So in CorePrep (which
  generate the 'case' expression for a call-by-value call) we must
  spot the 'lazy' on the arg (in CorePrep.cpeApp), and build a 'let'
  instead.

* lazyId is defined in GHC.Base, so we don't *have* to inline it.  If it
  appears un-applied, we'll end up just calling it.

Note [noinlineId magic]
~~~~~~~~~~~~~~~~~~~~~~~
noinline :: forall a. a -> a

'noinline' is used to make sure that a function f is never inlined,
e.g., as in 'noinline f x'.  Ordinarily, the identity function with NOINLINE
could be used to achieve this effect; however, this has the unfortunate
result of leaving a (useless) call to noinline at runtime.  So we have
a little bit of magic to optimize away 'noinline' after we are done
running the simplifier.

'noinline' needs to be wired-in because it gets inserted automatically
when we serialize an expression to the interface format. See
Note [Inlining and hs-boot files] in GHC.CoreToIface

Note that noinline as currently implemented can hide some simplifications since
it hides strictness from the demand analyser. Specifically, the demand analyser
will treat 'noinline f x' as lazy in 'x', even if the demand signature of 'f'
specifies that it is strict in its argument. We considered fixing this this by adding a
special case to the demand analyser to address #16588. However, the special
case seemed like a large and expensive hammer to address a rare case and
consequently we rather opted to use a more minimal solution.

Note [The oneShot function]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the context of making left-folds fuse somewhat okish (see ticket #7994
and Note [Left folds via right fold]) it was determined that it would be useful
if library authors could explicitly tell the compiler that a certain lambda is
called at most once. The oneShot function allows that.

'oneShot' is levity-polymorphic, i.e. the type variables can refer to unlifted
types as well (#10744); e.g.
   oneShot (\x:Int# -> x +# 1#)

Like most magic functions it has a compulsory unfolding, so there is no need
for a real definition somewhere. We have one in GHC.Magic for the convenience
of putting the documentation there.

It uses `setOneShotLambda` on the lambda's binder. That is the whole magic:

A typical call looks like
     oneShot (\y. e)
after unfolding the definition `oneShot = \f \x[oneshot]. f x` we get
     (\f \x[oneshot]. f x) (\y. e)
 --> \x[oneshot]. ((\y.e) x)
 --> \x[oneshot] e[x/y]
which is what we want.

It is only effective if the one-shot info survives as long as possible; in
particular it must make it into the interface in unfoldings. See Note [Preserve
OneShotInfo] in CoreTidy.

Also see https://gitlab.haskell.org/ghc/ghc/wikis/one-shot.


Note [magicDictId magic]
~~~~~~~~~~~~~~~~~~~~~~~~~
The identifier `magicDict` is just a place-holder, which is used to
implement a primitive that we cannot define in Haskell but we can write
in Core.  It is declared with a place-holder type:

    magicDict :: forall a. a

The intention is that the identifier will be used in a very specific way,
to create dictionaries for classes with a single method.  Consider a class
like this:

   class C a where
     f :: T a

We are going to use `magicDict`, in conjunction with a built-in Prelude
rule, to cast values of type `T a` into dictionaries for `C a`.  To do
this, we define a function like this in the library:

  data WrapC a b = WrapC (C a => Proxy a -> b)

  withT :: (C a => Proxy a -> b)
        ->  T a -> Proxy a -> b
  withT f x y = magicDict (WrapC f) x y

The purpose of `WrapC` is to avoid having `f` instantiated.
Also, it avoids impredicativity, because `magicDict`'s type
cannot be instantiated with a forall.  The field of `WrapC` contains
a `Proxy` parameter which is used to link the type of the constraint,
`C a`, with the type of the `Wrap` value being made.

Next, we add a built-in Prelude rule (see prelude/PrelRules.hs),
which will replace the RHS of this definition with the appropriate
definition in Core.  The rewrite rule works as follows:

  magicDict @t (wrap @a @b f) x y
---->
  f (x `cast` co a) y

The `co` coercion is the newtype-coercion extracted from the type-class.
The type class is obtain by looking at the type of wrap.


-------------------------------------------------------------
@realWorld#@ used to be a magic literal, \tr{void#}.  If things get
nasty as-is, change it back to a literal (@Literal@).

voidArgId is a Local Id used simply as an argument in functions
where we just want an arg to avoid having a thunk of unlifted type.
E.g.
        x = \ void :: Void# -> (# p, q #)

This comes up in strictness analysis

Note [evaldUnfoldings]
~~~~~~~~~~~~~~~~~~~~~~
The evaldUnfolding makes it look that some primitive value is
evaluated, which in turn makes Simplify.interestingArg return True,
which in turn makes INLINE things applied to said value likely to be
inlined.
-}

realWorldPrimId :: Id   -- :: State# RealWorld
realWorldPrimId = pcMiscPrelId realWorldName realWorldStatePrimTy
                     (noCafIdInfo `setUnfoldingInfo` evaldUnfolding    -- Note [evaldUnfoldings]
                                  `setOneShotInfo` stateHackOneShot
                                  `setNeverLevPoly` realWorldStatePrimTy)

voidPrimId :: Id     -- Global constant :: Void#
voidPrimId  = pcMiscPrelId voidPrimIdName voidPrimTy
                (noCafIdInfo `setUnfoldingInfo` evaldUnfolding     -- Note [evaldUnfoldings]
                             `setNeverLevPoly`  voidPrimTy)

voidArgId :: Id       -- Local lambda-bound :: Void#
voidArgId = mkSysLocal (fsLit "void") voidArgIdKey voidPrimTy

coercionTokenId :: Id         -- :: () ~ ()
coercionTokenId -- Used to replace Coercion terms when we go to STG
  = pcMiscPrelId coercionTokenName
                 (mkTyConApp eqPrimTyCon [liftedTypeKind, liftedTypeKind, unitTy, unitTy])
                 noCafIdInfo

pcMiscPrelId :: Name -> Type -> IdInfo -> Id
pcMiscPrelId name ty info
  = mkVanillaGlobalWithInfo name ty info
    -- We lie and say the thing is imported; otherwise, we get into
    -- a mess with dependency analysis; e.g., core2stg may heave in
    -- random calls to GHCbase.unpackPS__.  If GHCbase is the module
    -- being compiled, then it's just a matter of luck if the definition
    -- will be in "the right place" to be in scope.