summaryrefslogtreecommitdiff
path: root/compiler/GHC/HsToCore/Quote.hs
blob: 395f1adfb09c98728ffae49498720c39852dd777 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
{-# LANGUAGE CPP, TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE UndecidableInstances #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

-----------------------------------------------------------------------------
--
-- (c) The University of Glasgow 2006
--
-- The purpose of this module is to transform an HsExpr into a CoreExpr which
-- when evaluated, returns a (Meta.Q Meta.Exp) computation analogous to the
-- input HsExpr. We do this in the DsM monad, which supplies access to
-- CoreExpr's of the "smart constructors" of the Meta.Exp datatype.
--
-- It also defines a bunch of knownKeyNames, in the same way as is done
-- in prelude/GHC.Builtin.Names.  It's much more convenient to do it here, because
-- otherwise we have to recompile GHC.Builtin.Names whenever we add a Name, which is
-- a Royal Pain (triggers other recompilation).
-----------------------------------------------------------------------------

module GHC.HsToCore.Quote( dsBracket ) where

#include "HsVersions.h"

import GHC.Prelude
import GHC.Platform

import {-# SOURCE #-}   GHC.HsToCore.Expr ( dsExpr )

import GHC.HsToCore.Match.Literal
import GHC.HsToCore.Monad

import qualified Language.Haskell.TH as TH

import GHC.Hs
import GHC.Builtin.Names

import GHC.Unit.Module
import GHC.Types.Id
import GHC.Types.Name hiding( varName, tcName )
import GHC.Builtin.Names.TH
import GHC.Types.Name.Env
import GHC.Tc.Utils.TcType
import GHC.Core.TyCon
import GHC.Builtin.Types
import GHC.Core
import GHC.Core.Make
import GHC.Core.Utils
import GHC.Types.SrcLoc as SrcLoc
import GHC.Types.Unique
import GHC.Types.Basic
import GHC.Utils.Outputable
import GHC.Data.Bag
import GHC.Driver.Session
import GHC.Data.FastString
import GHC.Types.ForeignCall
import GHC.Utils.Misc
import GHC.Data.Maybe
import GHC.Utils.Monad
import GHC.Tc.Types.Evidence
import Control.Monad.Trans.Reader
import Control.Monad.Trans.Class
import GHC.Core.Class
import GHC.Driver.Types ( MonadThings )
import GHC.Core.DataCon
import GHC.Types.Var
import GHC.HsToCore.Binds

import GHC.TypeLits
import Data.Kind (Constraint)

import Data.ByteString ( unpack )
import Control.Monad
import Data.List
import Data.Function

data MetaWrappers = MetaWrappers {
      -- Applies its argument to a type argument `m` and dictionary `Quote m`
      quoteWrapper :: CoreExpr -> CoreExpr
      -- Apply its argument to a type argument `m` and a dictionary `Monad m`
    , monadWrapper :: CoreExpr -> CoreExpr
      -- Apply the container typed variable `m` to the argument type `T` to get `m T`.
    , metaTy :: Type -> Type
      -- Information about the wrappers which be printed to be inspected
    , _debugWrappers :: (HsWrapper, HsWrapper, Type)
    }

-- | Construct the functions which will apply the relevant part of the
-- QuoteWrapper to identifiers during desugaring.
mkMetaWrappers :: QuoteWrapper -> DsM MetaWrappers
mkMetaWrappers q@(QuoteWrapper quote_var_raw m_var) = do
      let quote_var = Var quote_var_raw
      -- Get the superclass selector to select the Monad dictionary, going
      -- to be used to construct the monadWrapper.
      quote_tc <- dsLookupTyCon quoteClassName
      monad_tc <- dsLookupTyCon monadClassName
      let Just cls = tyConClass_maybe quote_tc
          Just monad_cls = tyConClass_maybe monad_tc
          -- Quote m -> Monad m
          monad_sel = classSCSelId cls 0

          -- Only used for the defensive assertion that the selector has
          -- the expected type
          tyvars = dataConUserTyVarBinders (classDataCon cls)
          expected_ty = mkForAllTys tyvars $
                          mkInvisFunTy (mkClassPred cls (mkTyVarTys (binderVars tyvars)))
                                       (mkClassPred monad_cls (mkTyVarTys (binderVars tyvars)))

      MASSERT2( idType monad_sel `eqType` expected_ty, ppr monad_sel $$ ppr expected_ty)

      let m_ty = Type m_var
          -- Construct the contents of MetaWrappers
          quoteWrapper = applyQuoteWrapper q
          monadWrapper = mkWpEvApps [EvExpr $ mkCoreApps (Var monad_sel) [m_ty, quote_var]] <.>
                            mkWpTyApps [m_var]
          tyWrapper t = mkAppTy m_var t
          debug = (quoteWrapper, monadWrapper, m_var)
      q_f <- dsHsWrapper quoteWrapper
      m_f <- dsHsWrapper monadWrapper
      return (MetaWrappers q_f m_f tyWrapper debug)

-- Turn A into m A
wrapName :: Name -> MetaM Type
wrapName n = do
  t <- lookupType n
  wrap_fn <- asks metaTy
  return (wrap_fn t)

-- The local state is always the same, calculated from the passed in
-- wrapper
type MetaM a = ReaderT MetaWrappers DsM a

getPlatform :: MetaM Platform
getPlatform = targetPlatform <$> getDynFlags

-----------------------------------------------------------------------------
dsBracket :: Maybe QuoteWrapper -- ^ This is Nothing only when we are dealing with a VarBr
          -> HsBracket GhcRn
          -> [PendingTcSplice]
          -> DsM CoreExpr
-- See Note [Desugaring Brackets]
-- Returns a CoreExpr of type (M TH.Exp)
-- The quoted thing is parameterised over Name, even though it has
-- been type checked.  We don't want all those type decorations!

dsBracket wrap brack splices
  = do_brack brack

  where
    runOverloaded act = do
      -- In the overloaded case we have to get given a wrapper, it is just
      -- for variable quotations that there is no wrapper, because they
      -- have a simple type.
      mw <- mkMetaWrappers (expectJust "runOverloaded" wrap)
      runReaderT (mapReaderT (dsExtendMetaEnv new_bit) act) mw


    new_bit = mkNameEnv [(n, DsSplice (unLoc e))
                        | PendingTcSplice n e <- splices]

    do_brack (VarBr _ _ n) = do { MkC e1  <- lookupOccDsM n ; return e1 }
    do_brack (ExpBr _ e)   = runOverloaded $ do { MkC e1  <- repLE e     ; return e1 }
    do_brack (PatBr _ p)   = runOverloaded $ do { MkC p1  <- repTopP p   ; return p1 }
    do_brack (TypBr _ t)   = runOverloaded $ do { MkC t1  <- repLTy t    ; return t1 }
    do_brack (DecBrG _ gp) = runOverloaded $ do { MkC ds1 <- repTopDs gp ; return ds1 }
    do_brack (DecBrL {})   = panic "dsBracket: unexpected DecBrL"
    do_brack (TExpBr _ e)  = runOverloaded $ do { MkC e1  <- repLE e     ; return e1 }

{-
Note [Desugaring Brackets]
~~~~~~~~~~~~~~~~~~~~~~~~~~

In the old days (pre Dec 2019) quotation brackets used to be monomorphic, ie
an expression bracket was of type Q Exp. This made the desugaring process simple
as there were no complicated type variables to keep consistent throughout the
whole AST. Due to the overloaded quotations proposal a quotation bracket is now
of type `Quote m => m Exp` and all the combinators defined in TH.Lib have been
generalised to work with any monad implementing a minimal interface.

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0246-overloaded-bracket.rst

Users can rejoice at the flexibility but now there is some additional complexity in
how brackets are desugared as all these polymorphic combinators need their arguments
instantiated.

> IF YOU ARE MODIFYING THIS MODULE DO NOT USE ANYTHING SPECIFIC TO Q. INSTEAD
> USE THE `wrapName` FUNCTION TO APPLY THE `m` TYPE VARIABLE TO A TYPE CONSTRUCTOR.

What the arguments should be instantiated to is supplied by the `QuoteWrapper`
datatype which is produced by `GHC.Tc.Gen.Splice`. It is a pair of an evidence variable
for `Quote m` and a type variable `m`. All the polymorphic combinators in desugaring
need to be applied to these two type variables.

There are three important functions which do the application.

1. The default is `rep2` which takes a function name of type `Quote m => T` as an argument.
2. `rep2M` takes a function name of type `Monad m => T` as an argument
3. `rep2_nw` takes a function name without any constraints as an argument.

These functions then use the information in QuoteWrapper to apply the correct
arguments to the functions as the representation is constructed.

The `MetaM` monad carries around an environment of three functions which are
used in order to wrap the polymorphic combinators and instantiate the arguments
to the correct things.

1. quoteWrapper wraps functions of type `forall m . Quote m => T`
2. monadWrapper wraps functions of type `forall m . Monad m => T`
3. metaTy wraps a type in the polymorphic `m` variable of the whole representation.

Historical note about the implementation: At the first attempt, I attempted to
lie that the type of any quotation was `Quote m => m Exp` and then specialise it
by applying a wrapper to pass the `m` and `Quote m` arguments. This approach was
simpler to implement but didn't work because of nested splices. For example,
you might have a nested splice of a more specific type which fixes the type of
the overall quote and so all the combinators used must also be instantiated to
that specific type. Therefore you really have to use the contents of the quote
wrapper to directly apply the right type to the combinators rather than
first generate a polymorphic definition and then just apply the wrapper at the end.

-}

{- -------------- Examples --------------------

  [| \x -> x |]
====>
  gensym (unpackString "x"#) `bindQ` \ x1::String ->
  lam (pvar x1) (var x1)


  [| \x -> $(f [| x |]) |]
====>
  gensym (unpackString "x"#) `bindQ` \ x1::String ->
  lam (pvar x1) (f (var x1))
-}


-------------------------------------------------------
--                      Declarations
-------------------------------------------------------

-- Proxy for the phantom type of `Core`. All the generated fragments have
-- type something like `Quote m => m Exp` so to keep things simple we represent fragments
-- of that type as `M Exp`.
data M a

repTopP :: LPat GhcRn -> MetaM (Core (M TH.Pat))
repTopP pat = do { ss <- mkGenSyms (collectPatBinders pat)
                 ; pat' <- addBinds ss (repLP pat)
                 ; wrapGenSyms ss pat' }

repTopDs :: HsGroup GhcRn -> MetaM (Core (M [TH.Dec]))
repTopDs group@(HsGroup { hs_valds   = valds
                        , hs_splcds  = splcds
                        , hs_tyclds  = tyclds
                        , hs_derivds = derivds
                        , hs_fixds   = fixds
                        , hs_defds   = defds
                        , hs_fords   = fords
                        , hs_warnds  = warnds
                        , hs_annds   = annds
                        , hs_ruleds  = ruleds
                        , hs_docs    = docs })
 = do { let { bndrs  = hsScopedTvBinders valds
                       ++ hsGroupBinders group
                       ++ hsPatSynSelectors valds
            ; instds = tyclds >>= group_instds } ;
        ss <- mkGenSyms bndrs ;

        -- Bind all the names mainly to avoid repeated use of explicit strings.
        -- Thus we get
        --      do { t :: String <- genSym "T" ;
        --           return (Data t [] ...more t's... }
        -- The other important reason is that the output must mention
        -- only "T", not "Foo:T" where Foo is the current module

        decls <- addBinds ss (
                  do { val_ds   <- rep_val_binds valds
                     ; _        <- mapM no_splice splcds
                     ; tycl_ds  <- mapM repTyClD (tyClGroupTyClDecls tyclds)
                     ; role_ds  <- mapM repRoleD (concatMap group_roles tyclds)
                     ; kisig_ds <- mapM repKiSigD (concatMap group_kisigs tyclds)
                     ; inst_ds  <- mapM repInstD instds
                     ; deriv_ds <- mapM repStandaloneDerivD derivds
                     ; fix_ds   <- mapM repLFixD fixds
                     ; _        <- mapM no_default_decl defds
                     ; for_ds   <- mapM repForD fords
                     ; _        <- mapM no_warn (concatMap (wd_warnings . unLoc)
                                                           warnds)
                     ; ann_ds   <- mapM repAnnD annds
                     ; rule_ds  <- mapM repRuleD (concatMap (rds_rules . unLoc)
                                                            ruleds)
                     ; _        <- mapM no_doc docs

                        -- more needed
                     ;  return (de_loc $ sort_by_loc $
                                val_ds ++ catMaybes tycl_ds ++ role_ds
                                       ++ kisig_ds
                                       ++ (concat fix_ds)
                                       ++ inst_ds ++ rule_ds ++ for_ds
                                       ++ ann_ds ++ deriv_ds) }) ;

        core_list <- repListM decTyConName return decls ;

        dec_ty <- lookupType decTyConName ;
        q_decs  <- repSequenceM dec_ty core_list ;

        wrapGenSyms ss q_decs
      }
  where
    no_splice (L loc _)
      = notHandledL loc "Splices within declaration brackets" empty
    no_default_decl (L loc decl)
      = notHandledL loc "Default declarations" (ppr decl)
    no_warn :: LWarnDecl GhcRn -> MetaM a
    no_warn (L loc (Warning _ thing _))
      = notHandledL loc "WARNING and DEPRECATION pragmas" $
                    text "Pragma for declaration of" <+> ppr thing
    no_doc (L loc _)
      = notHandledL loc "Haddock documentation" empty

hsScopedTvBinders :: HsValBinds GhcRn -> [Name]
-- See Note [Scoped type variables in bindings]
hsScopedTvBinders binds
  = concatMap get_scoped_tvs sigs
  where
    sigs = case binds of
             ValBinds           _ _ sigs  -> sigs
             XValBindsLR (NValBinds _ sigs) -> sigs

get_scoped_tvs :: LSig GhcRn -> [Name]
get_scoped_tvs (L _ signature)
  | TypeSig _ _ sig <- signature
  = get_scoped_tvs_from_sig (hswc_body sig)
  | ClassOpSig _ _ _ sig <- signature
  = get_scoped_tvs_from_sig sig
  | PatSynSig _ _ sig <- signature
  = get_scoped_tvs_from_sig sig
  | otherwise
  = []
  where
    get_scoped_tvs_from_sig :: LHsSigType GhcRn -> [Name]
    get_scoped_tvs_from_sig sig
      -- Both implicit and explicit quantified variables
      -- We need the implicit ones for   f :: forall (a::k). blah
      --    here 'k' scopes too
      | HsIB { hsib_ext = implicit_vars
             , hsib_body = hs_ty } <- sig
      , (explicit_vars, _) <- splitLHsForAllTyInvis hs_ty
      = implicit_vars ++ hsLTyVarNames explicit_vars

{- Notes

Note [Scoped type variables in bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   f :: forall a. a -> a
   f x = x::a
Here the 'forall a' brings 'a' into scope over the binding group.
To achieve this we

  a) Gensym a binding for 'a' at the same time as we do one for 'f'
     collecting the relevant binders with hsScopedTvBinders

  b) When processing the 'forall', don't gensym

The relevant places are signposted with references to this Note

Note [Scoped type variables in class and instance declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Scoped type variables may occur in default methods and default
signatures. We need to bring the type variables in 'foralls'
into the scope of the method bindings.

Consider
   class Foo a where
     foo :: forall (b :: k). a -> Proxy b -> Proxy b
     foo _ x = (x :: Proxy b)

We want to ensure that the 'b' in the type signature and the default
implementation are the same, so we do the following:

  a) Before desugaring the signature and binding of 'foo', use
     get_scoped_tvs to collect type variables in 'forall' and
     create symbols for them.
  b) Use 'addBinds' to bring these symbols into the scope of the type
     signatures and bindings.
  c) Use these symbols to generate Core for the class/instance declaration.

Note that when desugaring the signatures, we lookup the type variables
from the scope rather than recreate symbols for them. See more details
in "rep_ty_sig" and in Trac#14885.

Note [Binders and occurrences]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we desugar [d| data T = MkT |]
we want to get
        Data "T" [] [Con "MkT" []] []
and *not*
        Data "Foo:T" [] [Con "Foo:MkT" []] []
That is, the new data decl should fit into whatever new module it is
asked to fit in.   We do *not* clone, though; no need for this:
        Data "T79" ....

But if we see this:
        data T = MkT
        foo = reifyDecl T

then we must desugar to
        foo = Data "Foo:T" [] [Con "Foo:MkT" []] []

So in repTopDs we bring the binders into scope with mkGenSyms and addBinds.
And we use lookupOcc, rather than lookupBinder
in repTyClD and repC.

Note [Don't quantify implicit type variables in quotes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you're not careful, it's surprisingly easy to take this quoted declaration:

  [d| idProxy :: forall proxy (b :: k). proxy b -> proxy b
      idProxy x = x
    |]

and have Template Haskell turn it into this:

  idProxy :: forall k proxy (b :: k). proxy b -> proxy b
  idProxy x = x

Notice that we explicitly quantified the variable `k`! The latter declaration
isn't what the user wrote in the first place.

Usually, the culprit behind these bugs is taking implicitly quantified type
variables (often from the hsib_vars field of HsImplicitBinders) and putting
them into a `ForallT` or `ForallC`. Doing so caused #13018 and #13123.
-}

-- represent associated family instances
--
repTyClD :: LTyClDecl GhcRn -> MetaM (Maybe (SrcSpan, Core (M TH.Dec)))

repTyClD (L loc (FamDecl { tcdFam = fam })) = liftM Just $
                                              repFamilyDecl (L loc fam)

repTyClD (L loc (SynDecl { tcdLName = tc, tcdTyVars = tvs, tcdRhs = rhs }))
  = do { tc1 <- lookupLOcc tc           -- See note [Binders and occurrences]
       ; dec <- addTyClTyVarBinds tvs $ \bndrs ->
                repSynDecl tc1 bndrs rhs
       ; return (Just (loc, dec)) }

repTyClD (L loc (DataDecl { tcdLName = tc
                          , tcdTyVars = tvs
                          , tcdDataDefn = defn }))
  = do { tc1 <- lookupLOcc tc           -- See note [Binders and occurrences]
       ; dec <- addTyClTyVarBinds tvs $ \bndrs ->
                repDataDefn tc1 (Left bndrs) defn
       ; return (Just (loc, dec)) }

repTyClD (L loc (ClassDecl { tcdCtxt = cxt, tcdLName = cls,
                             tcdTyVars = tvs, tcdFDs = fds,
                             tcdSigs = sigs, tcdMeths = meth_binds,
                             tcdATs = ats, tcdATDefs = atds }))
  = do { cls1 <- lookupLOcc cls         -- See note [Binders and occurrences]
       ; dec  <- addTyVarBinds tvs $ \bndrs ->
           do { cxt1   <- repLContext cxt
          -- See Note [Scoped type variables in class and instance declarations]
              ; (ss, sigs_binds) <- rep_sigs_binds sigs meth_binds
              ; fds1   <- repLFunDeps fds
              ; ats1   <- repFamilyDecls ats
              ; atds1  <- mapM (repAssocTyFamDefaultD . unLoc) atds
              ; decls1 <- repListM decTyConName return (ats1 ++ atds1 ++ sigs_binds)
              ; decls2 <- repClass cxt1 cls1 bndrs fds1 decls1
              ; wrapGenSyms ss decls2 }
       ; return $ Just (loc, dec)
       }

-------------------------
repRoleD :: LRoleAnnotDecl GhcRn -> MetaM (SrcSpan, Core (M TH.Dec))
repRoleD (L loc (RoleAnnotDecl _ tycon roles))
  = do { tycon1 <- lookupLOcc tycon
       ; roles1 <- mapM repRole roles
       ; roles2 <- coreList roleTyConName roles1
       ; dec <- repRoleAnnotD tycon1 roles2
       ; return (loc, dec) }

-------------------------
repKiSigD :: LStandaloneKindSig GhcRn -> MetaM (SrcSpan, Core (M TH.Dec))
repKiSigD (L loc kisig) =
  case kisig of
    StandaloneKindSig _ v ki -> rep_ty_sig kiSigDName loc ki v

-------------------------
repDataDefn :: Core TH.Name
            -> Either (Core [(M TH.TyVarBndr)])
                        -- the repTyClD case
                      (Core (Maybe [(M TH.TyVarBndr)]), Core (M TH.Type))
                        -- the repDataFamInstD case
            -> HsDataDefn GhcRn
            -> MetaM (Core (M TH.Dec))
repDataDefn tc opts
          (HsDataDefn { dd_ND = new_or_data, dd_ctxt = cxt, dd_kindSig = ksig
                      , dd_cons = cons, dd_derivs = mb_derivs })
  = do { cxt1     <- repLContext cxt
       ; derivs1  <- repDerivs mb_derivs
       ; case (new_or_data, cons) of
           (NewType, [con])  -> do { con'  <- repC con
                                   ; ksig' <- repMaybeLTy ksig
                                   ; repNewtype cxt1 tc opts ksig' con'
                                                derivs1 }
           (NewType, _) -> lift $ failWithDs (text "Multiple constructors for newtype:"
                                       <+> pprQuotedList
                                       (getConNames $ unLoc $ head cons))
           (DataType, _) -> do { ksig' <- repMaybeLTy ksig
                               ; consL <- mapM repC cons
                               ; cons1 <- coreListM conTyConName consL
                               ; repData cxt1 tc opts ksig' cons1
                                         derivs1 }
       }

repSynDecl :: Core TH.Name -> Core [(M TH.TyVarBndr)]
           -> LHsType GhcRn
           -> MetaM (Core (M TH.Dec))
repSynDecl tc bndrs ty
  = do { ty1 <- repLTy ty
       ; repTySyn tc bndrs ty1 }

repFamilyDecl :: LFamilyDecl GhcRn -> MetaM (SrcSpan, Core (M TH.Dec))
repFamilyDecl decl@(L loc (FamilyDecl { fdInfo      = info
                                      , fdLName     = tc
                                      , fdTyVars    = tvs
                                      , fdResultSig = L _ resultSig
                                      , fdInjectivityAnn = injectivity }))
  = do { tc1 <- lookupLOcc tc           -- See note [Binders and occurrences]
       ; let mkHsQTvs :: [LHsTyVarBndr GhcRn] -> LHsQTyVars GhcRn
             mkHsQTvs tvs = HsQTvs { hsq_ext = []
                                   , hsq_explicit = tvs }
             resTyVar = case resultSig of
                     TyVarSig _ bndr -> mkHsQTvs [bndr]
                     _               -> mkHsQTvs []
       ; dec <- addTyClTyVarBinds tvs $ \bndrs ->
                addTyClTyVarBinds resTyVar $ \_ ->
           case info of
             ClosedTypeFamily Nothing ->
                 notHandled "abstract closed type family" (ppr decl)
             ClosedTypeFamily (Just eqns) ->
               do { eqns1  <- mapM (repTyFamEqn . unLoc) eqns
                  ; eqns2  <- coreListM tySynEqnTyConName eqns1
                  ; result <- repFamilyResultSig resultSig
                  ; inj    <- repInjectivityAnn injectivity
                  ; repClosedFamilyD tc1 bndrs result inj eqns2 }
             OpenTypeFamily ->
               do { result <- repFamilyResultSig resultSig
                  ; inj    <- repInjectivityAnn injectivity
                  ; repOpenFamilyD tc1 bndrs result inj }
             DataFamily ->
               do { kind <- repFamilyResultSigToMaybeKind resultSig
                  ; repDataFamilyD tc1 bndrs kind }
       ; return (loc, dec)
       }

-- | Represent result signature of a type family
repFamilyResultSig :: FamilyResultSig GhcRn -> MetaM (Core (M TH.FamilyResultSig))
repFamilyResultSig (NoSig _)         = repNoSig
repFamilyResultSig (KindSig _ ki)    = do { ki' <- repLTy ki
                                          ; repKindSig ki' }
repFamilyResultSig (TyVarSig _ bndr) = do { bndr' <- repTyVarBndr bndr
                                          ; repTyVarSig bndr' }

-- | Represent result signature using a Maybe Kind. Used with data families,
-- where the result signature can be either missing or a kind but never a named
-- result variable.
repFamilyResultSigToMaybeKind :: FamilyResultSig GhcRn
                              -> MetaM (Core (Maybe (M TH.Kind)))
repFamilyResultSigToMaybeKind (NoSig _) =
    do { coreNothingM kindTyConName }
repFamilyResultSigToMaybeKind (KindSig _ ki) =
    do { coreJustM kindTyConName =<< repLTy ki }
repFamilyResultSigToMaybeKind TyVarSig{} =
    panic "repFamilyResultSigToMaybeKind: unexpected TyVarSig"

-- | Represent injectivity annotation of a type family
repInjectivityAnn :: Maybe (LInjectivityAnn GhcRn)
                  -> MetaM (Core (Maybe TH.InjectivityAnn))
repInjectivityAnn Nothing =
    do { coreNothing injAnnTyConName }
repInjectivityAnn (Just (L _ (InjectivityAnn lhs rhs))) =
    do { lhs'   <- lookupBinder (unLoc lhs)
       ; rhs1   <- mapM (lookupBinder . unLoc) rhs
       ; rhs2   <- coreList nameTyConName rhs1
       ; injAnn <- rep2_nw injectivityAnnName [unC lhs', unC rhs2]
       ; coreJust injAnnTyConName injAnn }

repFamilyDecls :: [LFamilyDecl GhcRn] -> MetaM [Core (M TH.Dec)]
repFamilyDecls fds = liftM de_loc (mapM repFamilyDecl fds)

repAssocTyFamDefaultD :: TyFamDefltDecl GhcRn -> MetaM (Core (M TH.Dec))
repAssocTyFamDefaultD = repTyFamInstD

-------------------------
-- represent fundeps
--
repLFunDeps :: [LHsFunDep GhcRn] -> MetaM (Core [TH.FunDep])
repLFunDeps fds = repList funDepTyConName repLFunDep fds

repLFunDep :: LHsFunDep GhcRn -> MetaM (Core TH.FunDep)
repLFunDep (L _ (xs, ys))
   = do xs' <- repList nameTyConName (lookupBinder . unLoc) xs
        ys' <- repList nameTyConName (lookupBinder . unLoc) ys
        repFunDep xs' ys'

-- Represent instance declarations
--
repInstD :: LInstDecl GhcRn -> MetaM (SrcSpan, Core (M TH.Dec))
repInstD (L loc (TyFamInstD { tfid_inst = fi_decl }))
  = do { dec <- repTyFamInstD fi_decl
       ; return (loc, dec) }
repInstD (L loc (DataFamInstD { dfid_inst = fi_decl }))
  = do { dec <- repDataFamInstD fi_decl
       ; return (loc, dec) }
repInstD (L loc (ClsInstD { cid_inst = cls_decl }))
  = do { dec <- repClsInstD cls_decl
       ; return (loc, dec) }

repClsInstD :: ClsInstDecl GhcRn -> MetaM (Core (M TH.Dec))
repClsInstD (ClsInstDecl { cid_poly_ty = ty, cid_binds = binds
                         , cid_sigs = sigs, cid_tyfam_insts = ats
                         , cid_datafam_insts = adts
                         , cid_overlap_mode = overlap
                         })
  = addSimpleTyVarBinds tvs $
            -- We must bring the type variables into scope, so their
            -- occurrences don't fail, even though the binders don't
            -- appear in the resulting data structure
            --
            -- But we do NOT bring the binders of 'binds' into scope
            -- because they are properly regarded as occurrences
            -- For example, the method names should be bound to
            -- the selector Ids, not to fresh names (#5410)
            --
            do { cxt1     <- repLContext cxt
               ; inst_ty1 <- repLTy inst_ty
          -- See Note [Scoped type variables in class and instance declarations]
               ; (ss, sigs_binds) <- rep_sigs_binds sigs binds
               ; ats1   <- mapM (repTyFamInstD . unLoc) ats
               ; adts1  <- mapM (repDataFamInstD . unLoc) adts
               ; decls1 <- coreListM decTyConName (ats1 ++ adts1 ++ sigs_binds)
               ; rOver  <- repOverlap (fmap unLoc overlap)
               ; decls2 <- repInst rOver cxt1 inst_ty1 decls1
               ; wrapGenSyms ss decls2 }
 where
   (tvs, cxt, inst_ty) = splitLHsInstDeclTy ty

repStandaloneDerivD :: LDerivDecl GhcRn -> MetaM (SrcSpan, Core (M TH.Dec))
repStandaloneDerivD (L loc (DerivDecl { deriv_strategy = strat
                                       , deriv_type     = ty }))
  = do { dec <- addSimpleTyVarBinds tvs $
                do { cxt'     <- repLContext cxt
                   ; strat'   <- repDerivStrategy strat
                   ; inst_ty' <- repLTy inst_ty
                   ; repDeriv strat' cxt' inst_ty' }
       ; return (loc, dec) }
  where
    (tvs, cxt, inst_ty) = splitLHsInstDeclTy (dropWildCards ty)

repTyFamInstD :: TyFamInstDecl GhcRn -> MetaM (Core (M TH.Dec))
repTyFamInstD (TyFamInstDecl { tfid_eqn = eqn })
  = do { eqn1 <- repTyFamEqn eqn
       ; repTySynInst eqn1 }

repTyFamEqn :: TyFamInstEqn GhcRn -> MetaM (Core (M TH.TySynEqn))
repTyFamEqn (HsIB { hsib_ext = var_names
                  , hsib_body = FamEqn { feqn_tycon = tc_name
                                       , feqn_bndrs = mb_bndrs
                                       , feqn_pats = tys
                                       , feqn_fixity = fixity
                                       , feqn_rhs  = rhs }})
  = do { tc <- lookupLOcc tc_name     -- See note [Binders and occurrences]
       ; let hs_tvs = HsQTvs { hsq_ext = var_names
                             , hsq_explicit = fromMaybe [] mb_bndrs }
       ; addTyClTyVarBinds hs_tvs $ \ _ ->
         do { mb_bndrs1 <- repMaybeListM tyVarBndrTyConName
                                        repTyVarBndr
                                        mb_bndrs
            ; tys1 <- case fixity of
                        Prefix -> repTyArgs (repNamedTyCon tc) tys
                        Infix  -> do { (HsValArg t1: HsValArg t2: args) <- checkTys tys
                                     ; t1' <- repLTy t1
                                     ; t2'  <- repLTy t2
                                     ; repTyArgs (repTInfix t1' tc t2') args }
            ; rhs1 <- repLTy rhs
            ; repTySynEqn mb_bndrs1 tys1 rhs1 } }
     where checkTys :: [LHsTypeArg GhcRn] -> MetaM [LHsTypeArg GhcRn]
           checkTys tys@(HsValArg _:HsValArg _:_) = return tys
           checkTys _ = panic "repTyFamEqn:checkTys"

repTyArgs :: MetaM (Core (M TH.Type)) -> [LHsTypeArg GhcRn] -> MetaM (Core (M TH.Type))
repTyArgs f [] = f
repTyArgs f (HsValArg ty : as) = do { f' <- f
                                    ; ty' <- repLTy ty
                                    ; repTyArgs (repTapp f' ty') as }
repTyArgs f (HsTypeArg _ ki : as) = do { f' <- f
                                       ; ki' <- repLTy ki
                                       ; repTyArgs (repTappKind f' ki') as }
repTyArgs f (HsArgPar _ : as) = repTyArgs f as

repDataFamInstD :: DataFamInstDecl GhcRn -> MetaM (Core (M TH.Dec))
repDataFamInstD (DataFamInstDecl { dfid_eqn =
                  (HsIB { hsib_ext = var_names
                        , hsib_body = FamEqn { feqn_tycon = tc_name
                                             , feqn_bndrs = mb_bndrs
                                             , feqn_pats  = tys
                                             , feqn_fixity = fixity
                                             , feqn_rhs   = defn }})})
  = do { tc <- lookupLOcc tc_name         -- See note [Binders and occurrences]
       ; let hs_tvs = HsQTvs { hsq_ext = var_names
                             , hsq_explicit = fromMaybe [] mb_bndrs }
       ; addTyClTyVarBinds hs_tvs $ \ _ ->
         do { mb_bndrs1 <- repMaybeListM tyVarBndrTyConName
                                        repTyVarBndr
                                        mb_bndrs
            ; tys1 <- case fixity of
                        Prefix -> repTyArgs (repNamedTyCon tc) tys
                        Infix  -> do { (HsValArg t1: HsValArg t2: args) <- checkTys tys
                                     ; t1' <- repLTy t1
                                     ; t2'  <- repLTy t2
                                     ; repTyArgs (repTInfix t1' tc t2') args }
            ; repDataDefn tc (Right (mb_bndrs1, tys1)) defn } }

      where checkTys :: [LHsTypeArg GhcRn] -> MetaM [LHsTypeArg GhcRn]
            checkTys tys@(HsValArg _: HsValArg _: _) = return tys
            checkTys _ = panic "repDataFamInstD:checkTys"

repForD :: Located (ForeignDecl GhcRn) -> MetaM (SrcSpan, Core (M TH.Dec))
repForD (L loc (ForeignImport { fd_name = name, fd_sig_ty = typ
                                  , fd_fi = CImport (L _ cc)
                                                    (L _ s) mch cis _ }))
 = do MkC name' <- lookupLOcc name
      MkC typ' <- repHsSigType typ
      MkC cc' <- repCCallConv cc
      MkC s' <- repSafety s
      cis' <- conv_cimportspec cis
      MkC str <- coreStringLit (static ++ chStr ++ cis')
      dec <- rep2 forImpDName [cc', s', str, name', typ']
      return (loc, dec)
 where
    conv_cimportspec (CLabel cls)
      = notHandled "Foreign label" (doubleQuotes (ppr cls))
    conv_cimportspec (CFunction DynamicTarget) = return "dynamic"
    conv_cimportspec (CFunction (StaticTarget _ fs _ True))
                            = return (unpackFS fs)
    conv_cimportspec (CFunction (StaticTarget _ _  _ False))
                            = panic "conv_cimportspec: values not supported yet"
    conv_cimportspec CWrapper = return "wrapper"
    -- these calling conventions do not support headers and the static keyword
    raw_cconv = cc == PrimCallConv || cc == JavaScriptCallConv
    static = case cis of
                 CFunction (StaticTarget _ _ _ _) | not raw_cconv -> "static "
                 _ -> ""
    chStr = case mch of
            Just (Header _ h) | not raw_cconv -> unpackFS h ++ " "
            _ -> ""
repForD decl@(L _ ForeignExport{}) = notHandled "Foreign export" (ppr decl)

repCCallConv :: CCallConv -> MetaM (Core TH.Callconv)
repCCallConv CCallConv          = rep2_nw cCallName []
repCCallConv StdCallConv        = rep2_nw stdCallName []
repCCallConv CApiConv           = rep2_nw cApiCallName []
repCCallConv PrimCallConv       = rep2_nw primCallName []
repCCallConv JavaScriptCallConv = rep2_nw javaScriptCallName []

repSafety :: Safety -> MetaM (Core TH.Safety)
repSafety PlayRisky = rep2_nw unsafeName []
repSafety PlayInterruptible = rep2_nw interruptibleName []
repSafety PlaySafe = rep2_nw safeName []

repLFixD :: LFixitySig GhcRn -> MetaM [(SrcSpan, Core (M TH.Dec))]
repLFixD (L loc fix_sig) = rep_fix_d loc fix_sig

rep_fix_d :: SrcSpan -> FixitySig GhcRn -> MetaM [(SrcSpan, Core (M TH.Dec))]
rep_fix_d loc (FixitySig _ names (Fixity _ prec dir))
  = do { MkC prec' <- coreIntLit prec
       ; let rep_fn = case dir of
                        InfixL -> infixLDName
                        InfixR -> infixRDName
                        InfixN -> infixNDName
       ; let do_one name
              = do { MkC name' <- lookupLOcc name
                   ; dec <- rep2 rep_fn [prec', name']
                   ; return (loc,dec) }
       ; mapM do_one names }

repRuleD :: LRuleDecl GhcRn -> MetaM (SrcSpan, Core (M TH.Dec))
repRuleD (L loc (HsRule { rd_name = n
                        , rd_act = act
                        , rd_tyvs = ty_bndrs
                        , rd_tmvs = tm_bndrs
                        , rd_lhs = lhs
                        , rd_rhs = rhs }))
  = do { rule <- addHsTyVarBinds (fromMaybe [] ty_bndrs) $ \ ex_bndrs ->
         do { let tm_bndr_names = concatMap ruleBndrNames tm_bndrs
            ; ss <- mkGenSyms tm_bndr_names
            ; rule <- addBinds ss $
                      do { elt_ty <- wrapName tyVarBndrTyConName
                         ; ty_bndrs' <- return $ case ty_bndrs of
                             Nothing -> coreNothing' (mkListTy elt_ty)
                             Just _  -> coreJust' (mkListTy elt_ty) ex_bndrs
                         ; tm_bndrs' <- repListM ruleBndrTyConName
                                                repRuleBndr
                                                tm_bndrs
                         ; n'   <- coreStringLit $ unpackFS $ snd $ unLoc n
                         ; act' <- repPhases act
                         ; lhs' <- repLE lhs
                         ; rhs' <- repLE rhs
                         ; repPragRule n' ty_bndrs' tm_bndrs' lhs' rhs' act' }
           ; wrapGenSyms ss rule  }
       ; return (loc, rule) }

ruleBndrNames :: LRuleBndr GhcRn -> [Name]
ruleBndrNames (L _ (RuleBndr _ n))      = [unLoc n]
ruleBndrNames (L _ (RuleBndrSig _ n sig))
  | HsPS { hsps_ext = HsPSRn { hsps_imp_tvs = vars }} <- sig
  = unLoc n : vars

repRuleBndr :: LRuleBndr GhcRn -> MetaM (Core (M TH.RuleBndr))
repRuleBndr (L _ (RuleBndr _ n))
  = do { MkC n' <- lookupLBinder n
       ; rep2 ruleVarName [n'] }
repRuleBndr (L _ (RuleBndrSig _ n sig))
  = do { MkC n'  <- lookupLBinder n
       ; MkC ty' <- repLTy (hsPatSigType sig)
       ; rep2 typedRuleVarName [n', ty'] }

repAnnD :: LAnnDecl GhcRn -> MetaM (SrcSpan, Core (M TH.Dec))
repAnnD (L loc (HsAnnotation _ _ ann_prov (L _ exp)))
  = do { target <- repAnnProv ann_prov
       ; exp'   <- repE exp
       ; dec    <- repPragAnn target exp'
       ; return (loc, dec) }

repAnnProv :: AnnProvenance Name -> MetaM (Core TH.AnnTarget)
repAnnProv (ValueAnnProvenance (L _ n))
  = do { MkC n' <- lift $ globalVar n  -- ANNs are allowed only at top-level
       ; rep2_nw valueAnnotationName [ n' ] }
repAnnProv (TypeAnnProvenance (L _ n))
  = do { MkC n' <- lift $ globalVar n
       ; rep2_nw typeAnnotationName [ n' ] }
repAnnProv ModuleAnnProvenance
  = rep2_nw moduleAnnotationName []

-------------------------------------------------------
--                      Constructors
-------------------------------------------------------

repC :: LConDecl GhcRn -> MetaM (Core (M TH.Con))
repC (L _ (ConDeclH98 { con_name   = con
                      , con_forall = (L _ False)
                      , con_mb_cxt = Nothing
                      , con_args   = args }))
  = repDataCon con args

repC (L _ (ConDeclH98 { con_name = con
                      , con_forall = L _ is_existential
                      , con_ex_tvs = con_tvs
                      , con_mb_cxt = mcxt
                      , con_args = args }))
  = do { addHsTyVarBinds con_tvs $ \ ex_bndrs ->
         do { c'    <- repDataCon con args
            ; ctxt' <- repMbContext mcxt
            ; if not is_existential && isNothing mcxt
              then return c'
              else rep2 forallCName ([unC ex_bndrs, unC ctxt', unC c'])
            }
       }

repC (L _ (ConDeclGADT { con_names  = cons
                       , con_qvars  = qtvs
                       , con_mb_cxt = mcxt
                       , con_args   = args
                       , con_res_ty = res_ty }))
  | isEmptyLHsQTvs qtvs  -- No implicit or explicit variables
  , Nothing <- mcxt      -- No context
                         -- ==> no need for a forall
  = repGadtDataCons cons args res_ty

  | otherwise
  = addTyVarBinds qtvs $ \ ex_bndrs ->
             -- See Note [Don't quantify implicit type variables in quotes]
    do { c'    <- repGadtDataCons cons args res_ty
       ; ctxt' <- repMbContext mcxt
       ; if null (hsQTvExplicit qtvs) && isNothing mcxt
         then return c'
         else rep2 forallCName ([unC ex_bndrs, unC ctxt', unC c']) }


repMbContext :: Maybe (LHsContext GhcRn) -> MetaM (Core (M TH.Cxt))
repMbContext Nothing          = repContext []
repMbContext (Just (L _ cxt)) = repContext cxt

repSrcUnpackedness :: SrcUnpackedness -> MetaM (Core (M TH.SourceUnpackedness))
repSrcUnpackedness SrcUnpack   = rep2 sourceUnpackName         []
repSrcUnpackedness SrcNoUnpack = rep2 sourceNoUnpackName       []
repSrcUnpackedness NoSrcUnpack = rep2 noSourceUnpackednessName []

repSrcStrictness :: SrcStrictness -> MetaM (Core (M TH.SourceStrictness))
repSrcStrictness SrcLazy     = rep2 sourceLazyName         []
repSrcStrictness SrcStrict   = rep2 sourceStrictName       []
repSrcStrictness NoSrcStrict = rep2 noSourceStrictnessName []

repBangTy :: LBangType GhcRn -> MetaM (Core (M TH.BangType))
repBangTy ty = do
  MkC u <- repSrcUnpackedness su'
  MkC s <- repSrcStrictness ss'
  MkC b <- rep2 bangName [u, s]
  MkC t <- repLTy ty'
  rep2 bangTypeName [b, t]
  where
    (su', ss', ty') = case unLoc ty of
            HsBangTy _ (HsSrcBang _ su ss) ty -> (su, ss, ty)
            _ -> (NoSrcUnpack, NoSrcStrict, ty)

-------------------------------------------------------
--                      Deriving clauses
-------------------------------------------------------

repDerivs :: HsDeriving GhcRn -> MetaM (Core [M TH.DerivClause])
repDerivs (L _ clauses)
  = repListM derivClauseTyConName repDerivClause clauses

repDerivClause :: LHsDerivingClause GhcRn
               -> MetaM (Core (M TH.DerivClause))
repDerivClause (L _ (HsDerivingClause
                          { deriv_clause_strategy = dcs
                          , deriv_clause_tys      = L _ dct }))
  = do MkC dcs' <- repDerivStrategy dcs
       MkC dct' <- repListM typeTyConName (rep_deriv_ty . hsSigType) dct
       rep2 derivClauseName [dcs',dct']
  where
    rep_deriv_ty :: LHsType GhcRn -> MetaM (Core (M TH.Type))
    rep_deriv_ty ty = repLTy ty

rep_sigs_binds :: [LSig GhcRn] -> LHsBinds GhcRn
               -> MetaM ([GenSymBind], [Core (M TH.Dec)])
-- Represent signatures and methods in class/instance declarations.
-- See Note [Scoped type variables in class and instance declarations]
--
-- Why not use 'repBinds': we have already created symbols for methods in
-- 'repTopDs' via 'hsGroupBinders'. However in 'repBinds', we recreate
-- these fun_id via 'collectHsValBinders decs', which would lead to the
-- instance declarations failing in TH.
rep_sigs_binds sigs binds
  = do { let tvs = concatMap get_scoped_tvs sigs
       ; ss <- mkGenSyms tvs
       ; sigs1 <- addBinds ss $ rep_sigs sigs
       ; binds1 <- addBinds ss $ rep_binds binds
       ; return (ss, de_loc (sort_by_loc (sigs1 ++ binds1))) }

-------------------------------------------------------
--   Signatures in a class decl, or a group of bindings
-------------------------------------------------------

rep_sigs :: [LSig GhcRn] -> MetaM [(SrcSpan, Core (M TH.Dec))]
        -- We silently ignore ones we don't recognise
rep_sigs = concatMapM rep_sig

rep_sig :: LSig GhcRn -> MetaM [(SrcSpan, Core (M TH.Dec))]
rep_sig (L loc (TypeSig _ nms ty))
  = mapM (rep_wc_ty_sig sigDName loc ty) nms
rep_sig (L loc (PatSynSig _ nms ty))
  = mapM (rep_patsyn_ty_sig loc ty) nms
rep_sig (L loc (ClassOpSig _ is_deflt nms ty))
  | is_deflt     = mapM (rep_ty_sig defaultSigDName loc ty) nms
  | otherwise    = mapM (rep_ty_sig sigDName loc ty) nms
rep_sig d@(L _ (IdSig {}))           = pprPanic "rep_sig IdSig" (ppr d)
rep_sig (L loc (FixSig _ fix_sig))   = rep_fix_d loc fix_sig
rep_sig (L loc (InlineSig _ nm ispec))= rep_inline nm ispec loc
rep_sig (L loc (SpecSig _ nm tys ispec))
  = concatMapM (\t -> rep_specialise nm t ispec loc) tys
rep_sig (L loc (SpecInstSig _ _ ty))  = rep_specialiseInst ty loc
rep_sig (L _   (MinimalSig {}))       = notHandled "MINIMAL pragmas" empty
rep_sig (L _   (SCCFunSig {}))        = notHandled "SCC pragmas" empty
rep_sig (L loc (CompleteMatchSig _ _st cls mty))
  = rep_complete_sig cls mty loc

rep_ty_sig :: Name -> SrcSpan -> LHsSigType GhcRn -> Located Name
           -> MetaM (SrcSpan, Core (M TH.Dec))
-- Don't create the implicit and explicit variables when desugaring signatures,
-- see Note [Scoped type variables in class and instance declarations].
-- and Note [Don't quantify implicit type variables in quotes]
rep_ty_sig mk_sig loc sig_ty nm
  | HsIB { hsib_body = hs_ty } <- sig_ty
  , (explicit_tvs, ctxt, ty) <- splitLHsSigmaTyInvis hs_ty
  = do { nm1 <- lookupLOcc nm
       ; let rep_in_scope_tv tv = do { name <- lookupBinder (hsLTyVarName tv)
                                     ; repTyVarBndrWithKind tv name }
       ; th_explicit_tvs <- repListM tyVarBndrTyConName rep_in_scope_tv
                                    explicit_tvs

         -- NB: Don't pass any implicit type variables to repList above
         -- See Note [Don't quantify implicit type variables in quotes]

       ; th_ctxt <- repLContext ctxt
       ; th_ty   <- repLTy ty
       ; ty1     <- if null explicit_tvs && null (unLoc ctxt)
                       then return th_ty
                       else repTForall th_explicit_tvs th_ctxt th_ty
       ; sig     <- repProto mk_sig nm1 ty1
       ; return (loc, sig) }

rep_patsyn_ty_sig :: SrcSpan -> LHsSigType GhcRn -> Located Name
                  -> MetaM (SrcSpan, Core (M TH.Dec))
-- represents a pattern synonym type signature;
-- see Note [Pattern synonym type signatures and Template Haskell] in Convert
--
-- Don't create the implicit and explicit variables when desugaring signatures,
-- see Note [Scoped type variables in class and instance declarations]
-- and Note [Don't quantify implicit type variables in quotes]
rep_patsyn_ty_sig loc sig_ty nm
  | HsIB { hsib_body = hs_ty } <- sig_ty
  , (univs, reqs, exis, provs, ty) <- splitLHsPatSynTy hs_ty
  = do { nm1 <- lookupLOcc nm
       ; let rep_in_scope_tv tv = do { name <- lookupBinder (hsLTyVarName tv)
                                     ; repTyVarBndrWithKind tv name }
       ; th_univs <- repListM tyVarBndrTyConName rep_in_scope_tv univs
       ; th_exis  <- repListM tyVarBndrTyConName rep_in_scope_tv exis

         -- NB: Don't pass any implicit type variables to repList above
         -- See Note [Don't quantify implicit type variables in quotes]

       ; th_reqs  <- repLContext reqs
       ; th_provs <- repLContext provs
       ; th_ty    <- repLTy ty
       ; ty1      <- repTForall th_univs th_reqs =<<
                       repTForall th_exis th_provs th_ty
       ; sig      <- repProto patSynSigDName nm1 ty1
       ; return (loc, sig) }

rep_wc_ty_sig :: Name -> SrcSpan -> LHsSigWcType GhcRn -> Located Name
              -> MetaM (SrcSpan, Core (M TH.Dec))
rep_wc_ty_sig mk_sig loc sig_ty nm
  = rep_ty_sig mk_sig loc (hswc_body sig_ty) nm

rep_inline :: Located Name
           -> InlinePragma      -- Never defaultInlinePragma
           -> SrcSpan
           -> MetaM [(SrcSpan, Core (M TH.Dec))]
rep_inline nm ispec loc
  = do { nm1    <- lookupLOcc nm
       ; inline <- repInline $ inl_inline ispec
       ; rm     <- repRuleMatch $ inl_rule ispec
       ; phases <- repPhases $ inl_act ispec
       ; pragma <- repPragInl nm1 inline rm phases
       ; return [(loc, pragma)]
       }

rep_specialise :: Located Name -> LHsSigType GhcRn -> InlinePragma
               -> SrcSpan
               -> MetaM [(SrcSpan, Core (M TH.Dec))]
rep_specialise nm ty ispec loc
  = do { nm1 <- lookupLOcc nm
       ; ty1 <- repHsSigType ty
       ; phases <- repPhases $ inl_act ispec
       ; let inline = inl_inline ispec
       ; pragma <- if noUserInlineSpec inline
                   then -- SPECIALISE
                     repPragSpec nm1 ty1 phases
                   else -- SPECIALISE INLINE
                     do { inline1 <- repInline inline
                        ; repPragSpecInl nm1 ty1 inline1 phases }
       ; return [(loc, pragma)]
       }

rep_specialiseInst :: LHsSigType GhcRn -> SrcSpan
                   -> MetaM [(SrcSpan, Core (M TH.Dec))]
rep_specialiseInst ty loc
  = do { ty1    <- repHsSigType ty
       ; pragma <- repPragSpecInst ty1
       ; return [(loc, pragma)] }

repInline :: InlineSpec -> MetaM (Core TH.Inline)
repInline NoInline     = dataCon noInlineDataConName
repInline Inline       = dataCon inlineDataConName
repInline Inlinable    = dataCon inlinableDataConName
repInline NoUserInline = notHandled "NOUSERINLINE" empty

repRuleMatch :: RuleMatchInfo -> MetaM (Core TH.RuleMatch)
repRuleMatch ConLike = dataCon conLikeDataConName
repRuleMatch FunLike = dataCon funLikeDataConName

repPhases :: Activation -> MetaM (Core TH.Phases)
repPhases (ActiveBefore _ i) = do { MkC arg <- coreIntLit i
                                  ; dataCon' beforePhaseDataConName [arg] }
repPhases (ActiveAfter _ i)  = do { MkC arg <- coreIntLit i
                                  ; dataCon' fromPhaseDataConName [arg] }
repPhases _                  = dataCon allPhasesDataConName

rep_complete_sig :: Located [Located Name]
                 -> Maybe (Located Name)
                 -> SrcSpan
                 -> MetaM [(SrcSpan, Core (M TH.Dec))]
rep_complete_sig (L _ cls) mty loc
  = do { mty' <- repMaybe nameTyConName lookupLOcc mty
       ; cls' <- repList nameTyConName lookupLOcc cls
       ; sig <- repPragComplete cls' mty'
       ; return [(loc, sig)] }

-------------------------------------------------------
--                      Types
-------------------------------------------------------

addSimpleTyVarBinds :: [Name]                -- the binders to be added
                    -> MetaM (Core (M a))   -- action in the ext env
                    -> MetaM (Core (M a))
addSimpleTyVarBinds names thing_inside
  = do { fresh_names <- mkGenSyms names
       ; term <- addBinds fresh_names thing_inside
       ; wrapGenSyms fresh_names term }

addHsTyVarBinds :: [LHsTyVarBndr GhcRn]  -- the binders to be added
                -> (Core [(M TH.TyVarBndr)] -> MetaM (Core (M a)))  -- action in the ext env
                -> MetaM (Core (M a))
addHsTyVarBinds exp_tvs thing_inside
  = do { fresh_exp_names <- mkGenSyms (hsLTyVarNames exp_tvs)
       ; term <- addBinds fresh_exp_names $
                 do { kbs <- repListM tyVarBndrTyConName mk_tv_bndr
                                     (exp_tvs `zip` fresh_exp_names)
                    ; thing_inside kbs }
       ; wrapGenSyms fresh_exp_names term }
  where
    mk_tv_bndr (tv, (_,v)) = repTyVarBndrWithKind tv (coreVar v)

addTyVarBinds :: LHsQTyVars GhcRn                    -- the binders to be added
              -> (Core [(M TH.TyVarBndr)] -> MetaM (Core (M a)))  -- action in the ext env
              -> MetaM (Core (M a))
-- gensym a list of type variables and enter them into the meta environment;
-- the computations passed as the second argument is executed in that extended
-- meta environment and gets the *new* names on Core-level as an argument
addTyVarBinds (HsQTvs { hsq_ext = imp_tvs
                      , hsq_explicit = exp_tvs })
              thing_inside
  = addSimpleTyVarBinds imp_tvs $
    addHsTyVarBinds exp_tvs $
    thing_inside

addTyClTyVarBinds :: LHsQTyVars GhcRn
                  -> (Core [(M TH.TyVarBndr)] -> MetaM (Core (M a)))
                  -> MetaM (Core (M a))

-- Used for data/newtype declarations, and family instances,
-- so that the nested type variables work right
--    instance C (T a) where
--      type W (T a) = blah
-- The 'a' in the type instance is the one bound by the instance decl
addTyClTyVarBinds tvs m
  = do { let tv_names = hsAllLTyVarNames tvs
       ; env <- lift $ dsGetMetaEnv
       ; freshNames <- mkGenSyms (filterOut (`elemNameEnv` env) tv_names)
            -- Make fresh names for the ones that are not already in scope
            -- This makes things work for family declarations

       ; term <- addBinds freshNames $
                 do { kbs <- repListM tyVarBndrTyConName mk_tv_bndr
                                     (hsQTvExplicit tvs)
                    ; m kbs }

       ; wrapGenSyms freshNames term }
  where
    mk_tv_bndr :: LHsTyVarBndr GhcRn -> MetaM (Core (M TH.TyVarBndr))
    mk_tv_bndr tv = do { v <- lookupBinder (hsLTyVarName tv)
                       ; repTyVarBndrWithKind tv v }

-- Produce kinded binder constructors from the Haskell tyvar binders
--
repTyVarBndrWithKind :: LHsTyVarBndr GhcRn
                     -> Core TH.Name -> MetaM (Core (M TH.TyVarBndr))
repTyVarBndrWithKind (L _ (UserTyVar _ _)) nm
  = repPlainTV nm
repTyVarBndrWithKind (L _ (KindedTyVar _ _ ki)) nm
  = repLTy ki >>= repKindedTV nm

-- | Represent a type variable binder
repTyVarBndr :: LHsTyVarBndr GhcRn -> MetaM (Core (M TH.TyVarBndr))
repTyVarBndr (L _ (UserTyVar _ (L _ nm)) )
  = do { nm' <- lookupBinder nm
       ; repPlainTV nm' }
repTyVarBndr (L _ (KindedTyVar _ (L _ nm) ki))
  = do { nm' <- lookupBinder nm
       ; ki' <- repLTy ki
       ; repKindedTV nm' ki' }

-- represent a type context
--
repLContext :: LHsContext GhcRn -> MetaM (Core (M TH.Cxt))
repLContext ctxt = repContext (unLoc ctxt)

repContext :: HsContext GhcRn -> MetaM (Core (M TH.Cxt))
repContext ctxt = do preds <- repListM typeTyConName repLTy ctxt
                     repCtxt preds

repHsSigType :: LHsSigType GhcRn -> MetaM (Core (M TH.Type))
repHsSigType (HsIB { hsib_ext = implicit_tvs
                   , hsib_body = body })
  | (explicit_tvs, ctxt, ty) <- splitLHsSigmaTyInvis body
  = addSimpleTyVarBinds implicit_tvs $
      -- See Note [Don't quantify implicit type variables in quotes]
    addHsTyVarBinds explicit_tvs $ \ th_explicit_tvs ->
    do { th_ctxt <- repLContext ctxt
       ; th_ty   <- repLTy ty
       ; if null explicit_tvs && null (unLoc ctxt)
         then return th_ty
         else repTForall th_explicit_tvs th_ctxt th_ty }

repHsSigWcType :: LHsSigWcType GhcRn -> MetaM (Core (M TH.Type))
repHsSigWcType (HsWC { hswc_body = sig1 })
  = repHsSigType sig1

-- yield the representation of a list of types
repLTys :: [LHsType GhcRn] -> MetaM [Core (M TH.Type)]
repLTys tys = mapM repLTy tys

-- represent a type
repLTy :: LHsType GhcRn -> MetaM (Core (M TH.Type))
repLTy ty = repTy (unLoc ty)

-- Desugar a type headed by an invisible forall (e.g., @forall a. a@) or
-- a context (e.g., @Show a => a@) into a ForallT from L.H.TH.Syntax.
-- In other words, the argument to this function is always an
-- @HsForAllTy ForallInvis@ or @HsQualTy@.
-- Types headed by visible foralls (which are desugared to ForallVisT) are
-- handled separately in repTy.
repForallT :: HsType GhcRn -> MetaM (Core (M TH.Type))
repForallT ty
 | (tvs, ctxt, tau) <- splitLHsSigmaTyInvis (noLoc ty)
 = addHsTyVarBinds tvs $ \bndrs ->
   do { ctxt1  <- repLContext ctxt
      ; tau1   <- repLTy tau
      ; repTForall bndrs ctxt1 tau1 -- forall a. C a => {...}
      }

repTy :: HsType GhcRn -> MetaM (Core (M TH.Type))
repTy ty@(HsForAllTy { hst_fvf = fvf, hst_bndrs = tvs, hst_body = body }) =
  case fvf of
    ForallInvis -> repForallT ty
    ForallVis   -> addHsTyVarBinds tvs $ \bndrs ->
                   do body1 <- repLTy body
                      repTForallVis bndrs body1
repTy ty@(HsQualTy {}) = repForallT ty

repTy (HsTyVar _ _ (L _ n))
  | isLiftedTypeKindTyConName n       = repTStar
  | n `hasKey` constraintKindTyConKey = repTConstraint
  | n `hasKey` funTyConKey            = repArrowTyCon
  | isTvOcc occ   = do tv1 <- lookupOcc n
                       repTvar tv1
  | isDataOcc occ = do tc1 <- lookupOcc n
                       repPromotedDataCon tc1
  | n == eqTyConName = repTequality
  | otherwise     = do tc1 <- lookupOcc n
                       repNamedTyCon tc1
  where
    occ = nameOccName n

repTy (HsAppTy _ f a)       = do
                                f1 <- repLTy f
                                a1 <- repLTy a
                                repTapp f1 a1
repTy (HsAppKindTy _ ty ki) = do
                                ty1 <- repLTy ty
                                ki1 <- repLTy ki
                                repTappKind ty1 ki1
repTy (HsFunTy _ f a)       = do
                                f1   <- repLTy f
                                a1   <- repLTy a
                                tcon <- repArrowTyCon
                                repTapps tcon [f1, a1]
repTy (HsListTy _ t)        = do
                                t1   <- repLTy t
                                tcon <- repListTyCon
                                repTapp tcon t1
repTy (HsTupleTy _ HsUnboxedTuple tys) = do
                                tys1 <- repLTys tys
                                tcon <- repUnboxedTupleTyCon (length tys)
                                repTapps tcon tys1
repTy (HsTupleTy _ _ tys)   = do tys1 <- repLTys tys
                                 tcon <- repTupleTyCon (length tys)
                                 repTapps tcon tys1
repTy (HsSumTy _ tys)       = do tys1 <- repLTys tys
                                 tcon <- repUnboxedSumTyCon (length tys)
                                 repTapps tcon tys1
repTy (HsOpTy _ ty1 n ty2)  = repLTy ((nlHsTyVar (unLoc n) `nlHsAppTy` ty1)
                                   `nlHsAppTy` ty2)
repTy (HsParTy _ t)         = repLTy t
repTy (HsStarTy _ _) =  repTStar
repTy (HsKindSig _ t k)     = do
                                t1 <- repLTy t
                                k1 <- repLTy k
                                repTSig t1 k1
repTy (HsSpliceTy _ splice)      = repSplice splice
repTy (HsExplicitListTy _ _ tys) = do
                                    tys1 <- repLTys tys
                                    repTPromotedList tys1
repTy (HsExplicitTupleTy _ tys) = do
                                    tys1 <- repLTys tys
                                    tcon <- repPromotedTupleTyCon (length tys)
                                    repTapps tcon tys1
repTy (HsTyLit _ lit) = do
                          lit' <- repTyLit lit
                          repTLit lit'
repTy (HsWildCardTy _) = repTWildCard
repTy (HsIParamTy _ n t) = do
                             n' <- rep_implicit_param_name (unLoc n)
                             t' <- repLTy t
                             repTImplicitParam n' t'

repTy ty                      = notHandled "Exotic form of type" (ppr ty)

repTyLit :: HsTyLit -> MetaM (Core (M TH.TyLit))
repTyLit (HsNumTy _ i) = do iExpr <- mkIntegerExpr i
                            rep2 numTyLitName [iExpr]
repTyLit (HsStrTy _ s) = do { s' <- mkStringExprFS s
                            ; rep2 strTyLitName [s']
                            }

-- | Represent a type wrapped in a Maybe
repMaybeLTy :: Maybe (LHsKind GhcRn)
            -> MetaM (Core (Maybe (M TH.Type)))
repMaybeLTy m = do
  k_ty <- wrapName kindTyConName
  repMaybeT k_ty repLTy m

repRole :: Located (Maybe Role) -> MetaM (Core TH.Role)
repRole (L _ (Just Nominal))          = rep2_nw nominalRName []
repRole (L _ (Just Representational)) = rep2_nw representationalRName []
repRole (L _ (Just Phantom))          = rep2_nw phantomRName []
repRole (L _ Nothing)                 = rep2_nw inferRName []

-----------------------------------------------------------------------------
--              Splices
-----------------------------------------------------------------------------

repSplice :: HsSplice GhcRn -> MetaM (Core a)
-- See Note [How brackets and nested splices are handled] in GHC.Tc.Gen.Splice
-- We return a CoreExpr of any old type; the context should know
repSplice (HsTypedSplice   _ _ n _) = rep_splice n
repSplice (HsUntypedSplice _ _ n _) = rep_splice n
repSplice (HsQuasiQuote _ n _ _ _)  = rep_splice n
repSplice e@(HsSpliced {})          = pprPanic "repSplice" (ppr e)

rep_splice :: Name -> MetaM (Core a)
rep_splice splice_name
 = do { mb_val <- lift $ dsLookupMetaEnv splice_name
       ; case mb_val of
           Just (DsSplice e) -> do { e' <- lift $ dsExpr e
                                   ; return (MkC e') }
           _ -> pprPanic "HsSplice" (ppr splice_name) }
                        -- Should not happen; statically checked

-----------------------------------------------------------------------------
--              Expressions
-----------------------------------------------------------------------------

repLEs :: [LHsExpr GhcRn] -> MetaM (Core [(M TH.Exp)])
repLEs es = repListM expTyConName repLE es

-- FIXME: some of these panics should be converted into proper error messages
--        unless we can make sure that constructs, which are plainly not
--        supported in TH already lead to error messages at an earlier stage
repLE :: LHsExpr GhcRn -> MetaM (Core (M TH.Exp))
repLE (L loc e) = mapReaderT (putSrcSpanDs loc) (repE e)

repE :: HsExpr GhcRn -> MetaM (Core (M TH.Exp))
repE (HsVar _ (L _ x)) =
  do { mb_val <- lift $ dsLookupMetaEnv x
     ; case mb_val of
        Nothing            -> do { str <- lift $ globalVar x
                                 ; repVarOrCon x str }
        Just (DsBound y)   -> repVarOrCon x (coreVar y)
        Just (DsSplice e)  -> do { e' <- lift $ dsExpr e
                                 ; return (MkC e') } }
repE (HsIPVar _ n) = rep_implicit_param_name n >>= repImplicitParamVar
repE (HsOverLabel _ _ s) = repOverLabel s

repE e@(HsRecFld _ f) = case f of
  Unambiguous x _ -> repE (HsVar noExtField (noLoc x))
  Ambiguous{}     -> notHandled "Ambiguous record selectors" (ppr e)

        -- Remember, we're desugaring renamer output here, so
        -- HsOverlit can definitely occur
repE (HsOverLit _ l) = do { a <- repOverloadedLiteral l; repLit a }
repE (HsLit _ l)     = do { a <- repLiteral l;           repLit a }
repE (HsLam _ (MG { mg_alts = (L _ [m]) })) = repLambda m
repE (HsLamCase _ (MG { mg_alts = (L _ ms) }))
                   = do { ms' <- mapM repMatchTup ms
                        ; core_ms <- coreListM matchTyConName ms'
                        ; repLamCase core_ms }
repE (HsApp _ x y)   = do {a <- repLE x; b <- repLE y; repApp a b}
repE (HsAppType _ e t) = do { a <- repLE e
                            ; s <- repLTy (hswc_body t)
                            ; repAppType a s }

repE (OpApp _ e1 op e2) =
  do { arg1 <- repLE e1;
       arg2 <- repLE e2;
       the_op <- repLE op ;
       repInfixApp arg1 the_op arg2 }
repE (NegApp _ x _)      = do
                              a         <- repLE x
                              negateVar <- lookupOcc negateName >>= repVar
                              negateVar `repApp` a
repE (HsPar _ x)            = repLE x
repE (SectionL _ x y)       = do { a <- repLE x; b <- repLE y; repSectionL a b }
repE (SectionR _ x y)       = do { a <- repLE x; b <- repLE y; repSectionR a b }
repE (HsCase _ e (MG { mg_alts = (L _ ms) }))
                          = do { arg <- repLE e
                               ; ms2 <- mapM repMatchTup ms
                               ; core_ms2 <- coreListM matchTyConName ms2
                               ; repCaseE arg core_ms2 }
repE (HsIf _ _ x y z)       = do
                              a <- repLE x
                              b <- repLE y
                              c <- repLE z
                              repCond a b c
repE (HsMultiIf _ alts)
  = do { (binds, alts') <- liftM unzip $ mapM repLGRHS alts
       ; expr' <- repMultiIf (nonEmptyCoreList alts')
       ; wrapGenSyms (concat binds) expr' }
repE (HsLet _ (L _ bs) e)       = do { (ss,ds) <- repBinds bs
                                     ; e2 <- addBinds ss (repLE e)
                                     ; z <- repLetE ds e2
                                     ; wrapGenSyms ss z }

-- FIXME: I haven't got the types here right yet
repE e@(HsDo _ ctxt (L _ sts))
 | case ctxt of { DoExpr -> True; GhciStmtCtxt -> True; _ -> False }
 = do { (ss,zs) <- repLSts sts;
        e'      <- repDoE (nonEmptyCoreList zs);
        wrapGenSyms ss e' }

 | ListComp <- ctxt
 = do { (ss,zs) <- repLSts sts;
        e'      <- repComp (nonEmptyCoreList zs);
        wrapGenSyms ss e' }

 | MDoExpr <- ctxt
 = do { (ss,zs) <- repLSts sts;
        e'      <- repMDoE (nonEmptyCoreList zs);
        wrapGenSyms ss e' }

  | otherwise
  = notHandled "monad comprehension and [: :]" (ppr e)

repE (ExplicitList _ _ es) = do { xs <- repLEs es; repListExp xs }
repE (ExplicitTuple _ es boxity) =
  let tupArgToCoreExp :: LHsTupArg GhcRn -> MetaM (Core (Maybe (M TH.Exp)))
      tupArgToCoreExp (L _ a)
        | (Present _ e) <- a = do { e' <- repLE e
                                  ; coreJustM expTyConName e' }
        | otherwise = coreNothingM expTyConName

  in do { args <- mapM tupArgToCoreExp es
        ; expTy <- wrapName  expTyConName
        ; let maybeExpQTy = mkTyConApp maybeTyCon [expTy]
              listArg = coreList' maybeExpQTy args
        ; if isBoxed boxity
          then repTup listArg
          else repUnboxedTup listArg }

repE (ExplicitSum _ alt arity e)
 = do { e1 <- repLE e
      ; repUnboxedSum e1 alt arity }

repE (RecordCon { rcon_con_name = c, rcon_flds = flds })
 = do { x <- lookupLOcc c;
        fs <- repFields flds;
        repRecCon x fs }
repE (RecordUpd { rupd_expr = e, rupd_flds = flds })
 = do { x <- repLE e;
        fs <- repUpdFields flds;
        repRecUpd x fs }

repE (ExprWithTySig _ e ty)
  = do { e1 <- repLE e
       ; t1 <- repHsSigWcType ty
       ; repSigExp e1 t1 }

repE (ArithSeq _ _ aseq) =
  case aseq of
    From e              -> do { ds1 <- repLE e; repFrom ds1 }
    FromThen e1 e2      -> do
                             ds1 <- repLE e1
                             ds2 <- repLE e2
                             repFromThen ds1 ds2
    FromTo   e1 e2      -> do
                             ds1 <- repLE e1
                             ds2 <- repLE e2
                             repFromTo ds1 ds2
    FromThenTo e1 e2 e3 -> do
                             ds1 <- repLE e1
                             ds2 <- repLE e2
                             ds3 <- repLE e3
                             repFromThenTo ds1 ds2 ds3

repE (HsSpliceE _ splice)  = repSplice splice
repE (HsStatic _ e)        = repLE e >>= rep2 staticEName . (:[]) . unC
repE (HsUnboundVar _ uv)   = do
                               occ   <- occNameLit uv
                               sname <- repNameS occ
                               repUnboundVar sname

repE e@(HsPragE _ HsPragCore {} _)   = notHandled "Core annotations" (ppr e)
repE e@(HsPragE _ HsPragSCC  {} _)   = notHandled "Cost centres" (ppr e)
repE e@(HsPragE _ HsPragTick {} _)   = notHandled "Tick Pragma" (ppr e)
repE e                     = notHandled "Expression form" (ppr e)

-----------------------------------------------------------------------------
-- Building representations of auxiliary structures like Match, Clause, Stmt,

repMatchTup ::  LMatch GhcRn (LHsExpr GhcRn) -> MetaM (Core (M TH.Match))
repMatchTup (L _ (Match { m_pats = [p]
                        , m_grhss = GRHSs _ guards (L _ wheres) })) =
  do { ss1 <- mkGenSyms (collectPatBinders p)
     ; addBinds ss1 $ do {
     ; p1 <- repLP p
     ; (ss2,ds) <- repBinds wheres
     ; addBinds ss2 $ do {
     ; gs    <- repGuards guards
     ; match <- repMatch p1 gs ds
     ; wrapGenSyms (ss1++ss2) match }}}
repMatchTup _ = panic "repMatchTup: case alt with more than one arg"

repClauseTup ::  LMatch GhcRn (LHsExpr GhcRn) -> MetaM (Core (M TH.Clause))
repClauseTup (L _ (Match { m_pats = ps
                         , m_grhss = GRHSs _ guards (L _ wheres) })) =
  do { ss1 <- mkGenSyms (collectPatsBinders ps)
     ; addBinds ss1 $ do {
       ps1 <- repLPs ps
     ; (ss2,ds) <- repBinds wheres
     ; addBinds ss2 $ do {
       gs <- repGuards guards
     ; clause <- repClause ps1 gs ds
     ; wrapGenSyms (ss1++ss2) clause }}}

repGuards ::  [LGRHS GhcRn (LHsExpr GhcRn)] ->  MetaM (Core (M TH.Body))
repGuards [L _ (GRHS _ [] e)]
  = do {a <- repLE e; repNormal a }
repGuards other
  = do { zs <- mapM repLGRHS other
       ; let (xs, ys) = unzip zs
       ; gd <- repGuarded (nonEmptyCoreList ys)
       ; wrapGenSyms (concat xs) gd }

repLGRHS :: LGRHS GhcRn (LHsExpr GhcRn)
         -> MetaM ([GenSymBind], (Core (M (TH.Guard, TH.Exp))))
repLGRHS (L _ (GRHS _ [L _ (BodyStmt _ e1 _ _)] e2))
  = do { guarded <- repLNormalGE e1 e2
       ; return ([], guarded) }
repLGRHS (L _ (GRHS _ ss rhs))
  = do { (gs, ss') <- repLSts ss
       ; rhs' <- addBinds gs $ repLE rhs
       ; guarded <- repPatGE (nonEmptyCoreList ss') rhs'
       ; return (gs, guarded) }

repFields :: HsRecordBinds GhcRn -> MetaM (Core [M TH.FieldExp])
repFields (HsRecFields { rec_flds = flds })
  = repListM fieldExpTyConName rep_fld flds
  where
    rep_fld :: LHsRecField GhcRn (LHsExpr GhcRn)
            -> MetaM (Core (M TH.FieldExp))
    rep_fld (L _ fld) = do { fn <- lookupLOcc (hsRecFieldSel fld)
                           ; e  <- repLE (hsRecFieldArg fld)
                           ; repFieldExp fn e }

repUpdFields :: [LHsRecUpdField GhcRn] -> MetaM (Core [M TH.FieldExp])
repUpdFields = repListM fieldExpTyConName rep_fld
  where
    rep_fld :: LHsRecUpdField GhcRn -> MetaM (Core (M TH.FieldExp))
    rep_fld (L l fld) = case unLoc (hsRecFieldLbl fld) of
      Unambiguous sel_name _ -> do { fn <- lookupLOcc (L l sel_name)
                                   ; e  <- repLE (hsRecFieldArg fld)
                                   ; repFieldExp fn e }
      Ambiguous{}            -> notHandled "Ambiguous record updates" (ppr fld)



-----------------------------------------------------------------------------
-- Representing Stmt's is tricky, especially if bound variables
-- shadow each other. Consider:  [| do { x <- f 1; x <- f x; g x } |]
-- First gensym new names for every variable in any of the patterns.
-- both static (x'1 and x'2), and dynamic ((gensym "x") and (gensym "y"))
-- if variables didn't shadow, the static gensym wouldn't be necessary
-- and we could reuse the original names (x and x).
--
-- do { x'1 <- gensym "x"
--    ; x'2 <- gensym "x"
--    ; doE [ BindSt (pvar x'1) [| f 1 |]
--          , BindSt (pvar x'2) [| f x |]
--          , NoBindSt [| g x |]
--          ]
--    }

-- The strategy is to translate a whole list of do-bindings by building a
-- bigger environment, and a bigger set of meta bindings
-- (like:  x'1 <- gensym "x" ) and then combining these with the translations
-- of the expressions within the Do

-----------------------------------------------------------------------------
-- The helper function repSts computes the translation of each sub expression
-- and a bunch of prefix bindings denoting the dynamic renaming.

repLSts :: [LStmt GhcRn (LHsExpr GhcRn)] -> MetaM ([GenSymBind], [Core (M TH.Stmt)])
repLSts stmts = repSts (map unLoc stmts)

repSts :: [Stmt GhcRn (LHsExpr GhcRn)] -> MetaM ([GenSymBind], [Core (M TH.Stmt)])
repSts (BindStmt _ p e : ss) =
   do { e2 <- repLE e
      ; ss1 <- mkGenSyms (collectPatBinders p)
      ; addBinds ss1 $ do {
      ; p1 <- repLP p;
      ; (ss2,zs) <- repSts ss
      ; z <- repBindSt p1 e2
      ; return (ss1++ss2, z : zs) }}
repSts (LetStmt _ (L _ bs) : ss) =
   do { (ss1,ds) <- repBinds bs
      ; z <- repLetSt ds
      ; (ss2,zs) <- addBinds ss1 (repSts ss)
      ; return (ss1++ss2, z : zs) }
repSts (BodyStmt _ e _ _ : ss) =
   do { e2 <- repLE e
      ; z <- repNoBindSt e2
      ; (ss2,zs) <- repSts ss
      ; return (ss2, z : zs) }
repSts (ParStmt _ stmt_blocks _ _ : ss) =
   do { (ss_s, stmt_blocks1) <- mapAndUnzipM rep_stmt_block stmt_blocks
      ; let stmt_blocks2 = nonEmptyCoreList stmt_blocks1
            ss1 = concat ss_s
      ; z <- repParSt stmt_blocks2
      ; (ss2, zs) <- addBinds ss1 (repSts ss)
      ; return (ss1++ss2, z : zs) }
   where
     rep_stmt_block :: ParStmtBlock GhcRn GhcRn
                    -> MetaM ([GenSymBind], Core [(M TH.Stmt)])
     rep_stmt_block (ParStmtBlock _ stmts _ _) =
       do { (ss1, zs) <- repSts (map unLoc stmts)
          ; zs1 <- coreListM stmtTyConName zs
          ; return (ss1, zs1) }
repSts [LastStmt _ e _ _]
  = do { e2 <- repLE e
       ; z <- repNoBindSt e2
       ; return ([], [z]) }
repSts (stmt@RecStmt{} : ss)
  = do { let binders = collectLStmtsBinders (recS_stmts stmt)
       ; ss1 <- mkGenSyms binders
       -- Bring all of binders in the recursive group into scope for the
       -- whole group.
       ; (ss1_other,rss) <- addBinds ss1 $ repSts (map unLoc (recS_stmts stmt))
       ; MASSERT(sort ss1 == sort ss1_other)
       ; z <- repRecSt (nonEmptyCoreList rss)
       ; (ss2,zs) <- addBinds ss1 (repSts ss)
       ; return (ss1++ss2, z : zs) }
repSts []    = return ([],[])
repSts other = notHandled "Exotic statement" (ppr other)


-----------------------------------------------------------
--                      Bindings
-----------------------------------------------------------

repBinds :: HsLocalBinds GhcRn -> MetaM ([GenSymBind], Core [(M TH.Dec)])
repBinds (EmptyLocalBinds _)
  = do  { core_list <- coreListM decTyConName []
        ; return ([], core_list) }

repBinds (HsIPBinds _ (IPBinds _ decs))
 = do   { ips <- mapM rep_implicit_param_bind decs
        ; core_list <- coreListM decTyConName
                                (de_loc (sort_by_loc ips))
        ; return ([], core_list)
        }

repBinds (HsValBinds _ decs)
 = do   { let { bndrs = hsScopedTvBinders decs ++ collectHsValBinders decs }
                -- No need to worry about detailed scopes within
                -- the binding group, because we are talking Names
                -- here, so we can safely treat it as a mutually
                -- recursive group
                -- For hsScopedTvBinders see Note [Scoped type variables in bindings]
        ; ss        <- mkGenSyms bndrs
        ; prs       <- addBinds ss (rep_val_binds decs)
        ; core_list <- coreListM decTyConName
                                (de_loc (sort_by_loc prs))
        ; return (ss, core_list) }

rep_implicit_param_bind :: LIPBind GhcRn -> MetaM (SrcSpan, Core (M TH.Dec))
rep_implicit_param_bind (L loc (IPBind _ ename (L _ rhs)))
 = do { name <- case ename of
                    Left (L _ n) -> rep_implicit_param_name n
                    Right _ ->
                        panic "rep_implicit_param_bind: post typechecking"
      ; rhs' <- repE rhs
      ; ipb <- repImplicitParamBind name rhs'
      ; return (loc, ipb) }

rep_implicit_param_name :: HsIPName -> MetaM (Core String)
rep_implicit_param_name (HsIPName name) = coreStringLit (unpackFS name)

rep_val_binds :: HsValBinds GhcRn -> MetaM [(SrcSpan, Core (M TH.Dec))]
-- Assumes: all the binders of the binding are already in the meta-env
rep_val_binds (XValBindsLR (NValBinds binds sigs))
 = do { core1 <- rep_binds (unionManyBags (map snd binds))
      ; core2 <- rep_sigs sigs
      ; return (core1 ++ core2) }
rep_val_binds (ValBinds _ _ _)
 = panic "rep_val_binds: ValBinds"

rep_binds :: LHsBinds GhcRn -> MetaM [(SrcSpan, Core (M TH.Dec))]
rep_binds = mapM rep_bind . bagToList

rep_bind :: LHsBind GhcRn -> MetaM (SrcSpan, Core (M TH.Dec))
-- Assumes: all the binders of the binding are already in the meta-env

-- Note GHC treats declarations of a variable (not a pattern)
-- e.g.  x = g 5 as a Fun MonoBinds. This is indicated by a single match
-- with an empty list of patterns
rep_bind (L loc (FunBind
                 { fun_id = fn,
                   fun_matches = MG { mg_alts
                           = (L _ [L _ (Match
                                   { m_pats = []
                                   , m_grhss = GRHSs _ guards (L _ wheres) }
                                      )]) } }))
 = do { (ss,wherecore) <- repBinds wheres
        ; guardcore <- addBinds ss (repGuards guards)
        ; fn'  <- lookupLBinder fn
        ; p    <- repPvar fn'
        ; ans  <- repVal p guardcore wherecore
        ; ans' <- wrapGenSyms ss ans
        ; return (loc, ans') }

rep_bind (L loc (FunBind { fun_id = fn
                         , fun_matches = MG { mg_alts = L _ ms } }))
 =   do { ms1 <- mapM repClauseTup ms
        ; fn' <- lookupLBinder fn
        ; ans <- repFun fn' (nonEmptyCoreList ms1)
        ; return (loc, ans) }

rep_bind (L loc (PatBind { pat_lhs = pat
                         , pat_rhs = GRHSs _ guards (L _ wheres) }))
 =   do { patcore <- repLP pat
        ; (ss,wherecore) <- repBinds wheres
        ; guardcore <- addBinds ss (repGuards guards)
        ; ans  <- repVal patcore guardcore wherecore
        ; ans' <- wrapGenSyms ss ans
        ; return (loc, ans') }

rep_bind (L _ (VarBind { var_id = v, var_rhs = e}))
 =   do { v' <- lookupBinder v
        ; e2 <- repLE e
        ; x <- repNormal e2
        ; patcore <- repPvar v'
        ; empty_decls <- coreListM decTyConName []
        ; ans <- repVal patcore x empty_decls
        ; return (srcLocSpan (getSrcLoc v), ans) }

rep_bind (L _ (AbsBinds {}))  = panic "rep_bind: AbsBinds"
rep_bind (L loc (PatSynBind _ (PSB { psb_id   = syn
                                   , psb_args = args
                                   , psb_def  = pat
                                   , psb_dir  = dir })))
  = do { syn'      <- lookupLBinder syn
       ; dir'      <- repPatSynDir dir
       ; ss        <- mkGenArgSyms args
       ; patSynD'  <- addBinds ss (
         do { args'  <- repPatSynArgs args
            ; pat'   <- repLP pat
            ; repPatSynD syn' args' dir' pat' })
       ; patSynD'' <- wrapGenArgSyms args ss patSynD'
       ; return (loc, patSynD'') }
  where
    mkGenArgSyms :: HsPatSynDetails (Located Name) -> MetaM [GenSymBind]
    -- for Record Pattern Synonyms we want to conflate the selector
    -- and the pattern-only names in order to provide a nicer TH
    -- API. Whereas inside GHC, record pattern synonym selectors and
    -- their pattern-only bound right hand sides have different names,
    -- we want to treat them the same in TH. This is the reason why we
    -- need an adjusted mkGenArgSyms in the `RecCon` case below.
    mkGenArgSyms (PrefixCon args)     = mkGenSyms (map unLoc args)
    mkGenArgSyms (InfixCon arg1 arg2) = mkGenSyms [unLoc arg1, unLoc arg2]
    mkGenArgSyms (RecCon fields)
      = do { let pats = map (unLoc . recordPatSynPatVar) fields
                 sels = map (unLoc . recordPatSynSelectorId) fields
           ; ss <- mkGenSyms sels
           ; return $ replaceNames (zip sels pats) ss }

    replaceNames selsPats genSyms
      = [ (pat, id) | (sel, id) <- genSyms, (sel', pat) <- selsPats
                    , sel == sel' ]

    wrapGenArgSyms :: HsPatSynDetails (Located Name)
                   -> [GenSymBind] -> Core (M TH.Dec) -> MetaM (Core (M TH.Dec))
    wrapGenArgSyms (RecCon _) _  dec = return dec
    wrapGenArgSyms _          ss dec = wrapGenSyms ss dec

repPatSynD :: Core TH.Name
           -> Core (M TH.PatSynArgs)
           -> Core (M TH.PatSynDir)
           -> Core (M TH.Pat)
           -> MetaM (Core (M TH.Dec))
repPatSynD (MkC syn) (MkC args) (MkC dir) (MkC pat)
  = rep2 patSynDName [syn, args, dir, pat]

repPatSynArgs :: HsPatSynDetails (Located Name) -> MetaM (Core (M TH.PatSynArgs))
repPatSynArgs (PrefixCon args)
  = do { args' <- repList nameTyConName lookupLOcc args
       ; repPrefixPatSynArgs args' }
repPatSynArgs (InfixCon arg1 arg2)
  = do { arg1' <- lookupLOcc arg1
       ; arg2' <- lookupLOcc arg2
       ; repInfixPatSynArgs arg1' arg2' }
repPatSynArgs (RecCon fields)
  = do { sels' <- repList nameTyConName lookupLOcc sels
       ; repRecordPatSynArgs sels' }
  where sels = map recordPatSynSelectorId fields

repPrefixPatSynArgs :: Core [TH.Name] -> MetaM (Core (M TH.PatSynArgs))
repPrefixPatSynArgs (MkC nms) = rep2 prefixPatSynName [nms]

repInfixPatSynArgs :: Core TH.Name -> Core TH.Name -> MetaM (Core (M TH.PatSynArgs))
repInfixPatSynArgs (MkC nm1) (MkC nm2) = rep2 infixPatSynName [nm1, nm2]

repRecordPatSynArgs :: Core [TH.Name]
                    -> MetaM (Core (M TH.PatSynArgs))
repRecordPatSynArgs (MkC sels) = rep2 recordPatSynName [sels]

repPatSynDir :: HsPatSynDir GhcRn -> MetaM (Core (M TH.PatSynDir))
repPatSynDir Unidirectional        = rep2 unidirPatSynName []
repPatSynDir ImplicitBidirectional = rep2 implBidirPatSynName []
repPatSynDir (ExplicitBidirectional (MG { mg_alts = (L _ clauses) }))
  = do { clauses' <- mapM repClauseTup clauses
       ; repExplBidirPatSynDir (nonEmptyCoreList clauses') }

repExplBidirPatSynDir :: Core [(M TH.Clause)] -> MetaM (Core (M TH.PatSynDir))
repExplBidirPatSynDir (MkC cls) = rep2 explBidirPatSynName [cls]


-----------------------------------------------------------------------------
-- Since everything in a Bind is mutually recursive we need rename all
-- all the variables simultaneously. For example:
-- [| AndMonoBinds (f x = x + g 2) (g x = f 1 + 2) |] would translate to
-- do { f'1 <- gensym "f"
--    ; g'2 <- gensym "g"
--    ; [ do { x'3 <- gensym "x"; fun f'1 [pvar x'3] [| x + g2 |]},
--        do { x'4 <- gensym "x"; fun g'2 [pvar x'4] [| f 1 + 2 |]}
--      ]}
-- This requires collecting the bindings (f'1 <- gensym "f"), and the
-- environment ( f |-> f'1 ) from each binding, and then unioning them
-- together. As we do this we collect GenSymBinds's which represent the renamed
-- variables bound by the Bindings. In order not to lose track of these
-- representations we build a shadow datatype MB with the same structure as
-- MonoBinds, but which has slots for the representations


-----------------------------------------------------------------------------
-- GHC allows a more general form of lambda abstraction than specified
-- by Haskell 98. In particular it allows guarded lambda's like :
-- (\  x | even x -> 0 | odd x -> 1) at the moment we can't represent this in
-- Haskell Template's Meta.Exp type so we punt if it isn't a simple thing like
-- (\ p1 .. pn -> exp) by causing an error.

repLambda :: LMatch GhcRn (LHsExpr GhcRn) -> MetaM (Core (M TH.Exp))
repLambda (L _ (Match { m_pats = ps
                      , m_grhss = GRHSs _ [L _ (GRHS _ [] e)]
                                              (L _ (EmptyLocalBinds _)) } ))
 = do { let bndrs = collectPatsBinders ps ;
      ; ss  <- mkGenSyms bndrs
      ; lam <- addBinds ss (
                do { xs <- repLPs ps; body <- repLE e; repLam xs body })
      ; wrapGenSyms ss lam }

repLambda (L _ m) = notHandled "Guarded lambdas" (pprMatch m)


-----------------------------------------------------------------------------
--                      Patterns
-- repP deals with patterns.  It assumes that we have already
-- walked over the pattern(s) once to collect the binders, and
-- have extended the environment.  So every pattern-bound
-- variable should already appear in the environment.

-- Process a list of patterns
repLPs :: [LPat GhcRn] -> MetaM (Core [(M TH.Pat)])
repLPs ps = repListM patTyConName repLP ps

repLP :: LPat GhcRn -> MetaM (Core (M TH.Pat))
repLP p = repP (unLoc p)

repP :: Pat GhcRn -> MetaM (Core (M TH.Pat))
repP (WildPat _)        = repPwild
repP (LitPat _ l)       = do { l2 <- repLiteral l; repPlit l2 }
repP (VarPat _ x)       = do { x' <- lookupBinder (unLoc x); repPvar x' }
repP (LazyPat _ p)      = do { p1 <- repLP p; repPtilde p1 }
repP (BangPat _ p)      = do { p1 <- repLP p; repPbang p1 }
repP (AsPat _ x p)      = do { x' <- lookupLBinder x; p1 <- repLP p
                             ; repPaspat x' p1 }
repP (ParPat _ p)       = repLP p
repP (ListPat Nothing ps)  = do { qs <- repLPs ps; repPlist qs }
repP (ListPat (Just (SyntaxExprRn e)) ps) = do { p <- repP (ListPat Nothing ps)
                                               ; e' <- repE e
                                               ; repPview e' p}
repP (ListPat _ ps) = pprPanic "repP missing SyntaxExprRn" (ppr ps)
repP (TuplePat _ ps boxed)
  | isBoxed boxed       = do { qs <- repLPs ps; repPtup qs }
  | otherwise           = do { qs <- repLPs ps; repPunboxedTup qs }
repP (SumPat _ p alt arity) = do { p1 <- repLP p
                                 ; repPunboxedSum p1 alt arity }
repP (ConPat NoExtField dc details)
 = do { con_str <- lookupLOcc dc
      ; case details of
         PrefixCon ps -> do { qs <- repLPs ps; repPcon con_str qs }
         RecCon rec   -> do { fps <- repListM fieldPatTyConName rep_fld (rec_flds rec)
                            ; repPrec con_str fps }
         InfixCon p1 p2 -> do { p1' <- repLP p1;
                                p2' <- repLP p2;
                                repPinfix p1' con_str p2' }
   }
 where
   rep_fld :: LHsRecField GhcRn (LPat GhcRn) -> MetaM (Core (M (TH.Name, TH.Pat)))
   rep_fld (L _ fld) = do { MkC v <- lookupLOcc (hsRecFieldSel fld)
                          ; MkC p <- repLP (hsRecFieldArg fld)
                          ; rep2 fieldPatName [v,p] }

repP (NPat _ (L _ l) Nothing _) = do { a <- repOverloadedLiteral l
                                     ; repPlit a }
repP (ViewPat _ e p) = do { e' <- repLE e; p' <- repLP p; repPview e' p' }
repP p@(NPat _ _ (Just _) _) = notHandled "Negative overloaded patterns" (ppr p)
repP (SigPat _ p t) = do { p' <- repLP p
                         ; t' <- repLTy (hsPatSigType t)
                         ; repPsig p' t' }
repP (SplicePat _ splice) = repSplice splice
repP other = notHandled "Exotic pattern" (ppr other)

----------------------------------------------------------
-- Declaration ordering helpers

sort_by_loc :: [(SrcSpan, a)] -> [(SrcSpan, a)]
sort_by_loc = sortBy (SrcLoc.leftmost_smallest `on` fst)

de_loc :: [(a, b)] -> [b]
de_loc = map snd

----------------------------------------------------------
--      The meta-environment

-- A name/identifier association for fresh names of locally bound entities
type GenSymBind = (Name, Id)    -- Gensym the string and bind it to the Id
                                -- I.e.         (x, x_id) means
                                --      let x_id = gensym "x" in ...

-- Generate a fresh name for a locally bound entity

mkGenSyms :: [Name] -> MetaM [GenSymBind]
-- We can use the existing name.  For example:
--      [| \x_77 -> x_77 + x_77 |]
-- desugars to
--      do { x_77 <- genSym "x"; .... }
-- We use the same x_77 in the desugared program, but with the type Bndr
-- instead of Int
--
-- We do make it an Internal name, though (hence localiseName)
--
-- Nevertheless, it's monadic because we have to generate nameTy
mkGenSyms ns = do { var_ty <- lookupType nameTyConName
                  ; return [(nm, mkLocalId (localiseName nm) var_ty) | nm <- ns] }


addBinds :: [GenSymBind] -> MetaM a -> MetaM a
-- Add a list of fresh names for locally bound entities to the
-- meta environment (which is part of the state carried around
-- by the desugarer monad)
addBinds bs m = mapReaderT (dsExtendMetaEnv (mkNameEnv [(n,DsBound id) | (n,id) <- bs])) m

-- Look up a locally bound name
--
lookupLBinder :: Located Name -> MetaM (Core TH.Name)
lookupLBinder n = lookupBinder (unLoc n)

lookupBinder :: Name -> MetaM (Core TH.Name)
lookupBinder = lookupOcc
  -- Binders are brought into scope before the pattern or what-not is
  -- desugared.  Moreover, in instance declaration the binder of a method
  -- will be the selector Id and hence a global; so we need the
  -- globalVar case of lookupOcc

-- Look up a name that is either locally bound or a global name
--
--  * If it is a global name, generate the "original name" representation (ie,
--   the <module>:<name> form) for the associated entity
--
lookupLOcc :: Located Name -> MetaM (Core TH.Name)
-- Lookup an occurrence; it can't be a splice.
-- Use the in-scope bindings if they exist
lookupLOcc n = lookupOcc (unLoc n)

lookupOcc :: Name -> MetaM (Core TH.Name)
lookupOcc = lift . lookupOccDsM

lookupOccDsM :: Name -> DsM (Core TH.Name)
lookupOccDsM n
  = do {  mb_val <- dsLookupMetaEnv n ;
          case mb_val of
                Nothing           -> globalVar n
                Just (DsBound x)  -> return (coreVar x)
                Just (DsSplice _) -> pprPanic "repE:lookupOcc" (ppr n)
    }

globalVar :: Name -> DsM (Core TH.Name)
-- Not bound by the meta-env
-- Could be top-level; or could be local
--      f x = $(g [| x |])
-- Here the x will be local
globalVar name
  | isExternalName name
  = do  { MkC mod <- coreStringLit name_mod
        ; MkC pkg <- coreStringLit name_pkg
        ; MkC occ <- nameLit name
        ; rep2_nwDsM mk_varg [pkg,mod,occ] }
  | otherwise
  = do  { MkC occ <- nameLit name
        ; MkC uni <- coreIntegerLit (toInteger $ getKey (getUnique name))
        ; rep2_nwDsM mkNameLName [occ,uni] }
  where
      mod = ASSERT( isExternalName name) nameModule name
      name_mod = moduleNameString (moduleName mod)
      name_pkg = unitString (moduleUnit mod)
      name_occ = nameOccName name
      mk_varg | isDataOcc name_occ = mkNameG_dName
              | isVarOcc  name_occ = mkNameG_vName
              | isTcOcc   name_occ = mkNameG_tcName
              | otherwise          = pprPanic "GHC.HsToCore.Quote.globalVar" (ppr name)

lookupType :: Name      -- Name of type constructor (e.g. (M TH.Exp))
           -> MetaM Type  -- The type
lookupType tc_name = do { tc <- lift $ dsLookupTyCon tc_name ;
                          return (mkTyConApp tc []) }

wrapGenSyms :: [GenSymBind]
            -> Core (M a) -> MetaM (Core (M a))
-- wrapGenSyms [(nm1,id1), (nm2,id2)] y
--      --> bindQ (gensym nm1) (\ id1 ->
--          bindQ (gensym nm2 (\ id2 ->
--          y))

wrapGenSyms binds body@(MkC b)
  = do  { var_ty <- lookupType nameTyConName
        ; go var_ty binds }
  where
    (_, elt_ty) = tcSplitAppTy (exprType b)
        -- b :: m a, so we can get the type 'a' by looking at the
        -- argument type. Need to use `tcSplitAppTy` here as since
        -- the overloaded quotations patch the type of the expression can
        -- be something more complicated than just `Q a`.
        -- See #17839 for when this went wrong with the type `WriterT () m a`

    go _ [] = return body
    go var_ty ((name,id) : binds)
      = do { MkC body'  <- go var_ty binds
           ; lit_str    <- lift $ nameLit name
           ; gensym_app <- repGensym lit_str
           ; repBindM var_ty elt_ty
                      gensym_app (MkC (Lam id body')) }

nameLit :: Name -> DsM (Core String)
nameLit n = coreStringLit (occNameString (nameOccName n))

occNameLit :: OccName -> MetaM (Core String)
occNameLit name = coreStringLit (occNameString name)


-- %*********************************************************************
-- %*                                                                   *
--              Constructing code
-- %*                                                                   *
-- %*********************************************************************

-----------------------------------------------------------------------------
-- PHANTOM TYPES for consistency. In order to make sure we do this correct
-- we invent a new datatype which uses phantom types.

newtype Core a = MkC CoreExpr
unC :: Core a -> CoreExpr
unC (MkC x) = x

type family NotM a where
  NotM (M _) = TypeError ('Text ("rep2_nw must not produce something of overloaded type"))
  NotM _other = (() :: Constraint)

rep2M :: Name -> [CoreExpr] -> MetaM (Core (M a))
rep2 :: Name -> [CoreExpr] -> MetaM (Core (M a))
rep2_nw :: NotM a => Name -> [CoreExpr] -> MetaM (Core a)
rep2_nwDsM :: NotM a => Name -> [CoreExpr] -> DsM (Core a)
rep2 = rep2X lift (asks quoteWrapper)
rep2M = rep2X lift (asks monadWrapper)
rep2_nw n xs = lift (rep2_nwDsM n xs)
rep2_nwDsM = rep2X id (return id)

rep2X :: Monad m => (forall z . DsM z -> m z)
      -> m (CoreExpr -> CoreExpr)
      -> Name
      -> [ CoreExpr ]
      -> m (Core a)
rep2X lift_dsm get_wrap n xs = do
  { rep_id <- lift_dsm $ dsLookupGlobalId n
  ; wrap <- get_wrap
  ; return (MkC $ (foldl' App (wrap (Var rep_id)) xs)) }


dataCon' :: Name -> [CoreExpr] -> MetaM (Core a)
dataCon' n args = do { id <- lift $ dsLookupDataCon n
                     ; return $ MkC $ mkCoreConApps id args }

dataCon :: Name -> MetaM (Core a)
dataCon n = dataCon' n []


-- %*********************************************************************
-- %*                                                                   *
--              The 'smart constructors'
-- %*                                                                   *
-- %*********************************************************************

--------------- Patterns -----------------
repPlit   :: Core TH.Lit -> MetaM (Core (M TH.Pat))
repPlit (MkC l) = rep2 litPName [l]

repPvar :: Core TH.Name -> MetaM (Core (M TH.Pat))
repPvar (MkC s) = rep2 varPName [s]

repPtup :: Core [(M TH.Pat)] -> MetaM (Core (M TH.Pat))
repPtup (MkC ps) = rep2 tupPName [ps]

repPunboxedTup :: Core [(M TH.Pat)] -> MetaM (Core (M TH.Pat))
repPunboxedTup (MkC ps) = rep2 unboxedTupPName [ps]

repPunboxedSum :: Core (M TH.Pat) -> TH.SumAlt -> TH.SumArity -> MetaM (Core (M TH.Pat))
-- Note: not Core TH.SumAlt or Core TH.SumArity; it's easier to be direct here
repPunboxedSum (MkC p) alt arity
 = do { platform <- getPlatform
      ; rep2 unboxedSumPName [ p
                             , mkIntExprInt platform alt
                             , mkIntExprInt platform arity ] }

repPcon   :: Core TH.Name -> Core [(M TH.Pat)] -> MetaM (Core (M TH.Pat))
repPcon (MkC s) (MkC ps) = rep2 conPName [s, ps]

repPrec   :: Core TH.Name -> Core [M (TH.Name, TH.Pat)] -> MetaM (Core (M TH.Pat))
repPrec (MkC c) (MkC rps) = rep2 recPName [c,rps]

repPinfix :: Core (M TH.Pat) -> Core TH.Name -> Core (M TH.Pat) -> MetaM (Core (M TH.Pat))
repPinfix (MkC p1) (MkC n) (MkC p2) = rep2 infixPName [p1, n, p2]

repPtilde :: Core (M TH.Pat) -> MetaM (Core (M TH.Pat))
repPtilde (MkC p) = rep2 tildePName [p]

repPbang :: Core (M TH.Pat) -> MetaM (Core (M TH.Pat))
repPbang (MkC p) = rep2 bangPName [p]

repPaspat :: Core TH.Name -> Core (M TH.Pat) -> MetaM (Core (M TH.Pat))
repPaspat (MkC s) (MkC p) = rep2 asPName [s, p]

repPwild  :: MetaM (Core (M TH.Pat))
repPwild = rep2 wildPName []

repPlist :: Core [(M TH.Pat)] -> MetaM (Core (M TH.Pat))
repPlist (MkC ps) = rep2 listPName [ps]

repPview :: Core (M TH.Exp) -> Core (M TH.Pat) -> MetaM (Core (M TH.Pat))
repPview (MkC e) (MkC p) = rep2 viewPName [e,p]

repPsig :: Core (M TH.Pat) -> Core (M TH.Type) -> MetaM (Core (M TH.Pat))
repPsig (MkC p) (MkC t) = rep2 sigPName [p, t]

--------------- Expressions -----------------
repVarOrCon :: Name -> Core TH.Name -> MetaM (Core (M TH.Exp))
repVarOrCon vc str | isDataOcc (nameOccName vc) = repCon str
                   | otherwise                  = repVar str

repVar :: Core TH.Name -> MetaM (Core (M TH.Exp))
repVar (MkC s) = rep2 varEName [s]

repCon :: Core TH.Name -> MetaM (Core (M TH.Exp))
repCon (MkC s) = rep2 conEName [s]

repLit :: Core TH.Lit -> MetaM (Core (M TH.Exp))
repLit (MkC c) = rep2 litEName [c]

repApp :: Core (M TH.Exp) -> Core (M TH.Exp) -> MetaM (Core (M TH.Exp))
repApp (MkC x) (MkC y) = rep2 appEName [x,y]

repAppType :: Core (M TH.Exp) -> Core (M TH.Type) -> MetaM (Core (M TH.Exp))
repAppType (MkC x) (MkC y) = rep2 appTypeEName [x,y]

repLam :: Core [(M TH.Pat)] -> Core (M TH.Exp) -> MetaM (Core (M TH.Exp))
repLam (MkC ps) (MkC e) = rep2 lamEName [ps, e]

repLamCase :: Core [(M TH.Match)] -> MetaM (Core (M TH.Exp))
repLamCase (MkC ms) = rep2 lamCaseEName [ms]

repTup :: Core [Maybe (M TH.Exp)] -> MetaM (Core (M TH.Exp))
repTup (MkC es) = rep2 tupEName [es]

repUnboxedTup :: Core [Maybe (M TH.Exp)] -> MetaM (Core (M TH.Exp))
repUnboxedTup (MkC es) = rep2 unboxedTupEName [es]

repUnboxedSum :: Core (M TH.Exp) -> TH.SumAlt -> TH.SumArity -> MetaM (Core (M TH.Exp))
-- Note: not Core TH.SumAlt or Core TH.SumArity; it's easier to be direct here
repUnboxedSum (MkC e) alt arity
 = do { platform <- getPlatform
      ; rep2 unboxedSumEName [ e
                             , mkIntExprInt platform alt
                             , mkIntExprInt platform arity ] }

repCond :: Core (M TH.Exp) -> Core (M TH.Exp) -> Core (M TH.Exp) -> MetaM (Core (M TH.Exp))
repCond (MkC x) (MkC y) (MkC z) = rep2 condEName [x,y,z]

repMultiIf :: Core [M (TH.Guard, TH.Exp)] -> MetaM (Core (M TH.Exp))
repMultiIf (MkC alts) = rep2 multiIfEName [alts]

repLetE :: Core [(M TH.Dec)] -> Core (M TH.Exp) -> MetaM (Core (M TH.Exp))
repLetE (MkC ds) (MkC e) = rep2 letEName [ds, e]

repCaseE :: Core (M TH.Exp) -> Core [(M TH.Match)] -> MetaM (Core (M TH.Exp))
repCaseE (MkC e) (MkC ms) = rep2 caseEName [e, ms]

repDoE :: Core [(M TH.Stmt)] -> MetaM (Core (M TH.Exp))
repDoE (MkC ss) = rep2 doEName [ss]

repMDoE :: Core [(M TH.Stmt)] -> MetaM (Core (M TH.Exp))
repMDoE (MkC ss) = rep2 mdoEName [ss]

repComp :: Core [(M TH.Stmt)] -> MetaM (Core (M TH.Exp))
repComp (MkC ss) = rep2 compEName [ss]

repListExp :: Core [(M TH.Exp)] -> MetaM (Core (M TH.Exp))
repListExp (MkC es) = rep2 listEName [es]

repSigExp :: Core (M TH.Exp) -> Core (M TH.Type) -> MetaM (Core (M TH.Exp))
repSigExp (MkC e) (MkC t) = rep2 sigEName [e,t]

repRecCon :: Core TH.Name -> Core [M TH.FieldExp]-> MetaM (Core (M TH.Exp))
repRecCon (MkC c) (MkC fs) = rep2 recConEName [c,fs]

repRecUpd :: Core (M TH.Exp) -> Core [M TH.FieldExp] -> MetaM (Core (M TH.Exp))
repRecUpd (MkC e) (MkC fs) = rep2 recUpdEName [e,fs]

repFieldExp :: Core TH.Name -> Core (M TH.Exp) -> MetaM (Core (M TH.FieldExp))
repFieldExp (MkC n) (MkC x) = rep2 fieldExpName [n,x]

repInfixApp :: Core (M TH.Exp) -> Core (M TH.Exp) -> Core (M TH.Exp) -> MetaM (Core (M TH.Exp))
repInfixApp (MkC x) (MkC y) (MkC z) = rep2 infixAppName [x,y,z]

repSectionL :: Core (M TH.Exp) -> Core (M TH.Exp) -> MetaM (Core (M TH.Exp))
repSectionL (MkC x) (MkC y) = rep2 sectionLName [x,y]

repSectionR :: Core (M TH.Exp) -> Core (M TH.Exp) -> MetaM (Core (M TH.Exp))
repSectionR (MkC x) (MkC y) = rep2 sectionRName [x,y]

repImplicitParamVar :: Core String -> MetaM (Core (M TH.Exp))
repImplicitParamVar (MkC x) = rep2 implicitParamVarEName [x]

------------ Right hand sides (guarded expressions) ----
repGuarded :: Core [M (TH.Guard, TH.Exp)] -> MetaM (Core (M TH.Body))
repGuarded (MkC pairs) = rep2 guardedBName [pairs]

repNormal :: Core (M TH.Exp) -> MetaM (Core (M TH.Body))
repNormal (MkC e) = rep2 normalBName [e]

------------ Guards ----
repLNormalGE :: LHsExpr GhcRn -> LHsExpr GhcRn
             -> MetaM (Core (M (TH.Guard, TH.Exp)))
repLNormalGE g e = do g' <- repLE g
                      e' <- repLE e
                      repNormalGE g' e'

repNormalGE :: Core (M TH.Exp) -> Core (M TH.Exp) -> MetaM (Core (M (TH.Guard, TH.Exp)))
repNormalGE (MkC g) (MkC e) = rep2 normalGEName [g, e]

repPatGE :: Core [(M TH.Stmt)] -> Core (M TH.Exp) -> MetaM (Core (M (TH.Guard, TH.Exp)))
repPatGE (MkC ss) (MkC e) = rep2 patGEName [ss, e]

------------- Stmts -------------------
repBindSt :: Core (M TH.Pat) -> Core (M TH.Exp) -> MetaM (Core (M TH.Stmt))
repBindSt (MkC p) (MkC e) = rep2 bindSName [p,e]

repLetSt :: Core [(M TH.Dec)] -> MetaM (Core (M TH.Stmt))
repLetSt (MkC ds) = rep2 letSName [ds]

repNoBindSt :: Core (M TH.Exp) -> MetaM (Core (M TH.Stmt))
repNoBindSt (MkC e) = rep2 noBindSName [e]

repParSt :: Core [[(M TH.Stmt)]] -> MetaM (Core (M TH.Stmt))
repParSt (MkC sss) = rep2 parSName [sss]

repRecSt :: Core [(M TH.Stmt)] -> MetaM (Core (M TH.Stmt))
repRecSt (MkC ss) = rep2 recSName [ss]

-------------- Range (Arithmetic sequences) -----------
repFrom :: Core (M TH.Exp) -> MetaM (Core (M TH.Exp))
repFrom (MkC x) = rep2 fromEName [x]

repFromThen :: Core (M TH.Exp) -> Core (M TH.Exp) -> MetaM (Core (M TH.Exp))
repFromThen (MkC x) (MkC y) = rep2 fromThenEName [x,y]

repFromTo :: Core (M TH.Exp) -> Core (M TH.Exp) -> MetaM (Core (M TH.Exp))
repFromTo (MkC x) (MkC y) = rep2 fromToEName [x,y]

repFromThenTo :: Core (M TH.Exp) -> Core (M TH.Exp) -> Core (M TH.Exp) -> MetaM (Core (M TH.Exp))
repFromThenTo (MkC x) (MkC y) (MkC z) = rep2 fromThenToEName [x,y,z]

------------ Match and Clause Tuples -----------
repMatch :: Core (M TH.Pat) -> Core (M TH.Body) -> Core [(M TH.Dec)] -> MetaM (Core (M TH.Match))
repMatch (MkC p) (MkC bod) (MkC ds) = rep2 matchName [p, bod, ds]

repClause :: Core [(M TH.Pat)] -> Core (M TH.Body) -> Core [(M TH.Dec)] -> MetaM (Core (M TH.Clause))
repClause (MkC ps) (MkC bod) (MkC ds) = rep2 clauseName [ps, bod, ds]

-------------- Dec -----------------------------
repVal :: Core (M TH.Pat) -> Core (M TH.Body) -> Core [(M TH.Dec)] -> MetaM (Core (M TH.Dec))
repVal (MkC p) (MkC b) (MkC ds) = rep2 valDName [p, b, ds]

repFun :: Core TH.Name -> Core [(M TH.Clause)] -> MetaM (Core (M TH.Dec))
repFun (MkC nm) (MkC b) = rep2 funDName [nm, b]

repData :: Core (M TH.Cxt) -> Core TH.Name
        -> Either (Core [(M TH.TyVarBndr)])
                  (Core (Maybe [(M TH.TyVarBndr)]), Core (M TH.Type))
        -> Core (Maybe (M TH.Kind)) -> Core [(M TH.Con)] -> Core [M TH.DerivClause]
        -> MetaM (Core (M TH.Dec))
repData (MkC cxt) (MkC nm) (Left (MkC tvs)) (MkC ksig) (MkC cons) (MkC derivs)
  = rep2 dataDName [cxt, nm, tvs, ksig, cons, derivs]
repData (MkC cxt) (MkC _) (Right (MkC mb_bndrs, MkC ty)) (MkC ksig) (MkC cons)
        (MkC derivs)
  = rep2 dataInstDName [cxt, mb_bndrs, ty, ksig, cons, derivs]

repNewtype :: Core (M TH.Cxt) -> Core TH.Name
           -> Either (Core [(M TH.TyVarBndr)])
                     (Core (Maybe [(M TH.TyVarBndr)]), Core (M TH.Type))
           -> Core (Maybe (M TH.Kind)) -> Core (M TH.Con) -> Core [M TH.DerivClause]
           -> MetaM (Core (M TH.Dec))
repNewtype (MkC cxt) (MkC nm) (Left (MkC tvs)) (MkC ksig) (MkC con)
           (MkC derivs)
  = rep2 newtypeDName [cxt, nm, tvs, ksig, con, derivs]
repNewtype (MkC cxt) (MkC _) (Right (MkC mb_bndrs, MkC ty)) (MkC ksig) (MkC con)
           (MkC derivs)
  = rep2 newtypeInstDName [cxt, mb_bndrs, ty, ksig, con, derivs]

repTySyn :: Core TH.Name -> Core [(M TH.TyVarBndr)]
         -> Core (M TH.Type) -> MetaM (Core (M TH.Dec))
repTySyn (MkC nm) (MkC tvs) (MkC rhs)
  = rep2 tySynDName [nm, tvs, rhs]

repInst :: Core (Maybe TH.Overlap) ->
           Core (M TH.Cxt) -> Core (M TH.Type) -> Core [(M TH.Dec)] -> MetaM (Core (M TH.Dec))
repInst (MkC o) (MkC cxt) (MkC ty) (MkC ds) = rep2 instanceWithOverlapDName
                                                              [o, cxt, ty, ds]

repDerivStrategy :: Maybe (LDerivStrategy GhcRn)
                 -> MetaM (Core (Maybe (M TH.DerivStrategy)))
repDerivStrategy mds =
  case mds of
    Nothing -> nothing
    Just ds ->
      case unLoc ds of
        StockStrategy    -> just =<< repStockStrategy
        AnyclassStrategy -> just =<< repAnyclassStrategy
        NewtypeStrategy  -> just =<< repNewtypeStrategy
        ViaStrategy ty   -> do ty' <- repLTy (hsSigType ty)
                               via_strat <- repViaStrategy ty'
                               just via_strat
  where
  nothing = coreNothingM derivStrategyTyConName
  just    = coreJustM    derivStrategyTyConName

repStockStrategy :: MetaM (Core (M TH.DerivStrategy))
repStockStrategy = rep2 stockStrategyName []

repAnyclassStrategy :: MetaM (Core (M TH.DerivStrategy))
repAnyclassStrategy = rep2 anyclassStrategyName []

repNewtypeStrategy :: MetaM (Core (M TH.DerivStrategy))
repNewtypeStrategy = rep2 newtypeStrategyName []

repViaStrategy :: Core (M TH.Type) -> MetaM (Core (M TH.DerivStrategy))
repViaStrategy (MkC t) = rep2 viaStrategyName [t]

repOverlap :: Maybe OverlapMode -> MetaM (Core (Maybe TH.Overlap))
repOverlap mb =
  case mb of
    Nothing -> nothing
    Just o ->
      case o of
        NoOverlap _    -> nothing
        Overlappable _ -> just =<< dataCon overlappableDataConName
        Overlapping _  -> just =<< dataCon overlappingDataConName
        Overlaps _     -> just =<< dataCon overlapsDataConName
        Incoherent _   -> just =<< dataCon incoherentDataConName
  where
  nothing = coreNothing overlapTyConName
  just    = coreJust overlapTyConName


repClass :: Core (M TH.Cxt) -> Core TH.Name -> Core [(M TH.TyVarBndr)]
         -> Core [TH.FunDep] -> Core [(M TH.Dec)]
         -> MetaM (Core (M TH.Dec))
repClass (MkC cxt) (MkC cls) (MkC tvs) (MkC fds) (MkC ds)
  = rep2 classDName [cxt, cls, tvs, fds, ds]

repDeriv :: Core (Maybe (M TH.DerivStrategy))
         -> Core (M TH.Cxt) -> Core (M TH.Type)
         -> MetaM (Core (M TH.Dec))
repDeriv (MkC ds) (MkC cxt) (MkC ty)
  = rep2 standaloneDerivWithStrategyDName [ds, cxt, ty]

repPragInl :: Core TH.Name -> Core TH.Inline -> Core TH.RuleMatch
           -> Core TH.Phases -> MetaM (Core (M TH.Dec))
repPragInl (MkC nm) (MkC inline) (MkC rm) (MkC phases)
  = rep2 pragInlDName [nm, inline, rm, phases]

repPragSpec :: Core TH.Name -> Core (M TH.Type) -> Core TH.Phases
            -> MetaM (Core (M TH.Dec))
repPragSpec (MkC nm) (MkC ty) (MkC phases)
  = rep2 pragSpecDName [nm, ty, phases]

repPragSpecInl :: Core TH.Name -> Core (M TH.Type) -> Core TH.Inline
               -> Core TH.Phases -> MetaM (Core (M TH.Dec))
repPragSpecInl (MkC nm) (MkC ty) (MkC inline) (MkC phases)
  = rep2 pragSpecInlDName [nm, ty, inline, phases]

repPragSpecInst :: Core (M TH.Type) -> MetaM (Core (M TH.Dec))
repPragSpecInst (MkC ty) = rep2 pragSpecInstDName [ty]

repPragComplete :: Core [TH.Name] -> Core (Maybe TH.Name) -> MetaM (Core (M TH.Dec))
repPragComplete (MkC cls) (MkC mty) = rep2 pragCompleteDName [cls, mty]

repPragRule :: Core String -> Core (Maybe [(M TH.TyVarBndr)])
            -> Core [(M TH.RuleBndr)] -> Core (M TH.Exp) -> Core (M TH.Exp)
            -> Core TH.Phases -> MetaM (Core (M TH.Dec))
repPragRule (MkC nm) (MkC ty_bndrs) (MkC tm_bndrs) (MkC lhs) (MkC rhs) (MkC phases)
  = rep2 pragRuleDName [nm, ty_bndrs, tm_bndrs, lhs, rhs, phases]

repPragAnn :: Core TH.AnnTarget -> Core (M TH.Exp) -> MetaM (Core (M TH.Dec))
repPragAnn (MkC targ) (MkC e) = rep2 pragAnnDName [targ, e]

repTySynInst :: Core (M TH.TySynEqn) -> MetaM (Core (M TH.Dec))
repTySynInst (MkC eqn)
    = rep2 tySynInstDName [eqn]

repDataFamilyD :: Core TH.Name -> Core [(M TH.TyVarBndr)]
               -> Core (Maybe (M TH.Kind)) -> MetaM (Core (M TH.Dec))
repDataFamilyD (MkC nm) (MkC tvs) (MkC kind)
    = rep2 dataFamilyDName [nm, tvs, kind]

repOpenFamilyD :: Core TH.Name
               -> Core [(M TH.TyVarBndr)]
               -> Core (M TH.FamilyResultSig)
               -> Core (Maybe TH.InjectivityAnn)
               -> MetaM (Core (M TH.Dec))
repOpenFamilyD (MkC nm) (MkC tvs) (MkC result) (MkC inj)
    = rep2 openTypeFamilyDName [nm, tvs, result, inj]

repClosedFamilyD :: Core TH.Name
                 -> Core [(M TH.TyVarBndr)]
                 -> Core (M TH.FamilyResultSig)
                 -> Core (Maybe TH.InjectivityAnn)
                 -> Core [(M TH.TySynEqn)]
                 -> MetaM (Core (M TH.Dec))
repClosedFamilyD (MkC nm) (MkC tvs) (MkC res) (MkC inj) (MkC eqns)
    = rep2 closedTypeFamilyDName [nm, tvs, res, inj, eqns]

repTySynEqn :: Core (Maybe [(M TH.TyVarBndr)]) ->
               Core (M TH.Type) -> Core (M TH.Type) -> MetaM (Core (M TH.TySynEqn))
repTySynEqn (MkC mb_bndrs) (MkC lhs) (MkC rhs)
  = rep2 tySynEqnName [mb_bndrs, lhs, rhs]

repRoleAnnotD :: Core TH.Name -> Core [TH.Role] -> MetaM (Core (M TH.Dec))
repRoleAnnotD (MkC n) (MkC roles) = rep2 roleAnnotDName [n, roles]

repFunDep :: Core [TH.Name] -> Core [TH.Name] -> MetaM (Core TH.FunDep)
repFunDep (MkC xs) (MkC ys) = rep2_nw funDepName [xs, ys]

repProto :: Name -> Core TH.Name -> Core (M TH.Type) -> MetaM (Core (M TH.Dec))
repProto mk_sig (MkC s) (MkC ty) = rep2 mk_sig [s, ty]

repImplicitParamBind :: Core String -> Core (M TH.Exp) -> MetaM (Core (M TH.Dec))
repImplicitParamBind (MkC n) (MkC e) = rep2 implicitParamBindDName [n, e]

repCtxt :: Core [(M TH.Pred)] -> MetaM (Core (M TH.Cxt))
repCtxt (MkC tys) = rep2 cxtName [tys]

repDataCon :: Located Name
           -> HsConDeclDetails GhcRn
           -> MetaM (Core (M TH.Con))
repDataCon con details
    = do con' <- lookupLOcc con -- See Note [Binders and occurrences]
         repConstr details Nothing [con']

repGadtDataCons :: [Located Name]
                -> HsConDeclDetails GhcRn
                -> LHsType GhcRn
                -> MetaM (Core (M TH.Con))
repGadtDataCons cons details res_ty
    = do cons' <- mapM lookupLOcc cons -- See Note [Binders and occurrences]
         repConstr details (Just res_ty) cons'

-- Invariant:
--   * for plain H98 data constructors second argument is Nothing and third
--     argument is a singleton list
--   * for GADTs data constructors second argument is (Just return_type) and
--     third argument is a non-empty list
repConstr :: HsConDeclDetails GhcRn
          -> Maybe (LHsType GhcRn)
          -> [Core TH.Name]
          -> MetaM (Core (M TH.Con))
repConstr (PrefixCon ps) Nothing [con]
    = do arg_tys  <- repListM bangTypeTyConName repBangTy ps
         rep2 normalCName [unC con, unC arg_tys]

repConstr (PrefixCon ps) (Just res_ty) cons
    = do arg_tys     <- repListM bangTypeTyConName repBangTy ps
         res_ty' <- repLTy res_ty
         rep2 gadtCName [ unC (nonEmptyCoreList cons), unC arg_tys, unC res_ty']

repConstr (RecCon ips) resTy cons
    = do args     <- concatMapM rep_ip (unLoc ips)
         arg_vtys <- coreListM varBangTypeTyConName args
         case resTy of
           Nothing -> rep2 recCName [unC (head cons), unC arg_vtys]
           Just res_ty -> do
             res_ty' <- repLTy res_ty
             rep2 recGadtCName [unC (nonEmptyCoreList cons), unC arg_vtys,
                                unC res_ty']

    where
      rep_ip (L _ ip) = mapM (rep_one_ip (cd_fld_type ip)) (cd_fld_names ip)

      rep_one_ip :: LBangType GhcRn -> LFieldOcc GhcRn -> MetaM (Core (M TH.VarBangType))
      rep_one_ip t n = do { MkC v  <- lookupOcc (extFieldOcc $ unLoc n)
                          ; MkC ty <- repBangTy  t
                          ; rep2 varBangTypeName [v,ty] }

repConstr (InfixCon st1 st2) Nothing [con]
    = do arg1 <- repBangTy st1
         arg2 <- repBangTy st2
         rep2 infixCName [unC arg1, unC con, unC arg2]

repConstr (InfixCon {}) (Just _) _ =
    panic "repConstr: infix GADT constructor should be in a PrefixCon"
repConstr _ _ _ =
    panic "repConstr: invariant violated"

------------ Types -------------------

repTForall :: Core [(M TH.TyVarBndr)] -> Core (M TH.Cxt) -> Core (M TH.Type)
           -> MetaM (Core (M TH.Type))
repTForall (MkC tvars) (MkC ctxt) (MkC ty)
    = rep2 forallTName [tvars, ctxt, ty]

repTForallVis :: Core [(M TH.TyVarBndr)] -> Core (M TH.Type)
              -> MetaM (Core (M TH.Type))
repTForallVis (MkC tvars) (MkC ty) = rep2 forallVisTName [tvars, ty]

repTvar :: Core TH.Name -> MetaM (Core (M TH.Type))
repTvar (MkC s) = rep2 varTName [s]

repTapp :: Core (M TH.Type) -> Core (M TH.Type) -> MetaM (Core (M TH.Type))
repTapp (MkC t1) (MkC t2) = rep2 appTName [t1, t2]

repTappKind :: Core (M TH.Type) -> Core (M TH.Kind) -> MetaM (Core (M TH.Type))
repTappKind (MkC ty) (MkC ki) = rep2 appKindTName [ty,ki]

repTapps :: Core (M TH.Type) -> [Core (M TH.Type)] -> MetaM (Core (M TH.Type))
repTapps f []     = return f
repTapps f (t:ts) = do { f1 <- repTapp f t; repTapps f1 ts }

repTSig :: Core (M TH.Type) -> Core (M TH.Kind) -> MetaM (Core (M TH.Type))
repTSig (MkC ty) (MkC ki) = rep2 sigTName [ty, ki]

repTequality :: MetaM (Core (M TH.Type))
repTequality = rep2 equalityTName []

repTPromotedList :: [Core (M TH.Type)] -> MetaM (Core (M TH.Type))
repTPromotedList []     = repPromotedNilTyCon
repTPromotedList (t:ts) = do  { tcon <- repPromotedConsTyCon
                              ; f <- repTapp tcon t
                              ; t' <- repTPromotedList ts
                              ; repTapp f t'
                              }

repTLit :: Core (M TH.TyLit) -> MetaM (Core (M TH.Type))
repTLit (MkC lit) = rep2 litTName [lit]

repTWildCard :: MetaM (Core (M TH.Type))
repTWildCard = rep2 wildCardTName []

repTImplicitParam :: Core String -> Core (M TH.Type) -> MetaM (Core (M TH.Type))
repTImplicitParam (MkC n) (MkC e) = rep2 implicitParamTName [n, e]

repTStar :: MetaM (Core (M TH.Type))
repTStar = rep2 starKName []

repTConstraint :: MetaM (Core (M TH.Type))
repTConstraint = rep2 constraintKName []

--------- Type constructors --------------

repNamedTyCon :: Core TH.Name -> MetaM (Core (M TH.Type))
repNamedTyCon (MkC s) = rep2 conTName [s]

repTInfix :: Core (M TH.Type) -> Core TH.Name -> Core (M TH.Type)
             -> MetaM (Core (M TH.Type))
repTInfix (MkC t1) (MkC name) (MkC t2) = rep2 infixTName [t1,name,t2]

repTupleTyCon :: Int -> MetaM (Core (M TH.Type))
-- Note: not Core Int; it's easier to be direct here
repTupleTyCon i = do platform <- getPlatform
                     rep2 tupleTName [mkIntExprInt platform i]

repUnboxedTupleTyCon :: Int -> MetaM (Core (M TH.Type))
-- Note: not Core Int; it's easier to be direct here
repUnboxedTupleTyCon i = do platform <- getPlatform
                            rep2 unboxedTupleTName [mkIntExprInt platform i]

repUnboxedSumTyCon :: TH.SumArity -> MetaM (Core (M TH.Type))
-- Note: not Core TH.SumArity; it's easier to be direct here
repUnboxedSumTyCon arity = do platform <- getPlatform
                              rep2 unboxedSumTName [mkIntExprInt platform arity]

repArrowTyCon :: MetaM (Core (M TH.Type))
repArrowTyCon = rep2 arrowTName []

repListTyCon :: MetaM (Core (M TH.Type))
repListTyCon = rep2 listTName []

repPromotedDataCon :: Core TH.Name -> MetaM (Core (M TH.Type))
repPromotedDataCon (MkC s) = rep2 promotedTName [s]

repPromotedTupleTyCon :: Int -> MetaM (Core (M TH.Type))
repPromotedTupleTyCon i = do platform <- getPlatform
                             rep2 promotedTupleTName [mkIntExprInt platform i]

repPromotedNilTyCon :: MetaM (Core (M TH.Type))
repPromotedNilTyCon = rep2 promotedNilTName []

repPromotedConsTyCon :: MetaM (Core (M TH.Type))
repPromotedConsTyCon = rep2 promotedConsTName []

------------ TyVarBndrs -------------------

repPlainTV :: Core TH.Name -> MetaM (Core (M TH.TyVarBndr))
repPlainTV (MkC nm) = rep2 plainTVName [nm]

repKindedTV :: Core TH.Name -> Core (M TH.Kind) -> MetaM (Core (M TH.TyVarBndr))
repKindedTV (MkC nm) (MkC ki) = rep2 kindedTVName [nm, ki]

----------------------------------------------------------
--       Type family result signature

repNoSig :: MetaM (Core (M TH.FamilyResultSig))
repNoSig = rep2 noSigName []

repKindSig :: Core (M TH.Kind) -> MetaM (Core (M TH.FamilyResultSig))
repKindSig (MkC ki) = rep2 kindSigName [ki]

repTyVarSig :: Core (M TH.TyVarBndr) -> MetaM (Core (M TH.FamilyResultSig))
repTyVarSig (MkC bndr) = rep2 tyVarSigName [bndr]

----------------------------------------------------------
--              Literals

repLiteral :: HsLit GhcRn -> MetaM (Core TH.Lit)
repLiteral (HsStringPrim _ bs)
  = do platform <- getPlatform
       word8_ty <- lookupType word8TyConName
       let w8s = unpack bs
           w8s_expr = map (\w8 -> mkCoreConApps word8DataCon
                                  [mkWordLit platform (toInteger w8)]) w8s
       rep2_nw stringPrimLName [mkListExpr word8_ty w8s_expr]
repLiteral lit
  = do lit' <- case lit of
                   HsIntPrim _ i    -> mk_integer i
                   HsWordPrim _ w   -> mk_integer w
                   HsInt _ i        -> mk_integer (il_value i)
                   HsFloatPrim _ r  -> mk_rational r
                   HsDoublePrim _ r -> mk_rational r
                   HsCharPrim _ c   -> mk_char c
                   _ -> return lit
       lit_expr <- lift $ dsLit lit'
       case mb_lit_name of
          Just lit_name -> rep2_nw lit_name [lit_expr]
          Nothing -> notHandled "Exotic literal" (ppr lit)
  where
    mb_lit_name = case lit of
                 HsInteger _ _ _  -> Just integerLName
                 HsInt _ _        -> Just integerLName
                 HsIntPrim _ _    -> Just intPrimLName
                 HsWordPrim _ _   -> Just wordPrimLName
                 HsFloatPrim _ _  -> Just floatPrimLName
                 HsDoublePrim _ _ -> Just doublePrimLName
                 HsChar _ _       -> Just charLName
                 HsCharPrim _ _   -> Just charPrimLName
                 HsString _ _     -> Just stringLName
                 HsRat _ _ _      -> Just rationalLName
                 _                -> Nothing

mk_integer :: Integer -> MetaM (HsLit GhcRn)
mk_integer  i = do integer_ty <- lookupType integerTyConName
                   return $ HsInteger NoSourceText i integer_ty

mk_rational :: FractionalLit -> MetaM (HsLit GhcRn)
mk_rational r = do rat_ty <- lookupType rationalTyConName
                   return $ HsRat noExtField r rat_ty
mk_string :: FastString -> MetaM (HsLit GhcRn)
mk_string s = return $ HsString NoSourceText s

mk_char :: Char -> MetaM (HsLit GhcRn)
mk_char c = return $ HsChar NoSourceText c

repOverloadedLiteral :: HsOverLit GhcRn -> MetaM (Core TH.Lit)
repOverloadedLiteral (OverLit { ol_val = val})
  = do { lit <- mk_lit val; repLiteral lit }
        -- The type Rational will be in the environment, because
        -- the smart constructor 'TH.Syntax.rationalL' uses it in its type,
        -- and rationalL is sucked in when any TH stuff is used

mk_lit :: OverLitVal -> MetaM (HsLit GhcRn)
mk_lit (HsIntegral i)     = mk_integer  (il_value i)
mk_lit (HsFractional f)   = mk_rational f
mk_lit (HsIsString _ s)   = mk_string   s

repNameS :: Core String -> MetaM (Core TH.Name)
repNameS (MkC name) = rep2_nw mkNameSName [name]

--------------- Miscellaneous -------------------

repGensym :: Core String -> MetaM (Core (M TH.Name))
repGensym (MkC lit_str) = rep2 newNameName [lit_str]

repBindM :: Type -> Type        -- a and b
         -> Core (M a) -> Core (a -> M b) -> MetaM (Core (M b))
repBindM ty_a ty_b (MkC x) (MkC y)
  = rep2M bindMName [Type ty_a, Type ty_b, x, y]

repSequenceM :: Type -> Core [M a] -> MetaM (Core (M [a]))
repSequenceM ty_a (MkC list)
  = rep2M sequenceQName [Type ty_a, list]

repUnboundVar :: Core TH.Name -> MetaM (Core (M TH.Exp))
repUnboundVar (MkC name) = rep2 unboundVarEName [name]

repOverLabel :: FastString -> MetaM (Core (M TH.Exp))
repOverLabel fs = do
                    (MkC s) <- coreStringLit $ unpackFS fs
                    rep2 labelEName [s]


------------ Lists -------------------
-- turn a list of patterns into a single pattern matching a list

repList :: Name -> (a  -> MetaM (Core b))
                    -> [a] -> MetaM (Core [b])
repList tc_name f args
  = do { args1 <- mapM f args
       ; coreList tc_name args1 }

-- Create a list of m a values
repListM :: Name -> (a  -> MetaM (Core b))
                    -> [a] -> MetaM (Core [b])
repListM tc_name f args
  = do { ty <- wrapName tc_name
       ; args1 <- mapM f args
       ; return $ coreList' ty args1 }

coreListM :: Name -> [Core a] -> MetaM (Core [a])
coreListM tc as = repListM tc return as

coreList :: Name    -- Of the TyCon of the element type
         -> [Core a] -> MetaM (Core [a])
coreList tc_name es
  = do { elt_ty <- lookupType tc_name; return (coreList' elt_ty es) }

coreList' :: Type       -- The element type
          -> [Core a] -> Core [a]
coreList' elt_ty es = MkC (mkListExpr elt_ty (map unC es ))

nonEmptyCoreList :: [Core a] -> Core [a]
  -- The list must be non-empty so we can get the element type
  -- Otherwise use coreList
nonEmptyCoreList []           = panic "coreList: empty argument"
nonEmptyCoreList xs@(MkC x:_) = MkC (mkListExpr (exprType x) (map unC xs))


coreStringLit :: MonadThings m => String -> m (Core String)
coreStringLit s = do { z <- mkStringExpr s; return(MkC z) }

------------------- Maybe ------------------

repMaybe :: Name -> (a -> MetaM (Core b))
                    -> Maybe a -> MetaM (Core (Maybe b))
repMaybe tc_name f m = do
  t <- lookupType tc_name
  repMaybeT t f m

repMaybeT :: Type -> (a -> MetaM (Core b))
                    -> Maybe a -> MetaM (Core (Maybe b))
repMaybeT ty _ Nothing   = return $ coreNothing' ty
repMaybeT ty f (Just es) = coreJust' ty <$> f es

-- | Construct Core expression for Nothing of a given type name
coreNothing :: Name        -- ^ Name of the TyCon of the element type
            -> MetaM (Core (Maybe a))
coreNothing tc_name =
    do { elt_ty <- lookupType tc_name; return (coreNothing' elt_ty) }

coreNothingM :: Name -> MetaM (Core (Maybe a))
coreNothingM tc_name =
    do { elt_ty <- wrapName tc_name; return (coreNothing' elt_ty) }

-- | Construct Core expression for Nothing of a given type
coreNothing' :: Type       -- ^ The element type
             -> Core (Maybe a)
coreNothing' elt_ty = MkC (mkNothingExpr elt_ty)

-- | Store given Core expression in a Just of a given type name
coreJust :: Name        -- ^ Name of the TyCon of the element type
         -> Core a -> MetaM (Core (Maybe a))
coreJust tc_name es
  = do { elt_ty <- lookupType tc_name; return (coreJust' elt_ty es) }

coreJustM :: Name -> Core a -> MetaM (Core (Maybe a))
coreJustM tc_name es = do { elt_ty <- wrapName tc_name; return (coreJust' elt_ty es) }

-- | Store given Core expression in a Just of a given type
coreJust' :: Type       -- ^ The element type
          -> Core a -> Core (Maybe a)
coreJust' elt_ty es = MkC (mkJustExpr elt_ty (unC es))

------------------- Maybe Lists ------------------

-- Lookup the name and wrap it with the m variable
repMaybeListM :: Name -> (a -> MetaM (Core b))
                        -> Maybe [a] -> MetaM (Core (Maybe [b]))
repMaybeListM tc_name f xs = do
  elt_ty <- wrapName tc_name
  repMaybeListT elt_ty f xs


repMaybeListT :: Type -> (a -> MetaM (Core b))
                        -> Maybe [a] -> MetaM (Core (Maybe [b]))
repMaybeListT elt_ty _ Nothing = coreNothingList elt_ty
repMaybeListT elt_ty f (Just args)
  = do { args1 <- mapM f args
       ; return $ coreJust' (mkListTy elt_ty) (coreList' elt_ty args1) }

coreNothingList :: Type -> MetaM (Core (Maybe [a]))
coreNothingList elt_ty = return $ coreNothing' (mkListTy elt_ty)

------------ Literals & Variables -------------------

coreIntLit :: Int -> MetaM (Core Int)
coreIntLit i = do platform <- getPlatform
                  return (MkC (mkIntExprInt platform i))

coreIntegerLit :: MonadThings m => Integer -> m (Core Integer)
coreIntegerLit i = fmap MkC (mkIntegerExpr i)

coreVar :: Id -> Core TH.Name   -- The Id has type Name
coreVar id = MkC (Var id)

----------------- Failure -----------------------
notHandledL :: SrcSpan -> String -> SDoc -> MetaM a
notHandledL loc what doc
  | isGoodSrcSpan loc
  = mapReaderT (putSrcSpanDs loc) $ notHandled what doc
  | otherwise
  = notHandled what doc

notHandled :: String -> SDoc -> MetaM a
notHandled what doc = lift $ failWithDs msg
  where
    msg = hang (text what <+> text "not (yet) handled by Template Haskell")
             2 doc