summaryrefslogtreecommitdiff
path: root/compiler/basicTypes/Id.hs
blob: 8c62cc9944f2399e4d42551a8f559df3232e5e51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

\section[Id]{@Ids@: Value and constructor identifiers}
-}

{-# LANGUAGE CPP #-}

-- |
-- #name_types#
-- GHC uses several kinds of name internally:
--
-- * 'OccName.OccName': see "OccName#name_types"
--
-- * 'RdrName.RdrName': see "RdrName#name_types"
--
-- * 'Name.Name': see "Name#name_types"
--
-- * 'Id.Id' represents names that not only have a 'Name.Name' but also a 'TyCoRep.Type' and some additional
--   details (a 'IdInfo.IdInfo' and one of 'Var.LocalIdDetails' or 'IdInfo.GlobalIdDetails') that
--   are added, modified and inspected by various compiler passes. These 'Var.Var' names may either
--   be global or local, see "Var#globalvslocal"
--
-- * 'Var.Var': see "Var#name_types"

module Id (
        -- * The main types
        Var, Id, isId,

        -- * In and Out variants
        InVar,  InId,
        OutVar, OutId,

        -- ** Simple construction
        mkGlobalId, mkVanillaGlobal, mkVanillaGlobalWithInfo,
        mkLocalId, mkLocalCoVar, mkLocalIdOrCoVar,
        mkLocalIdOrCoVarWithInfo,
        mkLocalIdWithInfo, mkExportedLocalId, mkExportedVanillaId,
        mkSysLocal, mkSysLocalM, mkSysLocalOrCoVar, mkSysLocalOrCoVarM,
        mkUserLocal, mkUserLocalOrCoVar,
        mkTemplateLocals, mkTemplateLocalsNum, mkTemplateLocal,
        mkWorkerId,

        -- ** Taking an Id apart
        idName, idType, idUnique, idInfo, idDetails,
        recordSelectorTyCon,

        -- ** Modifying an Id
        setIdName, setIdUnique, Id.setIdType,
        setIdExported, setIdNotExported,
        globaliseId, localiseId,
        setIdInfo, lazySetIdInfo, modifyIdInfo, maybeModifyIdInfo,
        zapLamIdInfo, zapIdDemandInfo, zapIdUsageInfo, zapIdUsageEnvInfo,
        zapIdUsedOnceInfo, zapIdTailCallInfo,
        zapFragileIdInfo, zapIdStrictness, zapStableUnfolding,
        transferPolyIdInfo,

        -- ** Predicates on Ids
        isImplicitId, isDeadBinder,
        isStrictId,
        isExportedId, isLocalId, isGlobalId,
        isRecordSelector, isNaughtyRecordSelector,
        isPatSynRecordSelector,
        isDataConRecordSelector,
        isClassOpId_maybe, isDFunId,
        isPrimOpId, isPrimOpId_maybe,
        isFCallId, isFCallId_maybe,
        isDataConWorkId, isDataConWorkId_maybe,
        isDataConWrapId, isDataConWrapId_maybe,
        isDataConId_maybe,
        idDataCon,
        isConLikeId, isBottomingId, idIsFrom,
        hasNoBinding,

        -- ** Join variables
        JoinId, isJoinId, isJoinId_maybe, idJoinArity,
        asJoinId, asJoinId_maybe, zapJoinId,

        -- ** Inline pragma stuff
        idInlinePragma, setInlinePragma, modifyInlinePragma,
        idInlineActivation, setInlineActivation, idRuleMatchInfo,

        -- ** One-shot lambdas
        isOneShotBndr, isProbablyOneShotLambda,
        setOneShotLambda, clearOneShotLambda,
        updOneShotInfo, setIdOneShotInfo,
        isStateHackType, stateHackOneShot, typeOneShot,

        -- ** Reading 'IdInfo' fields
        idArity,
        idCallArity, idFunRepArity,
        idUnfolding, realIdUnfolding,
        idSpecialisation, idCoreRules, idHasRules,
        idCafInfo,
        idOneShotInfo, idStateHackOneShotInfo,
        idOccInfo,
        isNeverLevPolyId,

        -- ** Writing 'IdInfo' fields
        setIdUnfolding, setCaseBndrEvald,
        setIdArity,
        setIdCallArity,

        setIdSpecialisation,
        setIdCafInfo,
        setIdOccInfo, zapIdOccInfo,

        setIdDemandInfo,
        setIdStrictness,

        idDemandInfo,
        idStrictness,

    ) where

#include "HsVersions.h"

import GhcPrelude

import DynFlags
import CoreSyn ( CoreRule, isStableUnfolding, evaldUnfolding,
                 isCompulsoryUnfolding, Unfolding( NoUnfolding ) )

import IdInfo
import BasicTypes

-- Imported and re-exported
import Var( Id, CoVar, JoinId,
            InId,  InVar,
            OutId, OutVar,
            idInfo, idDetails, setIdDetails, globaliseId, varType,
            isId, isLocalId, isGlobalId, isExportedId )
import qualified Var

import Type
import RepType
import TysPrim
import DataCon
import Demand
import Name
import Module
import Class
import {-# SOURCE #-} PrimOp (PrimOp)
import ForeignCall
import Maybes
import SrcLoc
import Outputable
import Unique
import UniqSupply
import FastString
import Util

-- infixl so you can say (id `set` a `set` b)
infixl  1 `setIdUnfolding`,
          `setIdArity`,
          `setIdCallArity`,
          `setIdOccInfo`,
          `setIdOneShotInfo`,

          `setIdSpecialisation`,
          `setInlinePragma`,
          `setInlineActivation`,
          `idCafInfo`,

          `setIdDemandInfo`,
          `setIdStrictness`,

          `asJoinId`,
          `asJoinId_maybe`

{-
************************************************************************
*                                                                      *
\subsection{Basic Id manipulation}
*                                                                      *
************************************************************************
-}

idName   :: Id -> Name
idName    = Var.varName

idUnique :: Id -> Unique
idUnique  = Var.varUnique

idType   :: Id -> Kind
idType    = Var.varType

setIdName :: Id -> Name -> Id
setIdName = Var.setVarName

setIdUnique :: Id -> Unique -> Id
setIdUnique = Var.setVarUnique

-- | Not only does this set the 'Id' 'Type', it also evaluates the type to try and
-- reduce space usage
setIdType :: Id -> Type -> Id
setIdType id ty = seqType ty `seq` Var.setVarType id ty

setIdExported :: Id -> Id
setIdExported = Var.setIdExported

setIdNotExported :: Id -> Id
setIdNotExported = Var.setIdNotExported

localiseId :: Id -> Id
-- Make an Id with the same unique and type as the
-- incoming Id, but with an *Internal* Name and *LocalId* flavour
localiseId id
  | ASSERT( isId id ) isLocalId id && isInternalName name
  = id
  | otherwise
  = Var.mkLocalVar (idDetails id) (localiseName name) (idType id) (idInfo id)
  where
    name = idName id

lazySetIdInfo :: Id -> IdInfo -> Id
lazySetIdInfo = Var.lazySetIdInfo

setIdInfo :: Id -> IdInfo -> Id
setIdInfo id info = info `seq` (lazySetIdInfo id info)
        -- Try to avoid space leaks by seq'ing

modifyIdInfo :: HasDebugCallStack => (IdInfo -> IdInfo) -> Id -> Id
modifyIdInfo fn id = setIdInfo id (fn (idInfo id))

-- maybeModifyIdInfo tries to avoid unnecessary thrashing
maybeModifyIdInfo :: Maybe IdInfo -> Id -> Id
maybeModifyIdInfo (Just new_info) id = lazySetIdInfo id new_info
maybeModifyIdInfo Nothing         id = id

{-
************************************************************************
*                                                                      *
\subsection{Simple Id construction}
*                                                                      *
************************************************************************

Absolutely all Ids are made by mkId.  It is just like Var.mkId,
but in addition it pins free-tyvar-info onto the Id's type,
where it can easily be found.

Note [Free type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~
At one time we cached the free type variables of the type of an Id
at the root of the type in a TyNote.  The idea was to avoid repeating
the free-type-variable calculation.  But it turned out to slow down
the compiler overall. I don't quite know why; perhaps finding free
type variables of an Id isn't all that common whereas applying a
substitution (which changes the free type variables) is more common.
Anyway, we removed it in March 2008.
-}

-- | For an explanation of global vs. local 'Id's, see "Var#globalvslocal"
mkGlobalId :: IdDetails -> Name -> Type -> IdInfo -> Id
mkGlobalId = Var.mkGlobalVar

-- | Make a global 'Id' without any extra information at all
mkVanillaGlobal :: Name -> Type -> Id
mkVanillaGlobal name ty = mkVanillaGlobalWithInfo name ty vanillaIdInfo

-- | Make a global 'Id' with no global information but some generic 'IdInfo'
mkVanillaGlobalWithInfo :: Name -> Type -> IdInfo -> Id
mkVanillaGlobalWithInfo = mkGlobalId VanillaId


-- | For an explanation of global vs. local 'Id's, see "Var#globalvslocal"
mkLocalId :: Name -> Type -> Id
mkLocalId name ty = mkLocalIdWithInfo name ty vanillaIdInfo
 -- It's tempting to ASSERT( not (isCoVarType ty) ), but don't. Sometimes,
 -- the type is a panic. (Search invented_id)

-- | Make a local CoVar
mkLocalCoVar :: Name -> Type -> CoVar
mkLocalCoVar name ty
  = ASSERT( isCoVarType ty )
    Var.mkLocalVar CoVarId name ty vanillaIdInfo

-- | Like 'mkLocalId', but checks the type to see if it should make a covar
mkLocalIdOrCoVar :: Name -> Type -> Id
mkLocalIdOrCoVar name ty
  | isCoVarType ty = mkLocalCoVar name ty
  | otherwise      = mkLocalId    name ty

-- | Make a local id, with the IdDetails set to CoVarId if the type indicates
-- so.
mkLocalIdOrCoVarWithInfo :: Name -> Type -> IdInfo -> Id
mkLocalIdOrCoVarWithInfo name ty info
  = Var.mkLocalVar details name ty info
  where
    details | isCoVarType ty = CoVarId
            | otherwise      = VanillaId

    -- proper ids only; no covars!
mkLocalIdWithInfo :: Name -> Type -> IdInfo -> Id
mkLocalIdWithInfo name ty info = Var.mkLocalVar VanillaId name ty info
        -- Note [Free type variables]

-- | Create a local 'Id' that is marked as exported.
-- This prevents things attached to it from being removed as dead code.
-- See Note [Exported LocalIds]
mkExportedLocalId :: IdDetails -> Name -> Type -> Id
mkExportedLocalId details name ty = Var.mkExportedLocalVar details name ty vanillaIdInfo
        -- Note [Free type variables]

mkExportedVanillaId :: Name -> Type -> Id
mkExportedVanillaId name ty = Var.mkExportedLocalVar VanillaId name ty vanillaIdInfo
        -- Note [Free type variables]


-- | Create a system local 'Id'. These are local 'Id's (see "Var#globalvslocal")
-- that are created by the compiler out of thin air
mkSysLocal :: FastString -> Unique -> Type -> Id
mkSysLocal fs uniq ty = ASSERT( not (isCoVarType ty) )
                        mkLocalId (mkSystemVarName uniq fs) ty

-- | Like 'mkSysLocal', but checks to see if we have a covar type
mkSysLocalOrCoVar :: FastString -> Unique -> Type -> Id
mkSysLocalOrCoVar fs uniq ty
  = mkLocalIdOrCoVar (mkSystemVarName uniq fs) ty

mkSysLocalM :: MonadUnique m => FastString -> Type -> m Id
mkSysLocalM fs ty = getUniqueM >>= (\uniq -> return (mkSysLocal fs uniq ty))

mkSysLocalOrCoVarM :: MonadUnique m => FastString -> Type -> m Id
mkSysLocalOrCoVarM fs ty
  = getUniqueM >>= (\uniq -> return (mkSysLocalOrCoVar fs uniq ty))

-- | Create a user local 'Id'. These are local 'Id's (see "Var#globalvslocal") with a name and location that the user might recognize
mkUserLocal :: OccName -> Unique -> Type -> SrcSpan -> Id
mkUserLocal occ uniq ty loc = ASSERT( not (isCoVarType ty) )
                              mkLocalId (mkInternalName uniq occ loc) ty

-- | Like 'mkUserLocal', but checks if we have a coercion type
mkUserLocalOrCoVar :: OccName -> Unique -> Type -> SrcSpan -> Id
mkUserLocalOrCoVar occ uniq ty loc
  = mkLocalIdOrCoVar (mkInternalName uniq occ loc) ty

{-
Make some local @Ids@ for a template @CoreExpr@.  These have bogus
@Uniques@, but that's OK because the templates are supposed to be
instantiated before use.
-}

-- | Workers get local names. "CoreTidy" will externalise these if necessary
mkWorkerId :: Unique -> Id -> Type -> Id
mkWorkerId uniq unwrkr ty
  = mkLocalIdOrCoVar (mkDerivedInternalName mkWorkerOcc uniq (getName unwrkr)) ty

-- | Create a /template local/: a family of system local 'Id's in bijection with @Int@s, typically used in unfoldings
mkTemplateLocal :: Int -> Type -> Id
mkTemplateLocal i ty = mkSysLocalOrCoVar (fsLit "v") (mkBuiltinUnique i) ty

-- | Create a template local for a series of types
mkTemplateLocals :: [Type] -> [Id]
mkTemplateLocals = mkTemplateLocalsNum 1

-- | Create a template local for a series of type, but start from a specified template local
mkTemplateLocalsNum :: Int -> [Type] -> [Id]
mkTemplateLocalsNum n tys = zipWith mkTemplateLocal [n..] tys

{- Note [Exported LocalIds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We use mkExportedLocalId for things like
 - Dictionary functions (DFunId)
 - Wrapper and matcher Ids for pattern synonyms
 - Default methods for classes
 - Pattern-synonym matcher and builder Ids
 - etc

They marked as "exported" in the sense that they should be kept alive
even if apparently unused in other bindings, and not dropped as dead
code by the occurrence analyser.  (But "exported" here does not mean
"brought into lexical scope by an import declaration". Indeed these
things are always internal Ids that the user never sees.)

It's very important that they are *LocalIds*, not GlobalIds, for lots
of reasons:

 * We want to treat them as free variables for the purpose of
   dependency analysis (e.g. CoreFVs.exprFreeVars).

 * Look them up in the current substitution when we come across
   occurrences of them (in Subst.lookupIdSubst). Lacking this we
   can get an out-of-date unfolding, which can in turn make the
   simplifier go into an infinite loop (#9857)

 * Ensure that for dfuns that the specialiser does not float dict uses
   above their defns, which would prevent good simplifications happening.

 * The strictness analyser treats a occurrence of a GlobalId as
   imported and assumes it contains strictness in its IdInfo, which
   isn't true if the thing is bound in the same module as the
   occurrence.

In CoreTidy we must make all these LocalIds into GlobalIds, so that in
importing modules (in --make mode) we treat them as properly global.
That is what is happening in, say tidy_insts in TidyPgm.

************************************************************************
*                                                                      *
\subsection{Special Ids}
*                                                                      *
************************************************************************
-}

-- | If the 'Id' is that for a record selector, extract the 'sel_tycon'. Panic otherwise.
recordSelectorTyCon :: Id -> RecSelParent
recordSelectorTyCon id
  = case Var.idDetails id of
        RecSelId { sel_tycon = parent } -> parent
        _ -> panic "recordSelectorTyCon"


isRecordSelector        :: Id -> Bool
isNaughtyRecordSelector :: Id -> Bool
isPatSynRecordSelector  :: Id -> Bool
isDataConRecordSelector  :: Id -> Bool
isPrimOpId              :: Id -> Bool
isFCallId               :: Id -> Bool
isDataConWorkId         :: Id -> Bool
isDataConWrapId         :: Id -> Bool
isDFunId                :: Id -> Bool

isClassOpId_maybe       :: Id -> Maybe Class
isPrimOpId_maybe        :: Id -> Maybe PrimOp
isFCallId_maybe         :: Id -> Maybe ForeignCall
isDataConWorkId_maybe   :: Id -> Maybe DataCon
isDataConWrapId_maybe   :: Id -> Maybe DataCon

isRecordSelector id = case Var.idDetails id of
                        RecSelId {}     -> True
                        _               -> False

isDataConRecordSelector id = case Var.idDetails id of
                        RecSelId {sel_tycon = RecSelData _} -> True
                        _               -> False

isPatSynRecordSelector id = case Var.idDetails id of
                        RecSelId {sel_tycon = RecSelPatSyn _} -> True
                        _               -> False

isNaughtyRecordSelector id = case Var.idDetails id of
                        RecSelId { sel_naughty = n } -> n
                        _                               -> False

isClassOpId_maybe id = case Var.idDetails id of
                        ClassOpId cls -> Just cls
                        _other        -> Nothing

isPrimOpId id = case Var.idDetails id of
                        PrimOpId _ -> True
                        _          -> False

isDFunId id = case Var.idDetails id of
                        DFunId {} -> True
                        _         -> False

isPrimOpId_maybe id = case Var.idDetails id of
                        PrimOpId op -> Just op
                        _           -> Nothing

isFCallId id = case Var.idDetails id of
                        FCallId _ -> True
                        _         -> False

isFCallId_maybe id = case Var.idDetails id of
                        FCallId call -> Just call
                        _            -> Nothing

isDataConWorkId id = case Var.idDetails id of
                        DataConWorkId _ -> True
                        _               -> False

isDataConWorkId_maybe id = case Var.idDetails id of
                        DataConWorkId con -> Just con
                        _                 -> Nothing

isDataConWrapId id = case Var.idDetails id of
                       DataConWrapId _ -> True
                       _               -> False

isDataConWrapId_maybe id = case Var.idDetails id of
                        DataConWrapId con -> Just con
                        _                 -> Nothing

isDataConId_maybe :: Id -> Maybe DataCon
isDataConId_maybe id = case Var.idDetails id of
                         DataConWorkId con -> Just con
                         DataConWrapId con -> Just con
                         _                 -> Nothing

isJoinId :: Var -> Bool
-- It is convenient in SetLevels.lvlMFE to apply isJoinId
-- to the free vars of an expression, so it's convenient
-- if it returns False for type variables
isJoinId id
  | isId id = case Var.idDetails id of
                JoinId {} -> True
                _         -> False
  | otherwise = False

isJoinId_maybe :: Var -> Maybe JoinArity
isJoinId_maybe id
 | isId id  = ASSERT2( isId id, ppr id )
              case Var.idDetails id of
                JoinId arity -> Just arity
                _            -> Nothing
 | otherwise = Nothing

idDataCon :: Id -> DataCon
-- ^ Get from either the worker or the wrapper 'Id' to the 'DataCon'. Currently used only in the desugarer.
--
-- INVARIANT: @idDataCon (dataConWrapId d) = d@: remember, 'dataConWrapId' can return either the wrapper or the worker
idDataCon id = isDataConId_maybe id `orElse` pprPanic "idDataCon" (ppr id)

hasNoBinding :: Id -> Bool
-- ^ Returns @True@ of an 'Id' which may not have a
-- binding, even though it is defined in this module.

-- Data constructor workers used to be things of this kind, but
-- they aren't any more.  Instead, we inject a binding for
-- them at the CorePrep stage.
--
-- 'PrimOpId's also used to be of this kind. See Note [Primop wrappers] in PrimOp.hs.
-- for the history of this.
--
-- Note that CorePrep currently eta expands things no-binding things and this
-- can cause quite subtle bugs. See Note [Eta expansion of hasNoBinding things
-- in CorePrep] in CorePrep for details.
--
-- EXCEPT: unboxed tuples, which definitely have no binding
hasNoBinding id = case Var.idDetails id of
                        PrimOpId _       -> False   -- See Note [Primop wrappers] in PrimOp.hs
                        FCallId _        -> True
                        DataConWorkId dc -> isUnboxedTupleCon dc || isUnboxedSumCon dc
                        _                -> isCompulsoryUnfolding (idUnfolding id)
                                            -- See Note [Levity-polymorphic Ids]

isImplicitId :: Id -> Bool
-- ^ 'isImplicitId' tells whether an 'Id's info is implied by other
-- declarations, so we don't need to put its signature in an interface
-- file, even if it's mentioned in some other interface unfolding.
isImplicitId id
  = case Var.idDetails id of
        FCallId {}       -> True
        ClassOpId {}     -> True
        PrimOpId {}      -> True
        DataConWorkId {} -> True
        DataConWrapId {} -> True
                -- These are implied by their type or class decl;
                -- remember that all type and class decls appear in the interface file.
                -- The dfun id is not an implicit Id; it must *not* be omitted, because
                -- it carries version info for the instance decl
        _               -> False

idIsFrom :: Module -> Id -> Bool
idIsFrom mod id = nameIsLocalOrFrom mod (idName id)

{- Note [Levity-polymorphic Ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some levity-polymorphic Ids must be applied and and inlined, not left
un-saturated.  Example:
  unsafeCoerceId :: forall r1 r2 (a::TYPE r1) (b::TYPE r2). a -> b

This has a compulsory unfolding because we can't lambda-bind those
arguments.  But the compulsory unfolding may leave levity-polymorphic
lambdas if it is not applied to enough arguments; e.g. (#14561)
  bad :: forall (a :: TYPE r). a -> a
  bad = unsafeCoerce#

The desugar has special magic to detect such cases: DsExpr.badUseOfLevPolyPrimop.
And we want that magic to apply to levity-polymorphic compulsory-inline things.
The easiest way to do this is for hasNoBinding to return True of all things
that have compulsory unfolding.  Some Ids with a compulsory unfolding also
have a binding, but it does not harm to say they don't here, and its a very
simple way to fix #14561.
-}

isDeadBinder :: Id -> Bool
isDeadBinder bndr | isId bndr = isDeadOcc (idOccInfo bndr)
                  | otherwise = False   -- TyVars count as not dead

{-
************************************************************************
*                                                                      *
              Join variables
*                                                                      *
************************************************************************
-}

idJoinArity :: JoinId -> JoinArity
idJoinArity id = isJoinId_maybe id `orElse` pprPanic "idJoinArity" (ppr id)

asJoinId :: Id -> JoinArity -> JoinId
asJoinId id arity = WARN(not (isLocalId id),
                         text "global id being marked as join var:" <+> ppr id)
                    WARN(not (is_vanilla_or_join id),
                         ppr id <+> pprIdDetails (idDetails id))
                    id `setIdDetails` JoinId arity
  where
    is_vanilla_or_join id = case Var.idDetails id of
                              VanillaId -> True
                              JoinId {} -> True
                              _         -> False

zapJoinId :: Id -> Id
-- May be a regular id already
zapJoinId jid | isJoinId jid = zapIdTailCallInfo (jid `setIdDetails` VanillaId)
                                 -- Core Lint may complain if still marked
                                 -- as AlwaysTailCalled
              | otherwise    = jid

asJoinId_maybe :: Id -> Maybe JoinArity -> Id
asJoinId_maybe id (Just arity) = asJoinId id arity
asJoinId_maybe id Nothing      = zapJoinId id

{-
************************************************************************
*                                                                      *
\subsection{IdInfo stuff}
*                                                                      *
************************************************************************
-}

        ---------------------------------
        -- ARITY
idArity :: Id -> Arity
idArity id = arityInfo (idInfo id)

setIdArity :: Id -> Arity -> Id
setIdArity id arity = modifyIdInfo (`setArityInfo` arity) id

idCallArity :: Id -> Arity
idCallArity id = callArityInfo (idInfo id)

setIdCallArity :: Id -> Arity -> Id
setIdCallArity id arity = modifyIdInfo (`setCallArityInfo` arity) id

idFunRepArity :: Id -> RepArity
idFunRepArity x = countFunRepArgs (idArity x) (idType x)

-- | Returns true if an application to n args would diverge
isBottomingId :: Var -> Bool
isBottomingId v
  | isId v    = isBottomingSig (idStrictness v)
  | otherwise = False

-- | Accesses the 'Id''s 'strictnessInfo'.
idStrictness :: Id -> StrictSig
idStrictness id = strictnessInfo (idInfo id)

setIdStrictness :: Id -> StrictSig -> Id
setIdStrictness id sig = modifyIdInfo (`setStrictnessInfo` sig) id

zapIdStrictness :: Id -> Id
zapIdStrictness id = modifyIdInfo (`setStrictnessInfo` nopSig) id

-- | This predicate says whether the 'Id' has a strict demand placed on it or
-- has a type such that it can always be evaluated strictly (i.e an
-- unlifted type, as of GHC 7.6).  We need to
-- check separately whether the 'Id' has a so-called \"strict type\" because if
-- the demand for the given @id@ hasn't been computed yet but @id@ has a strict
-- type, we still want @isStrictId id@ to be @True@.
isStrictId :: Id -> Bool
isStrictId id
  = ASSERT2( isId id, text "isStrictId: not an id: " <+> ppr id )
         not (isJoinId id) && (
           (isStrictType (idType id)) ||
           -- Take the best of both strictnesses - old and new
           (isStrictDmd (idDemandInfo id))
         )

        ---------------------------------
        -- UNFOLDING
idUnfolding :: Id -> Unfolding
-- Do not expose the unfolding of a loop breaker!
idUnfolding id
  | isStrongLoopBreaker (occInfo info) = NoUnfolding
  | otherwise                          = unfoldingInfo info
  where
    info = idInfo id

realIdUnfolding :: Id -> Unfolding
-- Expose the unfolding if there is one, including for loop breakers
realIdUnfolding id = unfoldingInfo (idInfo id)

setIdUnfolding :: Id -> Unfolding -> Id
setIdUnfolding id unfolding = modifyIdInfo (`setUnfoldingInfo` unfolding) id

idDemandInfo       :: Id -> Demand
idDemandInfo       id = demandInfo (idInfo id)

setIdDemandInfo :: Id -> Demand -> Id
setIdDemandInfo id dmd = modifyIdInfo (`setDemandInfo` dmd) id

setCaseBndrEvald :: StrictnessMark -> Id -> Id
-- Used for variables bound by a case expressions, both the case-binder
-- itself, and any pattern-bound variables that are argument of a
-- strict constructor.  It just marks the variable as already-evaluated,
-- so that (for example) a subsequent 'seq' can be dropped
setCaseBndrEvald str id
  | isMarkedStrict str = id `setIdUnfolding` evaldUnfolding
  | otherwise          = id

        ---------------------------------
        -- SPECIALISATION

-- See Note [Specialisations and RULES in IdInfo] in IdInfo.hs

idSpecialisation :: Id -> RuleInfo
idSpecialisation id = ruleInfo (idInfo id)

idCoreRules :: Id -> [CoreRule]
idCoreRules id = ruleInfoRules (idSpecialisation id)

idHasRules :: Id -> Bool
idHasRules id = not (isEmptyRuleInfo (idSpecialisation id))

setIdSpecialisation :: Id -> RuleInfo -> Id
setIdSpecialisation id spec_info = modifyIdInfo (`setRuleInfo` spec_info) id

        ---------------------------------
        -- CAF INFO
idCafInfo :: Id -> CafInfo
idCafInfo id = cafInfo (idInfo id)

setIdCafInfo :: Id -> CafInfo -> Id
setIdCafInfo id caf_info = modifyIdInfo (`setCafInfo` caf_info) id

        ---------------------------------
        -- Occurrence INFO
idOccInfo :: Id -> OccInfo
idOccInfo id = occInfo (idInfo id)

setIdOccInfo :: Id -> OccInfo -> Id
setIdOccInfo id occ_info = modifyIdInfo (`setOccInfo` occ_info) id

zapIdOccInfo :: Id -> Id
zapIdOccInfo b = b `setIdOccInfo` noOccInfo

{-
        ---------------------------------
        -- INLINING
The inline pragma tells us to be very keen to inline this Id, but it's still
OK not to if optimisation is switched off.
-}

idInlinePragma :: Id -> InlinePragma
idInlinePragma id = inlinePragInfo (idInfo id)

setInlinePragma :: Id -> InlinePragma -> Id
setInlinePragma id prag = modifyIdInfo (`setInlinePragInfo` prag) id

modifyInlinePragma :: Id -> (InlinePragma -> InlinePragma) -> Id
modifyInlinePragma id fn = modifyIdInfo (\info -> info `setInlinePragInfo` (fn (inlinePragInfo info))) id

idInlineActivation :: Id -> Activation
idInlineActivation id = inlinePragmaActivation (idInlinePragma id)

setInlineActivation :: Id -> Activation -> Id
setInlineActivation id act = modifyInlinePragma id (\prag -> setInlinePragmaActivation prag act)

idRuleMatchInfo :: Id -> RuleMatchInfo
idRuleMatchInfo id = inlinePragmaRuleMatchInfo (idInlinePragma id)

isConLikeId :: Id -> Bool
isConLikeId id = isDataConWorkId id || isConLike (idRuleMatchInfo id)

{-
        ---------------------------------
        -- ONE-SHOT LAMBDAS
-}

idOneShotInfo :: Id -> OneShotInfo
idOneShotInfo id = oneShotInfo (idInfo id)

-- | Like 'idOneShotInfo', but taking the Horrible State Hack in to account
-- See Note [The state-transformer hack] in CoreArity
idStateHackOneShotInfo :: Id -> OneShotInfo
idStateHackOneShotInfo id
    | isStateHackType (idType id) = stateHackOneShot
    | otherwise                   = idOneShotInfo id

-- | Returns whether the lambda associated with the 'Id' is certainly applied at most once
-- This one is the "business end", called externally.
-- It works on type variables as well as Ids, returning True
-- Its main purpose is to encapsulate the Horrible State Hack
-- See Note [The state-transformer hack] in CoreArity
isOneShotBndr :: Var -> Bool
isOneShotBndr var
  | isTyVar var                              = True
  | OneShotLam <- idStateHackOneShotInfo var = True
  | otherwise                                = False

-- | Should we apply the state hack to values of this 'Type'?
stateHackOneShot :: OneShotInfo
stateHackOneShot = OneShotLam

typeOneShot :: Type -> OneShotInfo
typeOneShot ty
   | isStateHackType ty = stateHackOneShot
   | otherwise          = NoOneShotInfo

isStateHackType :: Type -> Bool
isStateHackType ty
  | hasNoStateHack unsafeGlobalDynFlags
  = False
  | otherwise
  = case tyConAppTyCon_maybe ty of
        Just tycon -> tycon == statePrimTyCon
        _          -> False
        -- This is a gross hack.  It claims that
        -- every function over realWorldStatePrimTy is a one-shot
        -- function.  This is pretty true in practice, and makes a big
        -- difference.  For example, consider
        --      a `thenST` \ r -> ...E...
        -- The early full laziness pass, if it doesn't know that r is one-shot
        -- will pull out E (let's say it doesn't mention r) to give
        --      let lvl = E in a `thenST` \ r -> ...lvl...
        -- When `thenST` gets inlined, we end up with
        --      let lvl = E in \s -> case a s of (r, s') -> ...lvl...
        -- and we don't re-inline E.
        --
        -- It would be better to spot that r was one-shot to start with, but
        -- I don't want to rely on that.
        --
        -- Another good example is in fill_in in PrelPack.hs.  We should be able to
        -- spot that fill_in has arity 2 (and when Keith is done, we will) but we can't yet.

isProbablyOneShotLambda :: Id -> Bool
isProbablyOneShotLambda id = case idStateHackOneShotInfo id of
                               OneShotLam    -> True
                               NoOneShotInfo -> False

setOneShotLambda :: Id -> Id
setOneShotLambda id = modifyIdInfo (`setOneShotInfo` OneShotLam) id

clearOneShotLambda :: Id -> Id
clearOneShotLambda id = modifyIdInfo (`setOneShotInfo` NoOneShotInfo) id

setIdOneShotInfo :: Id -> OneShotInfo -> Id
setIdOneShotInfo id one_shot = modifyIdInfo (`setOneShotInfo` one_shot) id

updOneShotInfo :: Id -> OneShotInfo -> Id
-- Combine the info in the Id with new info
updOneShotInfo id one_shot
  | do_upd    = setIdOneShotInfo id one_shot
  | otherwise = id
  where
    do_upd = case (idOneShotInfo id, one_shot) of
                (NoOneShotInfo, _) -> True
                (OneShotLam,    _) -> False

-- The OneShotLambda functions simply fiddle with the IdInfo flag
-- But watch out: this may change the type of something else
--      f = \x -> e
-- If we change the one-shot-ness of x, f's type changes

zapInfo :: (IdInfo -> Maybe IdInfo) -> Id -> Id
zapInfo zapper id = maybeModifyIdInfo (zapper (idInfo id)) id

zapLamIdInfo :: Id -> Id
zapLamIdInfo = zapInfo zapLamInfo

zapFragileIdInfo :: Id -> Id
zapFragileIdInfo = zapInfo zapFragileInfo

zapIdDemandInfo :: Id -> Id
zapIdDemandInfo = zapInfo zapDemandInfo

zapIdUsageInfo :: Id -> Id
zapIdUsageInfo = zapInfo zapUsageInfo

zapIdUsageEnvInfo :: Id -> Id
zapIdUsageEnvInfo = zapInfo zapUsageEnvInfo

zapIdUsedOnceInfo :: Id -> Id
zapIdUsedOnceInfo = zapInfo zapUsedOnceInfo

zapIdTailCallInfo :: Id -> Id
zapIdTailCallInfo = zapInfo zapTailCallInfo

zapStableUnfolding :: Id -> Id
zapStableUnfolding id
 | isStableUnfolding (realIdUnfolding id) = setIdUnfolding id NoUnfolding
 | otherwise                              = id

{-
Note [transferPolyIdInfo]
~~~~~~~~~~~~~~~~~~~~~~~~~
This transfer is used in three places:
        FloatOut (long-distance let-floating)
        SimplUtils.abstractFloats (short-distance let-floating)
        StgLiftLams (selectively lambda-lift local functions to top-level)

Consider the short-distance let-floating:

   f = /\a. let g = rhs in ...

Then if we float thus

   g' = /\a. rhs
   f = /\a. ...[g' a/g]....

we *do not* want to lose g's
  * strictness information
  * arity
  * inline pragma (though that is bit more debatable)
  * occurrence info

Mostly this is just an optimisation, but it's *vital* to
transfer the occurrence info.  Consider

   NonRec { f = /\a. let Rec { g* = ..g.. } in ... }

where the '*' means 'LoopBreaker'.  Then if we float we must get

   Rec { g'* = /\a. ...(g' a)... }
   NonRec { f = /\a. ...[g' a/g]....}

where g' is also marked as LoopBreaker.  If not, terrible things
can happen if we re-simplify the binding (and the Simplifier does
sometimes simplify a term twice); see #4345.

It's not so simple to retain
  * worker info
  * rules
so we simply discard those.  Sooner or later this may bite us.

If we abstract wrt one or more *value* binders, we must modify the
arity and strictness info before transferring it.  E.g.
      f = \x. e
-->
      g' = \y. \x. e
      + substitute (g' y) for g
Notice that g' has an arity one more than the original g
-}

transferPolyIdInfo :: Id        -- Original Id
                   -> [Var]     -- Abstract wrt these variables
                   -> Id        -- New Id
                   -> Id
transferPolyIdInfo old_id abstract_wrt new_id
  = modifyIdInfo transfer new_id
  where
    arity_increase = count isId abstract_wrt    -- Arity increases by the
                                                -- number of value binders

    old_info        = idInfo old_id
    old_arity       = arityInfo old_info
    old_inline_prag = inlinePragInfo old_info
    old_occ_info    = occInfo old_info
    new_arity       = old_arity + arity_increase
    new_occ_info    = zapOccTailCallInfo old_occ_info

    old_strictness  = strictnessInfo old_info
    new_strictness  = increaseStrictSigArity arity_increase old_strictness

    transfer new_info = new_info `setArityInfo` new_arity
                                 `setInlinePragInfo` old_inline_prag
                                 `setOccInfo` new_occ_info
                                 `setStrictnessInfo` new_strictness

isNeverLevPolyId :: Id -> Bool
isNeverLevPolyId = isNeverLevPolyIdInfo . idInfo