summaryrefslogtreecommitdiff
path: root/compiler/basicTypes/DataCon.hs
blob: cd4fe71993247f6932a3fc687ae2fc61ff87e83e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1998

\section[DataCon]{@DataCon@: Data Constructors}
-}

{-# LANGUAGE CPP, DeriveDataTypeable #-}

module DataCon (
        -- * Main data types
        DataCon, DataConRep(..),
        HsBang(..), HsSrcBang, HsImplBang,
        StrictnessMark(..),
        ConTag,

        -- ** Type construction
        mkDataCon, fIRST_TAG,
        buildAlgTyCon,

        -- ** Type deconstruction
        dataConRepType, dataConSig, dataConFullSig,
        dataConName, dataConIdentity, dataConTag, dataConTyCon,
        dataConOrigTyCon, dataConUserType,
        dataConUnivTyVars, dataConExTyVars, dataConAllTyVars,
        dataConEqSpec, eqSpecPreds, dataConTheta,
        dataConStupidTheta,
        dataConInstArgTys, dataConOrigArgTys, dataConOrigResTy,
        dataConInstOrigArgTys, dataConRepArgTys,
        dataConFieldLabels, dataConFieldType,
        dataConSrcBangs,
        dataConSourceArity, dataConRepArity, dataConRepRepArity,
        dataConIsInfix,
        dataConWorkId, dataConWrapId, dataConWrapId_maybe, dataConImplicitIds,
        dataConRepStrictness, dataConImplBangs, dataConBoxer,

        splitDataProductType_maybe,

        -- ** Predicates on DataCons
        isNullarySrcDataCon, isNullaryRepDataCon, isTupleDataCon, isUnboxedTupleCon,
        isVanillaDataCon, classDataCon, dataConCannotMatch,
        isBanged, isMarkedStrict, eqHsBang,

        -- ** Promotion related functions
        promoteKind, promoteDataCon, promoteDataCon_maybe
    ) where

#include "HsVersions.h"

import {-# SOURCE #-} MkId( DataConBoxer )
import Type
import TypeRep( Type(..) )  -- Used in promoteType
import PrelNames( liftedTypeKindTyConKey )
import ForeignCall( CType )
import Coercion
import Kind
import Unify
import TyCon
import Class
import Name
import Var
import Outputable
import Unique
import ListSetOps
import Util
import BasicTypes
import FastString
import Module
import VarEnv

import qualified Data.Data as Data
import qualified Data.Typeable
import Data.Maybe
import Data.Char
import Data.Word

{-
Data constructor representation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following Haskell data type declaration

        data T = T !Int ![Int]

Using the strictness annotations, GHC will represent this as

        data T = T Int# [Int]

That is, the Int has been unboxed.  Furthermore, the Haskell source construction

        T e1 e2

is translated to

        case e1 of { I# x ->
        case e2 of { r ->
        T x r }}

That is, the first argument is unboxed, and the second is evaluated.  Finally,
pattern matching is translated too:

        case e of { T a b -> ... }

becomes

        case e of { T a' b -> let a = I# a' in ... }

To keep ourselves sane, we name the different versions of the data constructor
differently, as follows.


Note [Data Constructor Naming]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Each data constructor C has two, and possibly up to four, Names associated with it:

                   OccName   Name space   Name of   Notes
 ---------------------------------------------------------------------------
 The "data con itself"   C     DataName   DataCon   In dom( GlobalRdrEnv )
 The "worker data con"   C     VarName    Id        The worker
 The "wrapper data con"  $WC   VarName    Id        The wrapper
 The "newtype coercion"  :CoT  TcClsName  TyCon

EVERY data constructor (incl for newtypes) has the former two (the
data con itself, and its worker.  But only some data constructors have a
wrapper (see Note [The need for a wrapper]).

Each of these three has a distinct Unique.  The "data con itself" name
appears in the output of the renamer, and names the Haskell-source
data constructor.  The type checker translates it into either the wrapper Id
(if it exists) or worker Id (otherwise).

The data con has one or two Ids associated with it:

The "worker Id", is the actual data constructor.
* Every data constructor (newtype or data type) has a worker

* The worker is very like a primop, in that it has no binding.

* For a *data* type, the worker *is* the data constructor;
  it has no unfolding

* For a *newtype*, the worker has a compulsory unfolding which
  does a cast, e.g.
        newtype T = MkT Int
        The worker for MkT has unfolding
                \\(x:Int). x `cast` sym CoT
  Here CoT is the type constructor, witnessing the FC axiom
        axiom CoT : T = Int

The "wrapper Id", \$WC, goes as follows

* Its type is exactly what it looks like in the source program.

* It is an ordinary function, and it gets a top-level binding
  like any other function.

* The wrapper Id isn't generated for a data type if there is
  nothing for the wrapper to do.  That is, if its defn would be
        \$wC = C

Note [The need for a wrapper]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Why might the wrapper have anything to do?  Two reasons:

* Unboxing strict fields (with -funbox-strict-fields)
        data T = MkT !(Int,Int)
        \$wMkT :: (Int,Int) -> T
        \$wMkT (x,y) = MkT x y
  Notice that the worker has two fields where the wapper has
  just one.  That is, the worker has type
                MkT :: Int -> Int -> T

* Equality constraints for GADTs
        data T a where { MkT :: a -> T [a] }

  The worker gets a type with explicit equality
  constraints, thus:
        MkT :: forall a b. (a=[b]) => b -> T a

  The wrapper has the programmer-specified type:
        \$wMkT :: a -> T [a]
        \$wMkT a x = MkT [a] a [a] x
  The third argument is a coerion
        [a] :: [a]~[a]

INVARIANT: the dictionary constructor for a class
           never has a wrapper.


A note about the stupid context
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Data types can have a context:

        data (Eq a, Ord b) => T a b = T1 a b | T2 a

and that makes the constructors have a context too
(notice that T2's context is "thinned"):

        T1 :: (Eq a, Ord b) => a -> b -> T a b
        T2 :: (Eq a) => a -> T a b

Furthermore, this context pops up when pattern matching
(though GHC hasn't implemented this, but it is in H98, and
I've fixed GHC so that it now does):

        f (T2 x) = x
gets inferred type
        f :: Eq a => T a b -> a

I say the context is "stupid" because the dictionaries passed
are immediately discarded -- they do nothing and have no benefit.
It's a flaw in the language.

        Up to now [March 2002] I have put this stupid context into the
        type of the "wrapper" constructors functions, T1 and T2, but
        that turned out to be jolly inconvenient for generics, and
        record update, and other functions that build values of type T
        (because they don't have suitable dictionaries available).

        So now I've taken the stupid context out.  I simply deal with
        it separately in the type checker on occurrences of a
        constructor, either in an expression or in a pattern.

        [May 2003: actually I think this decision could evasily be
        reversed now, and probably should be.  Generics could be
        disabled for types with a stupid context; record updates now
        (H98) needs the context too; etc.  It's an unforced change, so
        I'm leaving it for now --- but it does seem odd that the
        wrapper doesn't include the stupid context.]

[July 04] With the advent of generalised data types, it's less obvious
what the "stupid context" is.  Consider
        C :: forall a. Ord a => a -> a -> T (Foo a)
Does the C constructor in Core contain the Ord dictionary?  Yes, it must:

        f :: T b -> Ordering
        f = /\b. \x:T b.
            case x of
                C a (d:Ord a) (p:a) (q:a) -> compare d p q

Note that (Foo a) might not be an instance of Ord.

************************************************************************
*                                                                      *
\subsection{Data constructors}
*                                                                      *
************************************************************************
-}

-- | A data constructor
--
-- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen',
--             'ApiAnnotation.AnnClose','ApiAnnotation.AnnComma'
data DataCon
  = MkData {
        dcName    :: Name,      -- This is the name of the *source data con*
                                -- (see "Note [Data Constructor Naming]" above)
        dcUnique :: Unique,     -- Cached from Name
        dcTag    :: ConTag,     -- ^ Tag, used for ordering 'DataCon's

        -- Running example:
        --
        --      *** As declared by the user
        --  data T a where
        --    MkT :: forall x y. (x~y,Ord x) => x -> y -> T (x,y)

        --      *** As represented internally
        --  data T a where
        --    MkT :: forall a. forall x y. (a~(x,y),x~y,Ord x) => x -> y -> T a
        --
        -- The next six fields express the type of the constructor, in pieces
        -- e.g.
        --
        --      dcUnivTyVars  = [a]
        --      dcExTyVars    = [x,y]
        --      dcEqSpec      = [a~(x,y)]
        --      dcOtherTheta  = [x~y, Ord x]
        --      dcOrigArgTys  = [x,y]
        --      dcRepTyCon       = T

        dcVanilla :: Bool,      -- True <=> This is a vanilla Haskell 98 data constructor
                                --          Its type is of form
                                --              forall a1..an . t1 -> ... tm -> T a1..an
                                --          No existentials, no coercions, nothing.
                                -- That is: dcExTyVars = dcEqSpec = dcOtherTheta = []
                -- NB 1: newtypes always have a vanilla data con
                -- NB 2: a vanilla constructor can still be declared in GADT-style
                --       syntax, provided its type looks like the above.
                --       The declaration format is held in the TyCon (algTcGadtSyntax)

        dcUnivTyVars :: [TyVar],        -- Universally-quantified type vars [a,b,c]
                                        -- INVARIANT: length matches arity of the dcRepTyCon
                                        ---           result type of (rep) data con is exactly (T a b c)

        dcExTyVars   :: [TyVar],        -- Existentially-quantified type vars
                -- In general, the dcUnivTyVars are NOT NECESSARILY THE SAME AS THE TYVARS
                -- FOR THE PARENT TyCon. With GADTs the data con might not even have
                -- the same number of type variables.
                -- [This is a change (Oct05): previously, vanilla datacons guaranteed to
                --  have the same type variables as their parent TyCon, but that seems ugly.]

        -- INVARIANT: the UnivTyVars and ExTyVars all have distinct OccNames
        -- Reason: less confusing, and easier to generate IfaceSyn

        dcEqSpec :: [(TyVar,Type)],     -- Equalities derived from the result type,
                                        -- _as written by the programmer_
                -- This field allows us to move conveniently between the two ways
                -- of representing a GADT constructor's type:
                --      MkT :: forall a b. (a ~ [b]) => b -> T a
                --      MkT :: forall b. b -> T [b]
                -- Each equality is of the form (a ~ ty), where 'a' is one of
                -- the universally quantified type variables

                -- The next two fields give the type context of the data constructor
                --      (aside from the GADT constraints,
                --       which are given by the dcExpSpec)
                -- In GADT form, this is *exactly* what the programmer writes, even if
                -- the context constrains only universally quantified variables
                --      MkT :: forall a b. (a ~ b, Ord b) => a -> T a b
        dcOtherTheta :: ThetaType,  -- The other constraints in the data con's type
                                    -- other than those in the dcEqSpec

        dcStupidTheta :: ThetaType,     -- The context of the data type declaration
                                        --      data Eq a => T a = ...
                                        -- or, rather, a "thinned" version thereof
                -- "Thinned", because the Report says
                -- to eliminate any constraints that don't mention
                -- tyvars free in the arg types for this constructor
                --
                -- INVARIANT: the free tyvars of dcStupidTheta are a subset of dcUnivTyVars
                -- Reason: dcStupidTeta is gotten by thinning the stupid theta from the tycon
                --
                -- "Stupid", because the dictionaries aren't used for anything.
                -- Indeed, [as of March 02] they are no longer in the type of
                -- the wrapper Id, because that makes it harder to use the wrap-id
                -- to rebuild values after record selection or in generics.

        dcOrigArgTys :: [Type],         -- Original argument types
                                        -- (before unboxing and flattening of strict fields)
        dcOrigResTy :: Type,            -- Original result type, as seen by the user
                -- NB: for a data instance, the original user result type may
                -- differ from the DataCon's representation TyCon.  Example
                --      data instance T [a] where MkT :: a -> T [a]
                -- The OrigResTy is T [a], but the dcRepTyCon might be :T123

        -- Now the strictness annotations and field labels of the constructor
        dcSrcBangs :: [HsBang],
                -- See Note [Bangs on data constructor arguments]
                -- For DataCons defined in this module: 
                --    the [HsSrcBang] as written by the programmer.
                -- For DataCons imported from an interface file:
                --    the [HsImplBang] determined when compiling the
                --    defining module
                -- 
                -- Matches 1-1 with dcOrigArgTys
                -- Hence length = dataConSourceArity dataCon

        dcFields  :: [FieldLabel],
                -- Field labels for this constructor, in the
                -- same order as the dcOrigArgTys;
                -- length = 0 (if not a record) or dataConSourceArity.

        -- The curried worker function that corresponds to the constructor:
        -- It doesn't have an unfolding; the code generator saturates these Ids
        -- and allocates a real constructor when it finds one.
        dcWorkId :: Id,

        -- Constructor representation
        dcRep      :: DataConRep,

        -- Cached
        dcRepArity    :: Arity,  -- == length dataConRepArgTys
        dcSourceArity :: Arity,  -- == length dcOrigArgTys

        -- Result type of constructor is T t1..tn
        dcRepTyCon  :: TyCon,           -- Result tycon, T

        dcRepType   :: Type,    -- Type of the constructor
                                --      forall a x y. (a~(x,y), x~y, Ord x) =>
                                --        x -> y -> T a
                                -- (this is *not* of the constructor wrapper Id:
                                --  see Note [Data con representation] below)
        -- Notice that the existential type parameters come *second*.
        -- Reason: in a case expression we may find:
        --      case (e :: T t) of
        --        MkT x y co1 co2 (d:Ord x) (v:r) (w:F s) -> ...
        -- It's convenient to apply the rep-type of MkT to 't', to get
        --      forall x y. (t~(x,y), x~y, Ord x) => x -> y -> T t
        -- and use that to check the pattern.  Mind you, this is really only
        -- used in CoreLint.


        dcInfix :: Bool,        -- True <=> declared infix
                                -- Used for Template Haskell and 'deriving' only
                                -- The actual fixity is stored elsewhere

        dcPromoted :: Maybe TyCon    -- The promoted TyCon if this DataCon is promotable
                                     -- See Note [Promoted data constructors] in TyCon
  }
  deriving Data.Typeable.Typeable

data DataConRep
  = NoDataConRep              -- No wrapper

  | DCR { dcr_wrap_id :: Id   -- Takes src args, unboxes/flattens,
                              -- and constructs the representation

        , dcr_boxer   :: DataConBoxer

        , dcr_arg_tys :: [Type]  -- Final, representation argument types,
                                 -- after unboxing and flattening,
                                 -- and *including* all evidence args

        , dcr_stricts :: [StrictnessMark]  -- 1-1 with dcr_arg_tys
                -- See also Note [Data-con worker strictness] in MkId.lhs

        , dcr_bangs :: [HsImplBang]  -- The actual decisions made (including failures)
                                     -- about the original arguments; 1-1 with orig_arg_tys
                                     -- See Note [Bangs on data constructor arguments]

    }
-- Algebraic data types always have a worker, and
-- may or may not have a wrapper, depending on whether
-- the wrapper does anything.
--
-- Data types have a worker with no unfolding
-- Newtypes just have a worker, which has a compulsory unfolding (just a cast)

-- _Neither_ the worker _nor_ the wrapper take the dcStupidTheta dicts as arguments

-- The wrapper (if it exists) takes dcOrigArgTys as its arguments
-- The worker takes dataConRepArgTys as its arguments
-- If the worker is absent, dataConRepArgTys is the same as dcOrigArgTys

-- The 'NoDataConRep' case is important
-- Not only is this efficient,
-- but it also ensures that the wrapper is replaced
-- by the worker (because it *is* the worker)
-- even when there are no args. E.g. in
--              f (:) x
-- the (:) *is* the worker.
-- This is really important in rule matching,
-- (We could match on the wrappers,
-- but that makes it less likely that rules will match
-- when we bring bits of unfoldings together.)

-------------------------
-- HsBang describes the strictness/unpack status of one
-- of the original data constructor arguments (i.e. *not*
-- of the representation data constructor which may have
-- more arguments after the originals have been unpacked)
-- See Note [Bangs on data constructor arguments]
data HsBang
  = HsNoBang     -- Equivalent to (HsSrcBang Nothing False)

  | HsSrcBang    -- What the user wrote in the source code
       (Maybe SourceText) -- Note [Pragma source text] in BasicTypes
       (Maybe Bool)       -- Just True    {-# UNPACK #-}
                          -- Just False   {-# NOUNPACK #-}
                          -- Nothing      no pragma
       Bool               -- True <=> '!' specified
       -- (HsSrcBang (Just True) False) makes no sense
       -- We emit a warning (in checkValidDataCon) and treat it
       -- just like (HsSrcBang Nothing False)

  -- Definite implementation commitments, generated by the compiler
  -- after consulting HsSrcBang (if any), flags, etc
  | HsUnpack              -- Definite commitment: this field is strict and unboxed
       (Maybe Coercion)   --    co :: arg-ty ~ product-ty

  | HsStrict              -- Definite commitment: this field is strict but not unboxed
  deriving (Data.Data, Data.Typeable)

-- Two type-insecure, but useful, synonyms
type HsSrcBang = HsBang   -- What the user wrote; hence always HsNoBang or HsSrcBang

type HsImplBang = HsBang   -- A HsBang implementation decision,
                           -- as determined by the compiler
                           -- Never HsSrcBang

-------------------------
-- StrictnessMark is internal only, used to indicate strictness
-- of the DataCon *worker* fields
data StrictnessMark = MarkedStrict | NotMarkedStrict

{- Note [Bangs on data constructor arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  data T = MkT !Int {-# UNPACK #-} !Int Bool

When compiling the module, GHC will decide how to represent
MkT, depending on the optimisation level, and settings of
flags like -funbox-small-strict-fields.  

Terminology:
  * HsSrcBang:  What the user wrote
                Constructors: HsNoBang, HsUserBang

  * HsImplBang: What GHC decided
                Constructors: HsNoBang, HsStrict, HsUnpack

* If T was defined in this module, MkT's dcSrcBangs field 
  records the [HsSrcBang] of what the user wrote; in the example
    [ HsSrcBang Nothing True
    , HsSrcBang (Just True) True
    , HsNoBang]

* However, if T was defined in an imported module, MkT's dcSrcBangs
  field gives the [HsImplBang] recording the decisions of the 
  defining module.  The importing module must follow those decisions,
  regardless of the flag settings in the importing module.

* The dcr_bangs field of the dcRep field records the [HsImplBang]
  If T was defined in this module, Without -O the dcr_bangs might be
    [HsStrict, HsStrict, HsNoBang]
  With -O it might be
    [HsStrict, HsUnpack, HsNoBang]
  With -funbox-small-strict-fields it might be
    [HsUnpack, HsUnpack, HsNoBang]

Note [Data con representation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The dcRepType field contains the type of the representation of a contructor
This may differ from the type of the contructor *Id* (built
by MkId.mkDataConId) for two reasons:
        a) the constructor Id may be overloaded, but the dictionary isn't stored
           e.g.    data Eq a => T a = MkT a a

        b) the constructor may store an unboxed version of a strict field.

Here's an example illustrating both:
        data Ord a => T a = MkT Int! a
Here
        T :: Ord a => Int -> a -> T a
but the rep type is
        Trep :: Int# -> a -> T a
Actually, the unboxed part isn't implemented yet!



************************************************************************
*                                                                      *
\subsection{Instances}
*                                                                      *
************************************************************************
-}

instance Eq DataCon where
    a == b = getUnique a == getUnique b
    a /= b = getUnique a /= getUnique b

instance Ord DataCon where
    a <= b = getUnique a <= getUnique b
    a <  b = getUnique a <  getUnique b
    a >= b = getUnique a >= getUnique b
    a >  b = getUnique a > getUnique b
    compare a b = getUnique a `compare` getUnique b

instance Uniquable DataCon where
    getUnique = dcUnique

instance NamedThing DataCon where
    getName = dcName

instance Outputable DataCon where
    ppr con = ppr (dataConName con)

instance OutputableBndr DataCon where
    pprInfixOcc con = pprInfixName (dataConName con)
    pprPrefixOcc con = pprPrefixName (dataConName con)

instance Data.Data DataCon where
    -- don't traverse?
    toConstr _   = abstractConstr "DataCon"
    gunfold _ _  = error "gunfold"
    dataTypeOf _ = mkNoRepType "DataCon"

instance Outputable HsBang where
    ppr HsNoBang                = empty
    ppr (HsSrcBang _ prag bang) = pp_unpk prag <+> ppWhen bang (char '!')
    ppr (HsUnpack Nothing)      = ptext (sLit "Unpk")
    ppr (HsUnpack (Just co))    = ptext (sLit "Unpk") <> parens (ppr co)
    ppr HsStrict                = ptext (sLit "SrictNotUnpacked")

pp_unpk :: Maybe Bool -> SDoc
pp_unpk Nothing      = empty
pp_unpk (Just True)  = ptext (sLit "{-# UNPACK #-}")
pp_unpk (Just False) = ptext (sLit "{-# NOUNPACK #-}")

instance Outputable StrictnessMark where
  ppr MarkedStrict     = ptext (sLit "!")
  ppr NotMarkedStrict  = empty


eqHsBang :: HsBang -> HsBang -> Bool
eqHsBang HsNoBang             HsNoBang             = True
eqHsBang HsStrict             HsStrict             = True
eqHsBang (HsSrcBang _ u1 b1)  (HsSrcBang _ u2 b2)  = u1==u2 && b1==b2
eqHsBang (HsUnpack Nothing)   (HsUnpack Nothing)   = True
eqHsBang (HsUnpack (Just c1)) (HsUnpack (Just c2)) = eqType (coercionType c1) (coercionType c2)
eqHsBang _ _ = False

isBanged :: HsBang -> Bool
isBanged HsNoBang             = False
isBanged (HsSrcBang _ _ bang) = bang
isBanged (HsUnpack {})        = True
isBanged (HsStrict {})        = True

isMarkedStrict :: StrictnessMark -> Bool
isMarkedStrict NotMarkedStrict = False
isMarkedStrict _               = True   -- All others are strict

{-
************************************************************************
*                                                                      *
\subsection{Construction}
*                                                                      *
************************************************************************
-}

-- | Build a new data constructor
mkDataCon :: Name
          -> Bool               -- ^ Is the constructor declared infix?
          -> [HsBang]           -- ^ Strictness/unpack annotations, from user;
                                --   or, for imported DataCons, from the interface file 
          -> [FieldLabel]       -- ^ Field labels for the constructor, if it is a record,
                                --   otherwise empty
          -> [TyVar]            -- ^ Universally quantified type variables
          -> [TyVar]            -- ^ Existentially quantified type variables
          -> [(TyVar,Type)]     -- ^ GADT equalities
          -> ThetaType          -- ^ Theta-type occuring before the arguments proper
          -> [Type]             -- ^ Original argument types
          -> Type               -- ^ Original result type
          -> TyCon              -- ^ Representation type constructor
          -> ThetaType          -- ^ The "stupid theta", context of the data declaration
                                --   e.g. @data Eq a => T a ...@
          -> Id                 -- ^ Worker Id
          -> DataConRep         -- ^ Representation
          -> DataCon
  -- Can get the tag from the TyCon

mkDataCon name declared_infix
          arg_stricts   -- Must match orig_arg_tys 1-1
          fields
          univ_tvs ex_tvs
          eq_spec theta
          orig_arg_tys orig_res_ty rep_tycon
          stupid_theta work_id rep
-- Warning: mkDataCon is not a good place to check invariants.
-- If the programmer writes the wrong result type in the decl, thus:
--      data T a where { MkT :: S }
-- then it's possible that the univ_tvs may hit an assertion failure
-- if you pull on univ_tvs.  This case is checked by checkValidDataCon,
-- so the error is detected properly... it's just that asaertions here
-- are a little dodgy.

  = con
  where
    is_vanilla = null ex_tvs && null eq_spec && null theta
    con = MkData {dcName = name, dcUnique = nameUnique name,
                  dcVanilla = is_vanilla, dcInfix = declared_infix,
                  dcUnivTyVars = univ_tvs, dcExTyVars = ex_tvs,
                  dcEqSpec = eq_spec,
                  dcOtherTheta = theta,
                  dcStupidTheta = stupid_theta,
                  dcOrigArgTys = orig_arg_tys, dcOrigResTy = orig_res_ty,
                  dcRepTyCon = rep_tycon,
                  dcSrcBangs = arg_stricts,
                  dcFields = fields, dcTag = tag, dcRepType = rep_ty,
                  dcWorkId = work_id,
                  dcRep = rep,
                  dcSourceArity = length orig_arg_tys,
                  dcRepArity = length rep_arg_tys,
                  dcPromoted = mb_promoted }

        -- The 'arg_stricts' passed to mkDataCon are simply those for the
        -- source-language arguments.  We add extra ones for the
        -- dictionary arguments right here.

    tag = assoc "mkDataCon" (tyConDataCons rep_tycon `zip` [fIRST_TAG..]) con
    rep_arg_tys = dataConRepArgTys con
    rep_ty = mkForAllTys univ_tvs $ mkForAllTys ex_tvs $
             mkFunTys rep_arg_tys $
             mkTyConApp rep_tycon (mkTyVarTys univ_tvs)

    mb_promoted   -- See Note [Promoted data constructors] in TyCon
      | isJust (promotableTyCon_maybe rep_tycon)
          -- The TyCon is promotable only if all its datacons
          -- are, so the promoteType for prom_kind should succeed
      = Just (mkPromotedDataCon con name (getUnique name) prom_kind roles)
      | otherwise
      = Nothing
    prom_kind = promoteType (dataConUserType con)
    roles = map (const Nominal)          (univ_tvs ++ ex_tvs) ++
            map (const Representational) orig_arg_tys

eqSpecPreds :: [(TyVar,Type)] -> ThetaType
eqSpecPreds spec = [ mkEqPred (mkTyVarTy tv) ty | (tv,ty) <- spec ]

{-
Note [Unpack equality predicates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have a GADT with a contructor C :: (a~[b]) => b -> T a
we definitely want that equality predicate *unboxed* so that it
takes no space at all.  This is easily done: just give it
an UNPACK pragma. The rest of the unpack/repack code does the
heavy lifting.  This one line makes every GADT take a word less
space for each equality predicate, so it's pretty important!
-}

-- | The 'Name' of the 'DataCon', giving it a unique, rooted identification
dataConName :: DataCon -> Name
dataConName = dcName

-- | The tag used for ordering 'DataCon's
dataConTag :: DataCon -> ConTag
dataConTag  = dcTag

-- | The type constructor that we are building via this data constructor
dataConTyCon :: DataCon -> TyCon
dataConTyCon = dcRepTyCon

-- | The original type constructor used in the definition of this data
-- constructor.  In case of a data family instance, that will be the family
-- type constructor.
dataConOrigTyCon :: DataCon -> TyCon
dataConOrigTyCon dc
  | Just (tc, _) <- tyConFamInst_maybe (dcRepTyCon dc) = tc
  | otherwise                                          = dcRepTyCon dc

-- | The representation type of the data constructor, i.e. the sort
-- type that will represent values of this type at runtime
dataConRepType :: DataCon -> Type
dataConRepType = dcRepType

-- | Should the 'DataCon' be presented infix?
dataConIsInfix :: DataCon -> Bool
dataConIsInfix = dcInfix

-- | The universally-quantified type variables of the constructor
dataConUnivTyVars :: DataCon -> [TyVar]
dataConUnivTyVars = dcUnivTyVars

-- | The existentially-quantified type variables of the constructor
dataConExTyVars :: DataCon -> [TyVar]
dataConExTyVars = dcExTyVars

-- | Both the universal and existentiatial type variables of the constructor
dataConAllTyVars :: DataCon -> [TyVar]
dataConAllTyVars (MkData { dcUnivTyVars = univ_tvs, dcExTyVars = ex_tvs })
  = univ_tvs ++ ex_tvs

-- | Equalities derived from the result type of the data constructor, as written
-- by the programmer in any GADT declaration
dataConEqSpec :: DataCon -> [(TyVar,Type)]
dataConEqSpec = dcEqSpec

-- | The *full* constraints on the constructor type
dataConTheta :: DataCon -> ThetaType
dataConTheta (MkData { dcEqSpec = eq_spec, dcOtherTheta = theta })
  = eqSpecPreds eq_spec ++ theta

-- | Get the Id of the 'DataCon' worker: a function that is the "actual"
-- constructor and has no top level binding in the program. The type may
-- be different from the obvious one written in the source program. Panics
-- if there is no such 'Id' for this 'DataCon'
dataConWorkId :: DataCon -> Id
dataConWorkId dc = dcWorkId dc

-- | Get the Id of the 'DataCon' wrapper: a function that wraps the "actual"
-- constructor so it has the type visible in the source program: c.f. 'dataConWorkId'.
-- Returns Nothing if there is no wrapper, which occurs for an algebraic data constructor
-- and also for a newtype (whose constructor is inlined compulsorily)
dataConWrapId_maybe :: DataCon -> Maybe Id
dataConWrapId_maybe dc = case dcRep dc of
                           NoDataConRep -> Nothing
                           DCR { dcr_wrap_id = wrap_id } -> Just wrap_id

-- | Returns an Id which looks like the Haskell-source constructor by using
-- the wrapper if it exists (see 'dataConWrapId_maybe') and failing over to
-- the worker (see 'dataConWorkId')
dataConWrapId :: DataCon -> Id
dataConWrapId dc = case dcRep dc of
                     NoDataConRep-> dcWorkId dc    -- worker=wrapper
                     DCR { dcr_wrap_id = wrap_id } -> wrap_id

-- | Find all the 'Id's implicitly brought into scope by the data constructor. Currently,
-- the union of the 'dataConWorkId' and the 'dataConWrapId'
dataConImplicitIds :: DataCon -> [Id]
dataConImplicitIds (MkData { dcWorkId = work, dcRep = rep})
  = case rep of
       NoDataConRep               -> [work]
       DCR { dcr_wrap_id = wrap } -> [wrap,work]

-- | The labels for the fields of this particular 'DataCon'
dataConFieldLabels :: DataCon -> [FieldLabel]
dataConFieldLabels = dcFields

-- | Extract the type for any given labelled field of the 'DataCon'
dataConFieldType :: DataCon -> FieldLabel -> Type
dataConFieldType con label
  = case lookup label (dcFields con `zip` dcOrigArgTys con) of
      Just ty -> ty
      Nothing -> pprPanic "dataConFieldType" (ppr con <+> ppr label)

-- | The strictness markings written by the porgrammer.
-- The list is in one-to-one correspondence with the arity of the 'DataCon'
dataConSrcBangs :: DataCon -> [HsSrcBang]
dataConSrcBangs = dcSrcBangs

-- | Source-level arity of the data constructor
dataConSourceArity :: DataCon -> Arity
dataConSourceArity (MkData { dcSourceArity = arity }) = arity

-- | Gives the number of actual fields in the /representation/ of the
-- data constructor. This may be more than appear in the source code;
-- the extra ones are the existentially quantified dictionaries
dataConRepArity :: DataCon -> Arity
dataConRepArity (MkData { dcRepArity = arity }) = arity


-- | The number of fields in the /representation/ of the constructor
-- AFTER taking into account the unpacking of any unboxed tuple fields
dataConRepRepArity :: DataCon -> RepArity
dataConRepRepArity dc = typeRepArity (dataConRepArity dc) (dataConRepType dc)

-- | Return whether there are any argument types for this 'DataCon's original source type
isNullarySrcDataCon :: DataCon -> Bool
isNullarySrcDataCon dc = null (dcOrigArgTys dc)

-- | Return whether there are any argument types for this 'DataCon's runtime representation type
isNullaryRepDataCon :: DataCon -> Bool
isNullaryRepDataCon dc = dataConRepArity dc == 0

dataConRepStrictness :: DataCon -> [StrictnessMark]
-- ^ Give the demands on the arguments of a
-- Core constructor application (Con dc args)
dataConRepStrictness dc = case dcRep dc of
                            NoDataConRep -> [NotMarkedStrict | _ <- dataConRepArgTys dc]
                            DCR { dcr_stricts = strs } -> strs

dataConImplBangs :: DataCon -> [HsImplBang]
-- The implementation decisions about the strictness/unpack of each
-- source program argument to the data constructor
dataConImplBangs dc
  = case dcRep dc of
      NoDataConRep              -> replicate (dcSourceArity dc) HsNoBang
      DCR { dcr_bangs = bangs } -> bangs

dataConBoxer :: DataCon -> Maybe DataConBoxer
dataConBoxer (MkData { dcRep = DCR { dcr_boxer = boxer } }) = Just boxer
dataConBoxer _ = Nothing

-- | The \"signature\" of the 'DataCon' returns, in order:
--
-- 1) The result of 'dataConAllTyVars',
--
-- 2) All the 'ThetaType's relating to the 'DataCon' (coercion, dictionary, implicit
--    parameter - whatever)
--
-- 3) The type arguments to the constructor
--
-- 4) The /original/ result type of the 'DataCon'
dataConSig :: DataCon -> ([TyVar], ThetaType, [Type], Type)
dataConSig (MkData {dcUnivTyVars = univ_tvs, dcExTyVars = ex_tvs,
                    dcEqSpec = eq_spec, dcOtherTheta  = theta,
                    dcOrigArgTys = arg_tys, dcOrigResTy = res_ty})
  = (univ_tvs ++ ex_tvs, eqSpecPreds eq_spec ++ theta, arg_tys, res_ty)

-- | The \"full signature\" of the 'DataCon' returns, in order:
--
-- 1) The result of 'dataConUnivTyVars'
--
-- 2) The result of 'dataConExTyVars'
--
-- 3) The result of 'dataConEqSpec'
--
-- 4) The result of 'dataConDictTheta'
--
-- 5) The original argument types to the 'DataCon' (i.e. before
--    any change of the representation of the type)
--
-- 6) The original result type of the 'DataCon'
dataConFullSig :: DataCon
               -> ([TyVar], [TyVar], [(TyVar,Type)], ThetaType, [Type], Type)
dataConFullSig (MkData {dcUnivTyVars = univ_tvs, dcExTyVars = ex_tvs,
                        dcEqSpec = eq_spec, dcOtherTheta = theta,
                        dcOrigArgTys = arg_tys, dcOrigResTy = res_ty})
  = (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, res_ty)

dataConOrigResTy :: DataCon -> Type
dataConOrigResTy dc = dcOrigResTy dc

-- | The \"stupid theta\" of the 'DataCon', such as @data Eq a@ in:
--
-- > data Eq a => T a = ...
dataConStupidTheta :: DataCon -> ThetaType
dataConStupidTheta dc = dcStupidTheta dc

dataConUserType :: DataCon -> Type
-- ^ The user-declared type of the data constructor
-- in the nice-to-read form:
--
-- > T :: forall a b. a -> b -> T [a]
--
-- rather than:
--
-- > T :: forall a c. forall b. (c~[a]) => a -> b -> T c
--
-- NB: If the constructor is part of a data instance, the result type
-- mentions the family tycon, not the internal one.
dataConUserType  (MkData { dcUnivTyVars = univ_tvs,
                           dcExTyVars = ex_tvs, dcEqSpec = eq_spec,
                           dcOtherTheta = theta, dcOrigArgTys = arg_tys,
                           dcOrigResTy = res_ty })
  = mkForAllTys ((univ_tvs `minusList` map fst eq_spec) ++ ex_tvs) $
    mkFunTys theta $
    mkFunTys arg_tys $
    res_ty

-- | Finds the instantiated types of the arguments required to construct a 'DataCon' representation
-- NB: these INCLUDE any dictionary args
--     but EXCLUDE the data-declaration context, which is discarded
-- It's all post-flattening etc; this is a representation type
dataConInstArgTys :: DataCon    -- ^ A datacon with no existentials or equality constraints
                                -- However, it can have a dcTheta (notably it can be a
                                -- class dictionary, with superclasses)
                  -> [Type]     -- ^ Instantiated at these types
                  -> [Type]
dataConInstArgTys dc@(MkData {dcUnivTyVars = univ_tvs, dcEqSpec = eq_spec,
                              dcExTyVars = ex_tvs}) inst_tys
 = ASSERT2( length univ_tvs == length inst_tys
          , ptext (sLit "dataConInstArgTys") <+> ppr dc $$ ppr univ_tvs $$ ppr inst_tys)
   ASSERT2( null ex_tvs && null eq_spec, ppr dc )
   map (substTyWith univ_tvs inst_tys) (dataConRepArgTys dc)

-- | Returns just the instantiated /value/ argument types of a 'DataCon',
-- (excluding dictionary args)
dataConInstOrigArgTys
        :: DataCon      -- Works for any DataCon
        -> [Type]       -- Includes existential tyvar args, but NOT
                        -- equality constraints or dicts
        -> [Type]
-- For vanilla datacons, it's all quite straightforward
-- But for the call in MatchCon, we really do want just the value args
dataConInstOrigArgTys dc@(MkData {dcOrigArgTys = arg_tys,
                                  dcUnivTyVars = univ_tvs,
                                  dcExTyVars = ex_tvs}) inst_tys
  = ASSERT2( length tyvars == length inst_tys
          , ptext (sLit "dataConInstOrigArgTys") <+> ppr dc $$ ppr tyvars $$ ppr inst_tys )
    map (substTyWith tyvars inst_tys) arg_tys
  where
    tyvars = univ_tvs ++ ex_tvs

-- | Returns the argument types of the wrapper, excluding all dictionary arguments
-- and without substituting for any type variables
dataConOrigArgTys :: DataCon -> [Type]
dataConOrigArgTys dc = dcOrigArgTys dc

-- | Returns the arg types of the worker, including *all* evidence, after any
-- flattening has been done and without substituting for any type variables
dataConRepArgTys :: DataCon -> [Type]
dataConRepArgTys (MkData { dcRep = rep
                         , dcEqSpec = eq_spec
                         , dcOtherTheta = theta
                         , dcOrigArgTys = orig_arg_tys })
  = case rep of
      NoDataConRep -> ASSERT( null eq_spec ) theta ++ orig_arg_tys
      DCR { dcr_arg_tys = arg_tys } -> arg_tys

-- | The string @package:module.name@ identifying a constructor, which is attached
-- to its info table and used by the GHCi debugger and the heap profiler
dataConIdentity :: DataCon -> [Word8]
-- We want this string to be UTF-8, so we get the bytes directly from the FastStrings.
dataConIdentity dc = bytesFS (packageKeyFS (modulePackageKey mod)) ++
                  fromIntegral (ord ':') : bytesFS (moduleNameFS (moduleName mod)) ++
                  fromIntegral (ord '.') : bytesFS (occNameFS (nameOccName name))
  where name = dataConName dc
        mod  = ASSERT( isExternalName name ) nameModule name

isTupleDataCon :: DataCon -> Bool
isTupleDataCon (MkData {dcRepTyCon = tc}) = isTupleTyCon tc

isUnboxedTupleCon :: DataCon -> Bool
isUnboxedTupleCon (MkData {dcRepTyCon = tc}) = isUnboxedTupleTyCon tc

-- | Vanilla 'DataCon's are those that are nice boring Haskell 98 constructors
isVanillaDataCon :: DataCon -> Bool
isVanillaDataCon dc = dcVanilla dc

classDataCon :: Class -> DataCon
classDataCon clas = case tyConDataCons (classTyCon clas) of
                      (dict_constr:no_more) -> ASSERT( null no_more ) dict_constr
                      [] -> panic "classDataCon"

dataConCannotMatch :: [Type] -> DataCon -> Bool
-- Returns True iff the data con *definitely cannot* match a
--                  scrutinee of type (T tys)
--                  where T is the dcRepTyCon for the data con
-- NB: look at *all* equality constraints, not only those
--     in dataConEqSpec; see Trac #5168
dataConCannotMatch tys con
  | null theta        = False   -- Common
  | all isTyVarTy tys = False   -- Also common
  | otherwise
  = typesCantMatch [(Type.substTy subst ty1, Type.substTy subst ty2)
                   | (ty1, ty2) <- concatMap predEqs theta ]
  where
    dc_tvs  = dataConUnivTyVars con
    theta   = dataConTheta con
    subst   = ASSERT2( length dc_tvs == length tys, ppr con $$ ppr dc_tvs $$ ppr tys )
              zipTopTvSubst dc_tvs tys

    -- TODO: could gather equalities from superclasses too
    predEqs pred = case classifyPredType pred of
                     EqPred NomEq ty1 ty2 -> [(ty1, ty2)]
                     TuplePred ts         -> concatMap predEqs ts
                     _                    -> []

{-
************************************************************************
*                                                                      *
              Building an algebraic data type
*                                                                      *
************************************************************************

buildAlgTyCon is here because it is called from TysWiredIn, which in turn
depends on DataCon, but not on BuildTyCl.
-}

buildAlgTyCon :: Name
              -> [TyVar]               -- ^ Kind variables and type variables
              -> [Role]
              -> Maybe CType
              -> ThetaType             -- ^ Stupid theta
              -> AlgTyConRhs
              -> RecFlag
              -> Bool                  -- ^ True <=> this TyCon is promotable
              -> Bool                  -- ^ True <=> was declared in GADT syntax
              -> TyConParent
              -> TyCon

buildAlgTyCon tc_name ktvs roles cType stupid_theta rhs
              is_rec is_promotable gadt_syn parent
  = tc
  where
    kind = mkPiKinds ktvs liftedTypeKind

    -- tc and mb_promoted_tc are mutually recursive
    tc = mkAlgTyCon tc_name kind ktvs roles cType stupid_theta
                    rhs parent is_rec gadt_syn
                    mb_promoted_tc

    mb_promoted_tc
      | is_promotable = Just (mkPromotedTyCon tc (promoteKind kind))
      | otherwise     = Nothing

{-
************************************************************************
*                                                                      *
        Promoting of data types to the kind level
*                                                                      *
************************************************************************

These two 'promoted..' functions are here because
 * They belong together
 * 'promoteDataCon' depends on DataCon stuff
-}

promoteDataCon :: DataCon -> TyCon
promoteDataCon (MkData { dcPromoted = Just tc }) = tc
promoteDataCon dc = pprPanic "promoteDataCon" (ppr dc)

promoteDataCon_maybe :: DataCon -> Maybe TyCon
promoteDataCon_maybe (MkData { dcPromoted = mb_tc }) = mb_tc

{-
Note [Promoting a Type to a Kind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppsoe we have a data constructor D
     D :: forall (a:*). Maybe a -> T a
We promote this to be a type constructor 'D:
     'D :: forall (k:BOX). 'Maybe k -> 'T k

The transformation from type to kind is done by promoteType

  * Convert forall (a:*) to forall (k:BOX), and substitute

  * Ensure all foralls are at the top (no higher rank stuff)

  * Ensure that all type constructors mentioned (Maybe and T
    in the example) are promotable; that is, they have kind
          * -> ... -> * -> *
-}

-- | Promotes a type to a kind.
-- Assumes the argument satisfies 'isPromotableType'
promoteType :: Type -> Kind
promoteType ty
  = mkForAllTys kvs (go rho)
  where
    (tvs, rho) = splitForAllTys ty
    kvs = [ mkKindVar (tyVarName tv) superKind | tv <- tvs ]
    env = zipVarEnv tvs kvs

    go (TyConApp tc tys) | Just prom_tc <- promotableTyCon_maybe tc
                         = mkTyConApp prom_tc (map go tys)
    go (FunTy arg res)   = mkArrowKind (go arg) (go res)
    go (TyVarTy tv)      | Just kv <- lookupVarEnv env tv
                         = TyVarTy kv
    go _ = panic "promoteType"  -- Argument did not satisfy isPromotableType

promoteKind :: Kind -> SuperKind
-- Promote the kind of a type constructor
-- from (* -> * -> *) to (BOX -> BOX -> BOX)
promoteKind (TyConApp tc [])
  | tc `hasKey` liftedTypeKindTyConKey = superKind
promoteKind (FunTy arg res) = FunTy (promoteKind arg) (promoteKind res)
promoteKind k = pprPanic "promoteKind" (ppr k)

{-
************************************************************************
*                                                                      *
\subsection{Splitting products}
*                                                                      *
************************************************************************
-}

-- | Extract the type constructor, type argument, data constructor and it's
-- /representation/ argument types from a type if it is a product type.
--
-- Precisely, we return @Just@ for any type that is all of:
--
--  * Concrete (i.e. constructors visible)
--
--  * Single-constructor
--
--  * Not existentially quantified
--
-- Whether the type is a @data@ type or a @newtype@
splitDataProductType_maybe
        :: Type                         -- ^ A product type, perhaps
        -> Maybe (TyCon,                -- The type constructor
                  [Type],               -- Type args of the tycon
                  DataCon,              -- The data constructor
                  [Type])               -- Its /representation/ arg types

        -- Rejecting existentials is conservative.  Maybe some things
        -- could be made to work with them, but I'm not going to sweat
        -- it through till someone finds it's important.

splitDataProductType_maybe ty
  | Just (tycon, ty_args) <- splitTyConApp_maybe ty
  , Just con <- isDataProductTyCon_maybe tycon
  = Just (tycon, ty_args, con, dataConInstArgTys con ty_args)
  | otherwise
  = Nothing