summaryrefslogtreecommitdiff
path: root/compiler/GHC/Core/Utils.hs
blob: 87dc238d62bce1470fb8bfc36f4ea534fb5c4349 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


Utility functions on @Core@ syntax
-}

-- | Commonly useful utilities for manipulating the Core language
module GHC.Core.Utils (
        -- * Constructing expressions
        mkCast, mkCastMCo, mkPiMCo,
        mkTick, mkTicks, mkTickNoHNF, tickHNFArgs,
        bindNonRec, needsCaseBinding,
        mkAltExpr, mkDefaultCase, mkSingleAltCase,

        -- * Taking expressions apart
        findDefault, addDefault, findAlt, isDefaultAlt,
        mergeAlts, trimConArgs,
        filterAlts, combineIdenticalAlts, refineDefaultAlt,
        scaleAltsBy,

        -- * Properties of expressions
        exprType, coreAltType, coreAltsType, mkLamType, mkLamTypes,
        mkFunctionType,
        exprIsDupable, exprIsTrivial, getIdFromTrivialExpr, exprIsDeadEnd,
        getIdFromTrivialExpr_maybe,
        exprIsCheap, exprIsExpandable, exprIsCheapX, CheapAppFun,
        exprIsHNF, exprOkForSpeculation, exprOkForSideEffects, exprIsWorkFree,
        exprIsConLike,
        isCheapApp, isExpandableApp, isSaturatedConApp,
        exprIsTickedString, exprIsTickedString_maybe,
        exprIsTopLevelBindable,
        altsAreExhaustive, etaExpansionTick,

        -- * Equality
        cheapEqExpr, cheapEqExpr', eqExpr,
        diffBinds,

        -- * Manipulating data constructors and types
        exprToType,
        applyTypeToArgs,
        dataConRepInstPat, dataConRepFSInstPat,
        isEmptyTy, normSplitTyConApp_maybe,

        -- * Working with ticks
        stripTicksTop, stripTicksTopE, stripTicksTopT,
        stripTicksE, stripTicksT,

        -- * StaticPtr
        collectMakeStaticArgs,

        -- * Join points
        isJoinBind,

        -- * Tag inference
        computeCbvInfo,

        -- * unsafeEqualityProof
        isUnsafeEqualityProof,

        -- * Dumping stuff
        dumpIdInfoOfProgram
    ) where

import GHC.Prelude
import GHC.Platform

import GHC.Core
import GHC.Core.Ppr
import GHC.Core.DataCon
import GHC.Core.Type as Type
import GHC.Core.FamInstEnv
import GHC.Core.TyCo.Rep( TyCoBinder(..), TyBinder )
import GHC.Core.Coercion
import GHC.Core.Reduction
import GHC.Core.TyCon
import GHC.Core.Multiplicity
import GHC.Core.Map.Expr ( eqCoreExpr )

import GHC.Builtin.Names ( makeStaticName, unsafeEqualityProofIdKey )
import GHC.Builtin.PrimOps

import GHC.Types.Var
import GHC.Types.SrcLoc
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Name
import GHC.Types.Literal
import GHC.Types.Tickish
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.Basic( Arity, Levity(..)
                      , CbvMark(..), isMarkedCbv )
import GHC.Types.Unique
import GHC.Types.Unique.Set
import GHC.Types.Demand

import GHC.Data.FastString
import GHC.Data.Maybe
import GHC.Data.List.SetOps( minusList )
import GHC.Data.OrdList

import GHC.Utils.Constants (debugIsOn)
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Utils.Misc
import GHC.Utils.Trace

import Data.ByteString     ( ByteString )
import Data.Function       ( on )
import Data.List           ( sort, sortBy, partition, zipWith4, mapAccumL )
import Data.Ord            ( comparing )
import qualified Data.Set as Set

{-
************************************************************************
*                                                                      *
\subsection{Find the type of a Core atom/expression}
*                                                                      *
************************************************************************
-}

exprType :: HasDebugCallStack => CoreExpr -> Type
-- ^ Recover the type of a well-typed Core expression. Fails when
-- applied to the actual 'GHC.Core.Type' expression as it cannot
-- really be said to have a type
exprType (Var var)           = idType var
exprType (Lit lit)           = literalType lit
exprType (Coercion co)       = coercionType co
exprType (Let bind body)
  | NonRec tv rhs <- bind    -- See Note [Type bindings]
  , Type ty <- rhs           = substTyWithUnchecked [tv] [ty] (exprType body)
  | otherwise                = exprType body
exprType (Case _ _ ty _)     = ty
exprType (Cast _ co)         = coercionRKind co
exprType (Tick _ e)          = exprType e
exprType (Lam binder expr)   = mkLamType binder (exprType expr)
exprType e@(App _ _)
  = case collectArgs e of
        (fun, args) -> applyTypeToArgs (pprCoreExpr e) (exprType fun) args

exprType other = pprPanic "exprType" (pprCoreExpr other)

coreAltType :: CoreAlt -> Type
-- ^ Returns the type of the alternatives right hand side
coreAltType alt@(Alt _ bs rhs)
  = case occCheckExpand bs rhs_ty of
      -- Note [Existential variables and silly type synonyms]
      Just ty -> ty
      Nothing -> pprPanic "coreAltType" (pprCoreAlt alt $$ ppr rhs_ty)
  where
    rhs_ty = exprType rhs

coreAltsType :: [CoreAlt] -> Type
-- ^ Returns the type of the first alternative, which should be the same as for all alternatives
coreAltsType (alt:_) = coreAltType alt
coreAltsType []      = panic "coreAltsType"

mkLamType  :: Var -> Type -> Type
-- ^ Makes a @(->)@ type or an implicit forall type, depending
-- on whether it is given a type variable or a term variable.
-- This is used, for example, when producing the type of a lambda.
-- Always uses Inferred binders.
mkLamTypes :: [Var] -> Type -> Type
-- ^ 'mkLamType' for multiple type or value arguments

mkLamType v body_ty
   | isTyVar v
   = mkForAllTy v Inferred body_ty

   | isCoVar v
   , v `elemVarSet` tyCoVarsOfType body_ty
   = mkForAllTy v Required body_ty

   | otherwise
   = mkFunctionType (varMult v) (varType v) body_ty

mkFunctionType :: Mult -> Type -> Type -> Type
-- This one works out the AnonArgFlag from the argument type
-- See GHC.Types.Var Note [AnonArgFlag]
mkFunctionType mult arg_ty res_ty
   | isPredTy arg_ty -- See GHC.Types.Var Note [AnonArgFlag]
   = assert (eqType mult Many) $
     mkInvisFunTy mult arg_ty res_ty

   | otherwise
   = mkVisFunTy mult arg_ty res_ty

mkLamTypes vs ty = foldr mkLamType ty vs

{-
Note [Type bindings]
~~~~~~~~~~~~~~~~~~~~
Core does allow type bindings, although such bindings are
not much used, except in the output of the desugarer.
Example:
     let a = Int in (\x:a. x)
Given this, exprType must be careful to substitute 'a' in the
result type (#8522).

Note [Existential variables and silly type synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
        data T = forall a. T (Funny a)
        type Funny a = Bool
        f :: T -> Bool
        f (T x) = x

Now, the type of 'x' is (Funny a), where 'a' is existentially quantified.
That means that 'exprType' and 'coreAltsType' may give a result that *appears*
to mention an out-of-scope type variable.  See #3409 for a more real-world
example.

Various possibilities suggest themselves:

 - Ignore the problem, and make Lint not complain about such variables

 - Expand all type synonyms (or at least all those that discard arguments)
      This is tricky, because at least for top-level things we want to
      retain the type the user originally specified.

 - Expand synonyms on the fly, when the problem arises. That is what
   we are doing here.  It's not too expensive, I think.

Note that there might be existentially quantified coercion variables, too.
-}

applyTypeToArgs :: HasDebugCallStack => SDoc -> Type -> [CoreExpr] -> Type
-- ^ Determines the type resulting from applying an expression with given type
--- to given argument expressions.
-- The first argument is just for debugging, and gives some context
applyTypeToArgs pp_e op_ty args
  = go op_ty args
  where
    go op_ty []                   = op_ty
    go op_ty (Type ty : args)     = go_ty_args op_ty [ty] args
    go op_ty (Coercion co : args) = go_ty_args op_ty [mkCoercionTy co] args
    go op_ty (_ : args)           | Just (_, _, res_ty) <- splitFunTy_maybe op_ty
                                  = go res_ty args
    go _ args = pprPanic "applyTypeToArgs" (panic_msg args)

    -- go_ty_args: accumulate type arguments so we can
    -- instantiate all at once with piResultTys
    go_ty_args op_ty rev_tys (Type ty : args)
       = go_ty_args op_ty (ty:rev_tys) args
    go_ty_args op_ty rev_tys (Coercion co : args)
       = go_ty_args op_ty (mkCoercionTy co : rev_tys) args
    go_ty_args op_ty rev_tys args
       = go (piResultTys op_ty (reverse rev_tys)) args

    panic_msg as = vcat [ text "Expression:" <+> pp_e
                        , text "Type:" <+> ppr op_ty
                        , text "Args:" <+> ppr args
                        , text "Args':" <+> ppr as ]

mkCastMCo :: CoreExpr -> MCoercionR -> CoreExpr
mkCastMCo e MRefl    = e
mkCastMCo e (MCo co) = Cast e co
  -- We are careful to use (MCo co) only when co is not reflexive
  -- Hence (Cast e co) rather than (mkCast e co)

mkPiMCo :: Var -> MCoercionR -> MCoercionR
mkPiMCo _  MRefl   = MRefl
mkPiMCo v (MCo co) = MCo (mkPiCo Representational v co)


{- *********************************************************************
*                                                                      *
             Casts
*                                                                      *
********************************************************************* -}

-- | Wrap the given expression in the coercion safely, dropping
-- identity coercions and coalescing nested coercions
mkCast :: CoreExpr -> CoercionR -> CoreExpr
mkCast e co
  | assertPpr (coercionRole co == Representational)
              (text "coercion" <+> ppr co <+> text "passed to mkCast"
               <+> ppr e <+> text "has wrong role" <+> ppr (coercionRole co)) $
    isReflCo co
  = e

mkCast (Coercion e_co) co
  | isCoVarType (coercionRKind co)
       -- The guard here checks that g has a (~#) on both sides,
       -- otherwise decomposeCo fails.  Can in principle happen
       -- with unsafeCoerce
  = Coercion (mkCoCast e_co co)

mkCast (Cast expr co2) co
  = warnPprTrace (let { from_ty = coercionLKind co;
                        to_ty2  = coercionRKind co2 } in
                     not (from_ty `eqType` to_ty2))
             "mkCast"
             (vcat ([ text "expr:" <+> ppr expr
                   , text "co2:" <+> ppr co2
                   , text "co:" <+> ppr co ])) $
    mkCast expr (mkTransCo co2 co)

mkCast (Tick t expr) co
   = Tick t (mkCast expr co)

mkCast expr co
  = let from_ty = coercionLKind co in
    warnPprTrace (not (from_ty `eqType` exprType expr))
          "Trying to coerce" (text "(" <> ppr expr
          $$ text "::" <+> ppr (exprType expr) <> text ")"
          $$ ppr co $$ ppr (coercionType co)
          $$ callStackDoc) $
    (Cast expr co)


{- *********************************************************************
*                                                                      *
             Attaching ticks
*                                                                      *
********************************************************************* -}

-- | Wraps the given expression in the source annotation, dropping the
-- annotation if possible.
mkTick :: CoreTickish -> CoreExpr -> CoreExpr
mkTick t orig_expr = mkTick' id id orig_expr
 where
  -- Some ticks (cost-centres) can be split in two, with the
  -- non-counting part having laxer placement properties.
  canSplit = tickishCanSplit t && tickishPlace (mkNoCount t) /= tickishPlace t

  -- mkTick' handles floating of ticks *into* the expression.
  -- In this function, `top` is applied after adding the tick, and `rest` before.
  -- This will result in applications that look like (top $ Tick t $ rest expr).
  -- If we want to push the tick deeper, we pre-compose `top` with a function
  -- adding the tick.
  mkTick' :: (CoreExpr -> CoreExpr) -- apply after adding tick (float through)
          -> (CoreExpr -> CoreExpr) -- apply before adding tick (float with)
          -> CoreExpr               -- current expression
          -> CoreExpr
  mkTick' top rest expr = case expr of

    -- Cost centre ticks should never be reordered relative to each
    -- other. Therefore we can stop whenever two collide.
    Tick t2 e
      | ProfNote{} <- t2, ProfNote{} <- t -> top $ Tick t $ rest expr

    -- Otherwise we assume that ticks of different placements float
    -- through each other.
      | tickishPlace t2 /= tickishPlace t -> mkTick' (top . Tick t2) rest e

    -- For annotations this is where we make sure to not introduce
    -- redundant ticks.
      | tickishContains t t2              -> mkTick' top rest e
      | tickishContains t2 t              -> orig_expr
      | otherwise                         -> mkTick' top (rest . Tick t2) e

    -- Ticks don't care about types, so we just float all ticks
    -- through them. Note that it's not enough to check for these
    -- cases top-level. While mkTick will never produce Core with type
    -- expressions below ticks, such constructs can be the result of
    -- unfoldings. We therefore make an effort to put everything into
    -- the right place no matter what we start with.
    Cast e co   -> mkTick' (top . flip Cast co) rest e
    Coercion co -> Coercion co

    Lam x e
      -- Always float through type lambdas. Even for non-type lambdas,
      -- floating is allowed for all but the most strict placement rule.
      | not (isRuntimeVar x) || tickishPlace t /= PlaceRuntime
      -> mkTick' (top . Lam x) rest e

      -- If it is both counting and scoped, we split the tick into its
      -- two components, often allowing us to keep the counting tick on
      -- the outside of the lambda and push the scoped tick inside.
      -- The point of this is that the counting tick can probably be
      -- floated, and the lambda may then be in a position to be
      -- beta-reduced.
      | canSplit
      -> top $ Tick (mkNoScope t) $ rest $ Lam x $ mkTick (mkNoCount t) e

    App f arg
      -- Always float through type applications.
      | not (isRuntimeArg arg)
      -> mkTick' (top . flip App arg) rest f

      -- We can also float through constructor applications, placement
      -- permitting. Again we can split.
      | isSaturatedConApp expr && (tickishPlace t==PlaceCostCentre || canSplit)
      -> if tickishPlace t == PlaceCostCentre
         then top $ rest $ tickHNFArgs t expr
         else top $ Tick (mkNoScope t) $ rest $ tickHNFArgs (mkNoCount t) expr

    Var x
      | notFunction && tickishPlace t == PlaceCostCentre
      -> orig_expr
      | notFunction && canSplit
      -> top $ Tick (mkNoScope t) $ rest expr
      where
        -- SCCs can be eliminated on variables provided the variable
        -- is not a function.  In these cases the SCC makes no difference:
        -- the cost of evaluating the variable will be attributed to its
        -- definition site.  When the variable refers to a function, however,
        -- an SCC annotation on the variable affects the cost-centre stack
        -- when the function is called, so we must retain those.
        notFunction = not (isFunTy (idType x))

    Lit{}
      | tickishPlace t == PlaceCostCentre
      -> orig_expr

    -- Catch-all: Annotate where we stand
    _any -> top $ Tick t $ rest expr

mkTicks :: [CoreTickish] -> CoreExpr -> CoreExpr
mkTicks ticks expr = foldr mkTick expr ticks

isSaturatedConApp :: CoreExpr -> Bool
isSaturatedConApp e = go e []
  where go (App f a) as = go f (a:as)
        go (Var fun) args
           = isConLikeId fun && idArity fun == valArgCount args
        go (Cast f _) as = go f as
        go _ _ = False

mkTickNoHNF :: CoreTickish -> CoreExpr -> CoreExpr
mkTickNoHNF t e
  | exprIsHNF e = tickHNFArgs t e
  | otherwise   = mkTick t e

-- push a tick into the arguments of a HNF (call or constructor app)
tickHNFArgs :: CoreTickish -> CoreExpr -> CoreExpr
tickHNFArgs t e = push t e
 where
  push t (App f (Type u)) = App (push t f) (Type u)
  push t (App f arg) = App (push t f) (mkTick t arg)
  push _t e = e

-- | Strip ticks satisfying a predicate from top of an expression
stripTicksTop :: (CoreTickish -> Bool) -> Expr b -> ([CoreTickish], Expr b)
stripTicksTop p = go []
  where go ts (Tick t e) | p t = go (t:ts) e
        go ts other            = (reverse ts, other)

-- | Strip ticks satisfying a predicate from top of an expression,
-- returning the remaining expression
stripTicksTopE :: (CoreTickish -> Bool) -> Expr b -> Expr b
stripTicksTopE p = go
  where go (Tick t e) | p t = go e
        go other            = other

-- | Strip ticks satisfying a predicate from top of an expression,
-- returning the ticks
stripTicksTopT :: (CoreTickish -> Bool) -> Expr b -> [CoreTickish]
stripTicksTopT p = go []
  where go ts (Tick t e) | p t = go (t:ts) e
        go ts _                = ts

-- | Completely strip ticks satisfying a predicate from an
-- expression. Note this is O(n) in the size of the expression!
stripTicksE :: (CoreTickish -> Bool) -> Expr b -> Expr b
stripTicksE p expr = go expr
  where go (App e a)        = App (go e) (go a)
        go (Lam b e)        = Lam b (go e)
        go (Let b e)        = Let (go_bs b) (go e)
        go (Case e b t as)  = Case (go e) b t (map go_a as)
        go (Cast e c)       = Cast (go e) c
        go (Tick t e)
          | p t             = go e
          | otherwise       = Tick t (go e)
        go other            = other
        go_bs (NonRec b e)  = NonRec b (go e)
        go_bs (Rec bs)      = Rec (map go_b bs)
        go_b (b, e)         = (b, go e)
        go_a (Alt c bs e)   = Alt c bs (go e)

stripTicksT :: (CoreTickish -> Bool) -> Expr b -> [CoreTickish]
stripTicksT p expr = fromOL $ go expr
  where go (App e a)        = go e `appOL` go a
        go (Lam _ e)        = go e
        go (Let b e)        = go_bs b `appOL` go e
        go (Case e _ _ as)  = go e `appOL` concatOL (map go_a as)
        go (Cast e _)       = go e
        go (Tick t e)
          | p t             = t `consOL` go e
          | otherwise       = go e
        go _                = nilOL
        go_bs (NonRec _ e)  = go e
        go_bs (Rec bs)      = concatOL (map go_b bs)
        go_b (_, e)         = go e
        go_a (Alt _ _ e)    = go e

{-
************************************************************************
*                                                                      *
\subsection{Other expression construction}
*                                                                      *
************************************************************************
-}

bindNonRec :: HasDebugCallStack => Id -> CoreExpr -> CoreExpr -> CoreExpr
-- ^ @bindNonRec x r b@ produces either:
--
-- > let x = r in b
--
-- or:
--
-- > case r of x { _DEFAULT_ -> b }
--
-- depending on whether we have to use a @case@ or @let@
-- binding for the expression (see 'needsCaseBinding').
-- It's used by the desugarer to avoid building bindings
-- that give Core Lint a heart attack, although actually
-- the simplifier deals with them perfectly well. See
-- also 'GHC.Core.Make.mkCoreLet'
bindNonRec bndr rhs body
  | isTyVar bndr                       = let_bind
  | isCoVar bndr                       = if isCoArg rhs then let_bind
    {- See Note [Binding coercions] -}                  else case_bind
  | isJoinId bndr                      = let_bind
  | needsCaseBinding (idType bndr) rhs = case_bind
  | otherwise                          = let_bind
  where
    case_bind = mkDefaultCase rhs bndr body
    let_bind  = Let (NonRec bndr rhs) body

-- | Tests whether we have to use a @case@ rather than @let@ binding for this
-- expression as per the invariants of 'CoreExpr': see "GHC.Core#let_can_float_invariant"
needsCaseBinding :: Type -> CoreExpr -> Bool
needsCaseBinding ty rhs =
  mightBeUnliftedType ty && not (exprOkForSpeculation rhs)
        -- Make a case expression instead of a let
        -- These can arise either from the desugarer,
        -- or from beta reductions: (\x.e) (x +# y)

mkAltExpr :: AltCon     -- ^ Case alternative constructor
          -> [CoreBndr] -- ^ Things bound by the pattern match
          -> [Type]     -- ^ The type arguments to the case alternative
          -> CoreExpr
-- ^ This guy constructs the value that the scrutinee must have
-- given that you are in one particular branch of a case
mkAltExpr (DataAlt con) args inst_tys
  = mkConApp con (map Type inst_tys ++ varsToCoreExprs args)
mkAltExpr (LitAlt lit) [] []
  = Lit lit
mkAltExpr (LitAlt _) _ _ = panic "mkAltExpr LitAlt"
mkAltExpr DEFAULT _ _ = panic "mkAltExpr DEFAULT"

mkDefaultCase :: CoreExpr -> Id -> CoreExpr -> CoreExpr
-- Make (case x of y { DEFAULT -> e }
mkDefaultCase scrut case_bndr body
  = Case scrut case_bndr (exprType body) [Alt DEFAULT [] body]

mkSingleAltCase :: CoreExpr -> Id -> AltCon -> [Var] -> CoreExpr -> CoreExpr
-- Use this function if possible, when building a case,
-- because it ensures that the type on the Case itself
-- doesn't mention variables bound by the case
-- See Note [Care with the type of a case expression]
mkSingleAltCase scrut case_bndr con bndrs body
  = Case scrut case_bndr case_ty [Alt con bndrs body]
  where
    body_ty = exprType body

    case_ty -- See Note [Care with the type of a case expression]
      | Just body_ty' <- occCheckExpand bndrs body_ty
      = body_ty'

      | otherwise
      = pprPanic "mkSingleAltCase" (ppr scrut $$ ppr bndrs $$ ppr body_ty)

{- Note [Care with the type of a case expression]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a phantom type synonym
   type S a = Int
and we want to form the case expression
   case x of K (a::*) -> (e :: S a)

We must not make the type field of the case-expression (S a) because
'a' isn't in scope.  Hence the call to occCheckExpand.  This caused
issue #17056.

NB: this situation can only arise with type synonyms, which can
falsely "mention" type variables that aren't "really there", and which
can be eliminated by expanding the synonym.

Note [Binding coercions]
~~~~~~~~~~~~~~~~~~~~~~~~
Consider binding a CoVar, c = e.  Then, we must satisfy
Note [Core type and coercion invariant] in GHC.Core,
which allows only (Coercion co) on the RHS.

************************************************************************
*                                                                      *
               Operations over case alternatives
*                                                                      *
************************************************************************

The default alternative must be first, if it exists at all.
This makes it easy to find, though it makes matching marginally harder.
-}

-- | Extract the default case alternative
findDefault :: [Alt b] -> ([Alt b], Maybe (Expr b))
findDefault (Alt DEFAULT args rhs : alts) = assert (null args) (alts, Just rhs)
findDefault alts                          =                    (alts, Nothing)

addDefault :: [Alt b] -> Maybe (Expr b) -> [Alt b]
addDefault alts Nothing    = alts
addDefault alts (Just rhs) = Alt DEFAULT [] rhs : alts

isDefaultAlt :: Alt b -> Bool
isDefaultAlt (Alt DEFAULT _ _) = True
isDefaultAlt _                 = False

-- | Find the case alternative corresponding to a particular
-- constructor: panics if no such constructor exists
findAlt :: AltCon -> [Alt b] -> Maybe (Alt b)
    -- A "Nothing" result *is* legitimate
    -- See Note [Unreachable code]
findAlt con alts
  = case alts of
        (deflt@(Alt DEFAULT _ _):alts) -> go alts (Just deflt)
        _                              -> go alts Nothing
  where
    go []                     deflt = deflt
    go (alt@(Alt con1 _ _) : alts) deflt
      = case con `cmpAltCon` con1 of
          LT -> deflt   -- Missed it already; the alts are in increasing order
          EQ -> Just alt
          GT -> assert (not (con1 == DEFAULT)) $ go alts deflt

{- Note [Unreachable code]
~~~~~~~~~~~~~~~~~~~~~~~~~~
It is possible (although unusual) for GHC to find a case expression
that cannot match.  For example:

     data Col = Red | Green | Blue
     x = Red
     f v = case x of
              Red -> ...
              _ -> ...(case x of { Green -> e1; Blue -> e2 })...

Suppose that for some silly reason, x isn't substituted in the case
expression.  (Perhaps there's a NOINLINE on it, or profiling SCC stuff
gets in the way; cf #3118.)  Then the full-laziness pass might produce
this

     x = Red
     lvl = case x of { Green -> e1; Blue -> e2 })
     f v = case x of
             Red -> ...
             _ -> ...lvl...

Now if x gets inlined, we won't be able to find a matching alternative
for 'Red'.  That's because 'lvl' is unreachable.  So rather than crashing
we generate (error "Inaccessible alternative").

Similar things can happen (augmented by GADTs) when the Simplifier
filters down the matching alternatives in GHC.Core.Opt.Simplify.rebuildCase.
-}

---------------------------------
mergeAlts :: [Alt a] -> [Alt a] -> [Alt a]
-- ^ Merge alternatives preserving order; alternatives in
-- the first argument shadow ones in the second
mergeAlts [] as2 = as2
mergeAlts as1 [] = as1
mergeAlts (a1:as1) (a2:as2)
  = case a1 `cmpAlt` a2 of
        LT -> a1 : mergeAlts as1      (a2:as2)
        EQ -> a1 : mergeAlts as1      as2       -- Discard a2
        GT -> a2 : mergeAlts (a1:as1) as2


---------------------------------
trimConArgs :: AltCon -> [CoreArg] -> [CoreArg]
-- ^ Given:
--
-- > case (C a b x y) of
-- >        C b x y -> ...
--
-- We want to drop the leading type argument of the scrutinee
-- leaving the arguments to match against the pattern

trimConArgs DEFAULT      args = assert (null args) []
trimConArgs (LitAlt _)   args = assert (null args) []
trimConArgs (DataAlt dc) args = dropList (dataConUnivTyVars dc) args

filterAlts :: TyCon                -- ^ Type constructor of scrutinee's type (used to prune possibilities)
           -> [Type]               -- ^ And its type arguments
           -> [AltCon]             -- ^ 'imposs_cons': constructors known to be impossible due to the form of the scrutinee
           -> [Alt b] -- ^ Alternatives
           -> ([AltCon], [Alt b])
             -- Returns:
             --  1. Constructors that will never be encountered by the
             --     *default* case (if any).  A superset of imposs_cons
             --  2. The new alternatives, trimmed by
             --        a) remove imposs_cons
             --        b) remove constructors which can't match because of GADTs
             --
             -- NB: the final list of alternatives may be empty:
             -- This is a tricky corner case.  If the data type has no constructors,
             -- which GHC allows, or if the imposs_cons covers all constructors (after taking
             -- account of GADTs), then no alternatives can match.
             --
             -- If callers need to preserve the invariant that there is always at least one branch
             -- in a "case" statement then they will need to manually add a dummy case branch that just
             -- calls "error" or similar.
filterAlts _tycon inst_tys imposs_cons alts
  = (imposs_deflt_cons, addDefault trimmed_alts maybe_deflt)
  where
    (alts_wo_default, maybe_deflt) = findDefault alts
    alt_cons = [con | Alt con _ _ <- alts_wo_default]

    trimmed_alts = filterOut (impossible_alt inst_tys) alts_wo_default

    imposs_cons_set = Set.fromList imposs_cons
    imposs_deflt_cons =
      imposs_cons ++ filterOut (`Set.member` imposs_cons_set) alt_cons
         -- "imposs_deflt_cons" are handled
         --   EITHER by the context,
         --   OR by a non-DEFAULT branch in this case expression.

    impossible_alt :: [Type] -> Alt b -> Bool
    impossible_alt _ (Alt con _ _) | con `Set.member` imposs_cons_set = True
    impossible_alt inst_tys (Alt (DataAlt con) _ _) = dataConCannotMatch inst_tys con
    impossible_alt _  _                             = False

-- | Refine the default alternative to a 'DataAlt', if there is a unique way to do so.
-- See Note [Refine DEFAULT case alternatives]
refineDefaultAlt :: [Unique]          -- ^ Uniques for constructing new binders
                 -> Mult              -- ^ Multiplicity annotation of the case expression
                 -> TyCon             -- ^ Type constructor of scrutinee's type
                 -> [Type]            -- ^ Type arguments of scrutinee's type
                 -> [AltCon]          -- ^ Constructors that cannot match the DEFAULT (if any)
                 -> [CoreAlt]
                 -> (Bool, [CoreAlt]) -- ^ 'True', if a default alt was replaced with a 'DataAlt'
refineDefaultAlt us mult tycon tys imposs_deflt_cons all_alts
  | Alt DEFAULT _ rhs : rest_alts <- all_alts
  , isAlgTyCon tycon            -- It's a data type, tuple, or unboxed tuples.
  , not (isNewTyCon tycon)      -- We can have a newtype, if we are just doing an eval:
                                --      case x of { DEFAULT -> e }
                                -- and we don't want to fill in a default for them!
  , Just all_cons <- tyConDataCons_maybe tycon
  , let imposs_data_cons = mkUniqSet [con | DataAlt con <- imposs_deflt_cons]
                             -- We now know it's a data type, so we can use
                             -- UniqSet rather than Set (more efficient)
        impossible con   = con `elementOfUniqSet` imposs_data_cons
                             || dataConCannotMatch tys con
  = case filterOut impossible all_cons of
       -- Eliminate the default alternative
       -- altogether if it can't match:
       []    -> (False, rest_alts)

       -- It matches exactly one constructor, so fill it in:
       [con] -> (True, mergeAlts rest_alts [Alt (DataAlt con) (ex_tvs ++ arg_ids) rhs])
                       -- We need the mergeAlts to keep the alternatives in the right order
             where
                (ex_tvs, arg_ids) = dataConRepInstPat us mult con tys

       -- It matches more than one, so do nothing
       _  -> (False, all_alts)

  | debugIsOn, isAlgTyCon tycon, null (tyConDataCons tycon)
  , not (isFamilyTyCon tycon || isAbstractTyCon tycon)
        -- Check for no data constructors
        -- This can legitimately happen for abstract types and type families,
        -- so don't report that
  = (False, all_alts)

  | otherwise      -- The common case
  = (False, all_alts)

{- Note [Refine DEFAULT case alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
refineDefaultAlt replaces the DEFAULT alt with a constructor if there
is one possible value it could be.

The simplest example being
    foo :: () -> ()
    foo x = case x of !_ -> ()
which rewrites to
    foo :: () -> ()
    foo x = case x of () -> ()

There are two reasons in general why replacing a DEFAULT alternative
with a specific constructor is desirable.

1. We can simplify inner expressions.  For example

       data Foo = Foo1 ()

       test :: Foo -> ()
       test x = case x of
                  DEFAULT -> mid (case x of
                                    Foo1 x1 -> x1)

   refineDefaultAlt fills in the DEFAULT here with `Foo ip1` and then
   x becomes bound to `Foo ip1` so is inlined into the other case
   which causes the KnownBranch optimisation to kick in. If we don't
   refine DEFAULT to `Foo ip1`, we are left with both case expressions.

2. combineIdenticalAlts does a better job. For exapple (Simon Jacobi)
       data D = C0 | C1 | C2

       case e of
         DEFAULT -> e0
         C0      -> e1
         C1      -> e1

   When we apply combineIdenticalAlts to this expression, it can't
   combine the alts for C0 and C1, as we already have a default case.
   But if we apply refineDefaultAlt first, we get
       case e of
         C0 -> e1
         C1 -> e1
         C2 -> e0
   and combineIdenticalAlts can turn that into
       case e of
         DEFAULT -> e1
         C2 -> e0

   It isn't obvious that refineDefaultAlt does this but if you look
   at its one call site in GHC.Core.Opt.Simplify.Utils then the
   `imposs_deflt_cons` argument is populated with constructors which
   are matched elsewhere.

Note [Combine identical alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If several alternatives are identical, merge them into a single
DEFAULT alternative.  I've occasionally seen this making a big
difference:

     case e of               =====>     case e of
       C _ -> f x                         D v -> ....v....
       D v -> ....v....                   DEFAULT -> f x
       DEFAULT -> f x

The point is that we merge common RHSs, at least for the DEFAULT case.
[One could do something more elaborate but I've never seen it needed.]
To avoid an expensive test, we just merge branches equal to the *first*
alternative; this picks up the common cases
     a) all branches equal
     b) some branches equal to the DEFAULT (which occurs first)

The case where Combine Identical Alternatives transformation showed up
was like this (base/Foreign/C/Err/Error.hs):

        x | p `is` 1 -> e1
          | p `is` 2 -> e2
        ...etc...

where @is@ was something like

        p `is` n = p /= (-1) && p == n

This gave rise to a horrible sequence of cases

        case p of
          (-1) -> $j p
          1    -> e1
          DEFAULT -> $j p

and similarly in cascade for all the join points!

Note [Combine identical alternatives: wrinkles]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* It's important that we try to combine alternatives *before*
  simplifying them, rather than after. Reason: because
  Simplify.simplAlt may zap the occurrence info on the binders in the
  alternatives, which in turn defeats combineIdenticalAlts use of
  isDeadBinder (see #7360).

  You can see this in the call to combineIdenticalAlts in
  GHC.Core.Opt.Simplify.Utils.prepareAlts.  Here the alternatives have type InAlt
  (the "In" meaning input) rather than OutAlt.

* combineIdenticalAlts does not work well for nullary constructors
      case x of y
         []    -> f []
         (_:_) -> f y
  Here we won't see that [] and y are the same.  Sigh! This problem
  is solved in CSE, in GHC.Core.Opt.CSE.combineAlts, which does a better version
  of combineIdenticalAlts. But sadly it doesn't have the occurrence info we have
  here.
  See Note [Combine case alts: awkward corner] in GHC.Core.Opt.CSE).

Note [Care with impossible-constructors when combining alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have (#10538)
   data T = A | B | C | D

      case x::T of   (Imposs-default-cons {A,B})
         DEFAULT -> e1
         A -> e2
         B -> e1

When calling combineIdentialAlts, we'll have computed that the
"impossible constructors" for the DEFAULT alt is {A,B}, since if x is
A or B we'll take the other alternatives.  But suppose we combine B
into the DEFAULT, to get

      case x::T of   (Imposs-default-cons {A})
         DEFAULT -> e1
         A -> e2

Then we must be careful to trim the impossible constructors to just {A},
else we risk compiling 'e1' wrong!

Not only that, but we take care when there is no DEFAULT beforehand,
because we are introducing one.  Consider

   case x of   (Imposs-default-cons {A,B,C})
     A -> e1
     B -> e2
     C -> e1

Then when combining the A and C alternatives we get

   case x of   (Imposs-default-cons {B})
     DEFAULT -> e1
     B -> e2

Note that we have a new DEFAULT branch that we didn't have before.  So
we need delete from the "impossible-default-constructors" all the
known-con alternatives that we have eliminated. (In #11172 we
missed the first one.)

-}

combineIdenticalAlts :: [AltCon]    -- Constructors that cannot match DEFAULT
                     -> [CoreAlt]
                     -> (Bool,      -- True <=> something happened
                         [AltCon],  -- New constructors that cannot match DEFAULT
                         [CoreAlt]) -- New alternatives
-- See Note [Combine identical alternatives]
-- True <=> we did some combining, result is a single DEFAULT alternative
combineIdenticalAlts imposs_deflt_cons (Alt con1 bndrs1 rhs1 : rest_alts)
  | all isDeadBinder bndrs1    -- Remember the default
  , not (null elim_rest) -- alternative comes first
  = (True, imposs_deflt_cons', deflt_alt : filtered_rest)
  where
    (elim_rest, filtered_rest) = partition identical_to_alt1 rest_alts
    deflt_alt = Alt DEFAULT [] (mkTicks (concat tickss) rhs1)

     -- See Note [Care with impossible-constructors when combining alternatives]
    imposs_deflt_cons' = imposs_deflt_cons `minusList` elim_cons
    elim_cons = elim_con1 ++ map (\(Alt con _ _) -> con) elim_rest
    elim_con1 = case con1 of     -- Don't forget con1!
                  DEFAULT -> []
                  _       -> [con1]

    cheapEqTicked e1 e2 = cheapEqExpr' tickishFloatable e1 e2
    identical_to_alt1 (Alt _con bndrs rhs)
      = all isDeadBinder bndrs && rhs `cheapEqTicked` rhs1
    tickss = map (\(Alt _ _ rhs) -> stripTicksT tickishFloatable rhs) elim_rest

combineIdenticalAlts imposs_cons alts
  = (False, imposs_cons, alts)

-- Scales the multiplicity of the binders of a list of case alternatives. That
-- is, in [C x1…xn -> u], the multiplicity of x1…xn is scaled.
scaleAltsBy :: Mult -> [CoreAlt] -> [CoreAlt]
scaleAltsBy w alts = map scaleAlt alts
  where
    scaleAlt :: CoreAlt -> CoreAlt
    scaleAlt (Alt con bndrs rhs) = Alt con (map scaleBndr bndrs) rhs

    scaleBndr :: CoreBndr -> CoreBndr
    scaleBndr b = scaleVarBy w b


{- *********************************************************************
*                                                                      *
             exprIsTrivial
*                                                                      *
************************************************************************

Note [exprIsTrivial]
~~~~~~~~~~~~~~~~~~~~
@exprIsTrivial@ is true of expressions we are unconditionally happy to
                duplicate; simple variables and constants, and type
                applications.  Note that primop Ids aren't considered
                trivial unless

Note [Variables are trivial]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There used to be a gruesome test for (hasNoBinding v) in the
Var case:
        exprIsTrivial (Var v) | hasNoBinding v = idArity v == 0
The idea here is that a constructor worker, like \$wJust, is
really short for (\x -> \$wJust x), because \$wJust has no binding.
So it should be treated like a lambda.  Ditto unsaturated primops.
But now constructor workers are not "have-no-binding" Ids.  And
completely un-applied primops and foreign-call Ids are sufficiently
rare that I plan to allow them to be duplicated and put up with
saturating them.

Note [Tick trivial]
~~~~~~~~~~~~~~~~~~~
Ticks are only trivial if they are pure annotations. If we treat
"tick<n> x" as trivial, it will be inlined inside lambdas and the
entry count will be skewed, for example.  Furthermore "scc<n> x" will
turn into just "x" in mkTick.

Note [Empty case is trivial]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The expression (case (x::Int) Bool of {}) is just a type-changing
case used when we are sure that 'x' will not return.  See
Note [Empty case alternatives] in GHC.Core.

If the scrutinee is trivial, then so is the whole expression; and the
CoreToSTG pass in fact drops the case expression leaving only the
scrutinee.

Having more trivial expressions is good.  Moreover, if we don't treat
it as trivial we may land up with let-bindings like
   let v = case x of {} in ...
and after CoreToSTG that gives
   let v = x in ...
and that confuses the code generator (#11155). So best to kill
it off at source.
-}

exprIsTrivial :: CoreExpr -> Bool
-- If you modify this function, you may also
-- need to modify getIdFromTrivialExpr
exprIsTrivial (Var _)          = True        -- See Note [Variables are trivial]
exprIsTrivial (Type _)         = True
exprIsTrivial (Coercion _)     = True
exprIsTrivial (Lit lit)        = litIsTrivial lit
exprIsTrivial (App e arg)      = not (isRuntimeArg arg) && exprIsTrivial e
exprIsTrivial (Lam b e)        = not (isRuntimeVar b) && exprIsTrivial e
exprIsTrivial (Tick t e)       = not (tickishIsCode t) && exprIsTrivial e
                                 -- See Note [Tick trivial]
exprIsTrivial (Cast e _)       = exprIsTrivial e
exprIsTrivial (Case e _ _ [])  = exprIsTrivial e  -- See Note [Empty case is trivial]
exprIsTrivial _                = False

{-
Note [getIdFromTrivialExpr]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
When substituting in a breakpoint we need to strip away the type cruft
from a trivial expression and get back to the Id.  The invariant is
that the expression we're substituting was originally trivial
according to exprIsTrivial, AND the expression is not a literal.
See Note [substTickish] for how breakpoint substitution preserves
this extra invariant.

We also need this functionality in CorePrep to extract out Id of a
function which we are saturating.  However, in this case we don't know
if the variable actually refers to a literal; thus we use
'getIdFromTrivialExpr_maybe' to handle this case.  See test
T12076lit for an example where this matters.
-}

getIdFromTrivialExpr :: HasDebugCallStack => CoreExpr -> Id
getIdFromTrivialExpr e
    = fromMaybe (pprPanic "getIdFromTrivialExpr" (ppr e))
                (getIdFromTrivialExpr_maybe e)

getIdFromTrivialExpr_maybe :: CoreExpr -> Maybe Id
-- See Note [getIdFromTrivialExpr]
-- Th equations for this should line up with those for exprIsTrivial
getIdFromTrivialExpr_maybe e
  = go e
  where
    go (App f t) | not (isRuntimeArg t)   = go f
    go (Tick t e) | not (tickishIsCode t) = go e
    go (Cast e _)                         = go e
    go (Lam b e) | not (isRuntimeVar b)   = go e
    go (Case e _ _ [])                    = go e
    go (Var v) = Just v
    go _       = Nothing

{-
exprIsDeadEnd is a very cheap and cheerful function; it may return
False for bottoming expressions, but it never costs much to ask.  See
also GHC.Core.Opt.Arity.exprBotStrictness_maybe, but that's a bit more
expensive.
-}

exprIsDeadEnd :: CoreExpr -> Bool
-- See Note [Bottoming expressions]
exprIsDeadEnd e
  | isEmptyTy (exprType e)
  = True
  | otherwise
  = go 0 e
  where
    go n (Var v)                 = isDeadEndAppSig (idDmdSig v) n
    go n (App e a) | isTypeArg a = go n e
                   | otherwise   = go (n+1) e
    go n (Tick _ e)              = go n e
    go n (Cast e _)              = go n e
    go n (Let _ e)               = go n e
    go n (Lam v e) | isTyVar v   = go n e
    go _ (Case _ _ _ alts)       = null alts
       -- See Note [Empty case alternatives] in GHC.Core
    go _ _                       = False

{- Note [Bottoming expressions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A bottoming expression is guaranteed to diverge, or raise an
exception.  We can test for it in two different ways, and exprIsDeadEnd
checks for both of these situations:

* Visibly-bottom computations.  For example
      (error Int "Hello")
  is visibly bottom.  The strictness analyser also finds out if
  a function diverges or raises an exception, and puts that info
  in its strictness signature.

* Empty types.  If a type is empty, its only inhabitant is bottom.
  For example:
      data T
      f :: T -> Bool
      f = \(x:t). case x of Bool {}
  Since T has no data constructors, the case alternatives are of course
  empty.  However note that 'x' is not bound to a visibly-bottom value;
  it's the *type* that tells us it's going to diverge.

A GADT may also be empty even though it has constructors:
        data T a where
          T1 :: a -> T Bool
          T2 :: T Int
        ...(case (x::T Char) of {})...
Here (T Char) is uninhabited.  A more realistic case is (Int ~ Bool),
which is likewise uninhabited.


************************************************************************
*                                                                      *
             exprIsDupable
*                                                                      *
************************************************************************

Note [exprIsDupable]
~~~~~~~~~~~~~~~~~~~~
@exprIsDupable@ is true of expressions that can be duplicated at a modest
                cost in code size.  This will only happen in different case
                branches, so there's no issue about duplicating work.

                That is, exprIsDupable returns True of (f x) even if
                f is very very expensive to call.

                Its only purpose is to avoid fruitless let-binding
                and then inlining of case join points
-}

exprIsDupable :: Platform -> CoreExpr -> Bool
exprIsDupable platform e
  = isJust (go dupAppSize e)
  where
    go :: Int -> CoreExpr -> Maybe Int
    go n (Type {})     = Just n
    go n (Coercion {}) = Just n
    go n (Var {})      = decrement n
    go n (Tick _ e)    = go n e
    go n (Cast e _)    = go n e
    go n (App f a) | Just n' <- go n a = go n' f
    go n (Lit lit) | litIsDupable platform lit = decrement n
    go _ _ = Nothing

    decrement :: Int -> Maybe Int
    decrement 0 = Nothing
    decrement n = Just (n-1)

dupAppSize :: Int
dupAppSize = 8   -- Size of term we are prepared to duplicate
                 -- This is *just* big enough to make test MethSharing
                 -- inline enough join points.  Really it should be
                 -- smaller, and could be if we fixed #4960.

{-
************************************************************************
*                                                                      *
             exprIsCheap, exprIsExpandable
*                                                                      *
************************************************************************

Note [exprIsWorkFree]
~~~~~~~~~~~~~~~~~~~~~
exprIsWorkFree is used when deciding whether to inline something; we
don't inline it if doing so might duplicate work, by peeling off a
complete copy of the expression.  Here we do not want even to
duplicate a primop (#5623):
   eg   let x = a #+ b in x +# x
   we do not want to inline/duplicate x

Previously we were a bit more liberal, which led to the primop-duplicating
problem.  However, being more conservative did lead to a big regression in
one nofib benchmark, wheel-sieve1.  The situation looks like this:

   let noFactor_sZ3 :: GHC.Types.Int -> GHC.Types.Bool
       noFactor_sZ3 = case s_adJ of _ { GHC.Types.I# x_aRs ->
         case GHC.Prim.<=# x_aRs 2 of _ {
           GHC.Types.False -> notDivBy ps_adM qs_adN;
           GHC.Types.True -> lvl_r2Eb }}
       go = \x. ...(noFactor (I# y))....(go x')...

The function 'noFactor' is heap-allocated and then called.  Turns out
that 'notDivBy' is strict in its THIRD arg, but that is invisible to
the caller of noFactor, which therefore cannot do w/w and
heap-allocates noFactor's argument.  At the moment (May 12) we are just
going to put up with this, because the previous more aggressive inlining
(which treated 'noFactor' as work-free) was duplicating primops, which
in turn was making inner loops of array calculations runs slow (#5623)

Note [Case expressions are work-free]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Are case-expressions work-free?  Consider
    let v = case x of (p,q) -> p
        go = \y -> ...case v of ...
Should we inline 'v' at its use site inside the loop?  At the moment
we do.  I experimented with saying that case are *not* work-free, but
that increased allocation slightly.  It's a fairly small effect, and at
the moment we go for the slightly more aggressive version which treats
(case x of ....) as work-free if the alternatives are.

Moreover it improves arities of overloaded functions where
there is only dictionary selection (no construction) involved

Note [exprIsCheap]
~~~~~~~~~~~~~~~~~~
See also Note [Interaction of exprIsWorkFree and lone variables] in GHC.Core.Unfold

@exprIsCheap@ looks at a Core expression and returns \tr{True} if
it is obviously in weak head normal form, or is cheap to get to WHNF.
Note that that's not the same as exprIsDupable; an expression might be
big, and hence not dupable, but still cheap.

By ``cheap'' we mean a computation we're willing to:
        push inside a lambda, or
        inline at more than one place
That might mean it gets evaluated more than once, instead of being
shared.  The main examples of things which aren't WHNF but are
``cheap'' are:

  *     case e of
          pi -> ei
        (where e, and all the ei are cheap)

  *     let x = e in b
        (where e and b are cheap)

  *     op x1 ... xn
        (where op is a cheap primitive operator)

  *     error "foo"
        (because we are happy to substitute it inside a lambda)

Notice that a variable is considered 'cheap': we can push it inside a lambda,
because sharing will make sure it is only evaluated once.

Note [exprIsCheap and exprIsHNF]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that exprIsHNF does not imply exprIsCheap.  Eg
        let x = fac 20 in Just x
This responds True to exprIsHNF (you can discard a seq), but
False to exprIsCheap.

Note [Arguments and let-bindings exprIsCheapX]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
What predicate should we apply to the argument of an application, or the
RHS of a let-binding?

We used to say "exprIsTrivial arg" due to concerns about duplicating
nested constructor applications, but see #4978.  So now we just recursively
use exprIsCheapX.

We definitely want to treat let and app the same.  The principle here is
that
   let x = blah in f x
should behave equivalently to
   f blah

This in turn means that the 'letrec g' does not prevent eta expansion
in this (which it previously was):
    f = \x. let v = case x of
                      True -> letrec g = \w. blah
                              in g
                      False -> \x. x
            in \w. v True
-}

--------------------
exprIsWorkFree :: CoreExpr -> Bool   -- See Note [exprIsWorkFree]
exprIsWorkFree e = exprIsCheapX isWorkFreeApp e

exprIsCheap :: CoreExpr -> Bool
exprIsCheap e = exprIsCheapX isCheapApp e

exprIsCheapX :: CheapAppFun -> CoreExpr -> Bool
{-# INLINE exprIsCheapX #-}
-- allow specialization of exprIsCheap and exprIsWorkFree
-- instead of having an unknown call to ok_app
exprIsCheapX ok_app e
  = ok e
  where
    ok e = go 0 e

    -- n is the number of value arguments
    go n (Var v)                      = ok_app v n
    go _ (Lit {})                     = True
    go _ (Type {})                    = True
    go _ (Coercion {})                = True
    go n (Cast e _)                   = go n e
    go n (Case scrut _ _ alts)        = ok scrut &&
                                        and [ go n rhs | Alt _ _ rhs <- alts ]
    go n (Tick t e) | tickishCounts t = False
                    | otherwise       = go n e
    go n (Lam x e)  | isRuntimeVar x  = n==0 || go (n-1) e
                    | otherwise       = go n e
    go n (App f e)  | isRuntimeArg e  = go (n+1) f && ok e
                    | otherwise       = go n f
    go n (Let (NonRec _ r) e)         = go n e && ok r
    go n (Let (Rec prs) e)            = go n e && all (ok . snd) prs

      -- Case: see Note [Case expressions are work-free]
      -- App, Let: see Note [Arguments and let-bindings exprIsCheapX]


{- Note [exprIsExpandable]
~~~~~~~~~~~~~~~~~~~~~~~~~~
An expression is "expandable" if we are willing to duplicate it, if doing
so might make a RULE or case-of-constructor fire.  Consider
   let x = (a,b)
       y = build g
   in ....(case x of (p,q) -> rhs)....(foldr k z y)....

We don't inline 'x' or 'y' (see Note [Lone variables] in GHC.Core.Unfold),
but we do want

 * the case-expression to simplify
   (via exprIsConApp_maybe, exprIsLiteral_maybe)

 * the foldr/build RULE to fire
   (by expanding the unfolding during rule matching)

So we classify the unfolding of a let-binding as "expandable" (via the
uf_expandable field) if we want to do this kind of on-the-fly
expansion.  Specifically:

* True of constructor applications (K a b)

* True of applications of a "CONLIKE" Id; see Note [CONLIKE pragma] in GHC.Types.Basic.
  (NB: exprIsCheap might not be true of this)

* False of case-expressions.  If we have
    let x = case ... in ...(case x of ...)...
  we won't simplify.  We have to inline x.  See #14688.

* False of let-expressions (same reason); and in any case we
  float lets out of an RHS if doing so will reveal an expandable
  application (see SimplEnv.doFloatFromRhs).

* Take care: exprIsExpandable should /not/ be true of primops.  I
  found this in test T5623a:
    let q = /\a. Ptr a (a +# b)
    in case q @ Float of Ptr v -> ...q...

  q's inlining should not be expandable, else exprIsConApp_maybe will
  say that (q @ Float) expands to (Ptr a (a +# b)), and that will
  duplicate the (a +# b) primop, which we should not do lightly.
  (It's quite hard to trigger this bug, but T13155 does so for GHC 8.0.)
-}

-------------------------------------
exprIsExpandable :: CoreExpr -> Bool
-- See Note [exprIsExpandable]
exprIsExpandable e
  = ok e
  where
    ok e = go 0 e

    -- n is the number of value arguments
    go n (Var v)                      = isExpandableApp v n
    go _ (Lit {})                     = True
    go _ (Type {})                    = True
    go _ (Coercion {})                = True
    go n (Cast e _)                   = go n e
    go n (Tick t e) | tickishCounts t = False
                    | otherwise       = go n e
    go n (Lam x e)  | isRuntimeVar x  = n==0 || go (n-1) e
                    | otherwise       = go n e
    go n (App f e)  | isRuntimeArg e  = go (n+1) f && ok e
                    | otherwise       = go n f
    go _ (Case {})                    = False
    go _ (Let {})                     = False


-------------------------------------
type CheapAppFun = Id -> Arity -> Bool
  -- Is an application of this function to n *value* args
  -- always cheap, assuming the arguments are cheap?
  -- True mainly of data constructors, partial applications;
  -- but with minor variations:
  --    isWorkFreeApp
  --    isCheapApp

isWorkFreeApp :: CheapAppFun
isWorkFreeApp fn n_val_args
  | n_val_args == 0           -- No value args
  = True
  | n_val_args < idArity fn   -- Partial application
  = True
  | otherwise
  = case idDetails fn of
      DataConWorkId {} -> True
      _                -> False

isCheapApp :: CheapAppFun
isCheapApp fn n_val_args
  | isWorkFreeApp fn n_val_args = True
  | isDeadEndId fn              = True  -- See Note [isCheapApp: bottoming functions]
  | otherwise
  = case idDetails fn of
      DataConWorkId {} -> True  -- Actually handled by isWorkFreeApp
      RecSelId {}      -> n_val_args == 1  -- See Note [Record selection]
      ClassOpId {}     -> n_val_args == 1
      PrimOpId op _    -> primOpIsCheap op
      _                -> False
        -- In principle we should worry about primops
        -- that return a type variable, since the result
        -- might be applied to something, but I'm not going
        -- to bother to check the number of args

isExpandableApp :: CheapAppFun
isExpandableApp fn n_val_args
  | isWorkFreeApp fn n_val_args = True
  | otherwise
  = case idDetails fn of
      RecSelId {}  -> n_val_args == 1  -- See Note [Record selection]
      ClassOpId {} -> n_val_args == 1
      PrimOpId {}  -> False
      _ | isDeadEndId fn     -> False
          -- See Note [isExpandableApp: bottoming functions]
        | isConLikeId fn     -> True
        | all_args_are_preds -> True
        | otherwise          -> False

  where
     -- See if all the arguments are PredTys (implicit params or classes)
     -- If so we'll regard it as expandable; see Note [Expandable overloadings]
     all_args_are_preds = all_pred_args n_val_args (idType fn)

     all_pred_args n_val_args ty
       | n_val_args == 0
       = True

       | Just (bndr, ty) <- splitPiTy_maybe ty
       = case bndr of
           Named {}        -> all_pred_args n_val_args ty
           Anon InvisArg _ -> all_pred_args (n_val_args-1) ty
           Anon VisArg _   -> False

       | otherwise
       = False

{- Note [isCheapApp: bottoming functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I'm not sure why we have a special case for bottoming
functions in isCheapApp.  Maybe we don't need it.

Note [isExpandableApp: bottoming functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important that isExpandableApp does not respond True to bottoming
functions.  Recall  undefined :: HasCallStack => a
Suppose isExpandableApp responded True to (undefined d), and we had:

  x = undefined <dict-expr>

Then Simplify.prepareRhs would ANF the RHS:

  d = <dict-expr>
  x = undefined d

This is already bad: we gain nothing from having x bound to (undefined
var), unlike the case for data constructors.  Worse, we get the
simplifier loop described in OccurAnal Note [Cascading inlines].
Suppose x occurs just once; OccurAnal.occAnalNonRecRhs decides x will
certainly_inline; so we end up inlining d right back into x; but in
the end x doesn't inline because it is bottom (preInlineUnconditionally);
so the process repeats.. We could elaborate the certainly_inline logic
some more, but it's better just to treat bottoming bindings as
non-expandable, because ANFing them is a bad idea in the first place.

Note [Record selection]
~~~~~~~~~~~~~~~~~~~~~~~~~~
I'm experimenting with making record selection
look cheap, so we will substitute it inside a
lambda.  Particularly for dictionary field selection.

BUT: Take care with (sel d x)!  The (sel d) might be cheap, but
there's no guarantee that (sel d x) will be too.  Hence (n_val_args == 1)

Note [Expandable overloadings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose the user wrote this
   {-# RULE  forall x. foo (negate x) = h x #-}
   f x = ....(foo (negate x))....
They'd expect the rule to fire. But since negate is overloaded, we might
get this:
    f = \d -> let n = negate d in \x -> ...foo (n x)...
So we treat the application of a function (negate in this case) to a
*dictionary* as expandable.  In effect, every function is CONLIKE when
it's applied only to dictionaries.


************************************************************************
*                                                                      *
             exprOkForSpeculation
*                                                                      *
************************************************************************
-}

-----------------------------
-- | 'exprOkForSpeculation' returns True of an expression that is:
--
--  * Safe to evaluate even if normal order eval might not
--    evaluate the expression at all, or
--
--  * Safe /not/ to evaluate even if normal order would do so
--
-- It is usually called on arguments of unlifted type, but not always
-- In particular, Simplify.rebuildCase calls it on lifted types
-- when a 'case' is a plain 'seq'. See the example in
-- Note [exprOkForSpeculation: case expressions] below
--
-- Precisely, it returns @True@ iff:
--  a) The expression guarantees to terminate,
--  b) soon,
--  c) without causing a write side effect (e.g. writing a mutable variable)
--  d) without throwing a Haskell exception
--  e) without risking an unchecked runtime exception (array out of bounds,
--     divide by zero)
--
-- For @exprOkForSideEffects@ the list is the same, but omitting (e).
--
-- Note that
--    exprIsHNF            implies exprOkForSpeculation
--    exprOkForSpeculation implies exprOkForSideEffects
--
-- See Note [PrimOp can_fail and has_side_effects] in "GHC.Builtin.PrimOps"
-- and Note [Transformations affected by can_fail and has_side_effects]
--
-- As an example of the considerations in this test, consider:
--
-- > let x = case y# +# 1# of { r# -> I# r# }
-- > in E
--
-- being translated to:
--
-- > case y# +# 1# of { r# ->
-- >    let x = I# r#
-- >    in E
-- > }
--
-- We can only do this if the @y + 1@ is ok for speculation: it has no
-- side effects, and can't diverge or raise an exception.

exprOkForSpeculation, exprOkForSideEffects :: CoreExpr -> Bool
exprOkForSpeculation = expr_ok primOpOkForSpeculation
exprOkForSideEffects = expr_ok primOpOkForSideEffects

expr_ok :: (PrimOp -> Bool) -> CoreExpr -> Bool
expr_ok _ (Lit _)      = True
expr_ok _ (Type _)     = True
expr_ok _ (Coercion _) = True

expr_ok primop_ok (Var v)    = app_ok primop_ok v []
expr_ok primop_ok (Cast e _) = expr_ok primop_ok e
expr_ok primop_ok (Lam b e)
                 | isTyVar b = expr_ok primop_ok  e
                 | otherwise = True

-- Tick annotations that *tick* cannot be speculated, because these
-- are meant to identify whether or not (and how often) the particular
-- source expression was evaluated at runtime.
expr_ok primop_ok (Tick tickish e)
   | tickishCounts tickish = False
   | otherwise             = expr_ok primop_ok e

expr_ok _ (Let {}) = False
  -- Lets can be stacked deeply, so just give up.
  -- In any case, the argument of exprOkForSpeculation is
  -- usually in a strict context, so any lets will have been
  -- floated away.

expr_ok primop_ok (Case scrut bndr _ alts)
  =  -- See Note [exprOkForSpeculation: case expressions]
     expr_ok primop_ok scrut
  && isUnliftedType (idType bndr)
      -- OK to call isUnliftedType: binders always have a fixed RuntimeRep
  && all (\(Alt _ _ rhs) -> expr_ok primop_ok rhs) alts
  && altsAreExhaustive alts

expr_ok primop_ok other_expr
  | (expr, args) <- collectArgs other_expr
  = case stripTicksTopE (not . tickishCounts) expr of
        Var f ->
           app_ok primop_ok f args

        -- 'LitRubbish' is the only literal that can occur in the head of an
        -- application and will not be matched by the above case (Var /= Lit).
        -- See Note [How a rubbish literal can be the head of an application]
        -- in GHC.Types.Literal
        Lit lit | debugIsOn, not (isLitRubbish lit)
                 -> pprPanic "Non-rubbish lit in app head" (ppr lit)
                 | otherwise
                 -> True

        _ -> False

-----------------------------
app_ok :: (PrimOp -> Bool) -> Id -> [CoreExpr] -> Bool
app_ok primop_ok fun args
  = case idDetails fun of
      DFunId new_type ->  not new_type
         -- DFuns terminate, unless the dict is implemented
         -- with a newtype in which case they may not

      DataConWorkId {} -> True
                -- The strictness of the constructor has already
                -- been expressed by its "wrapper", so we don't need
                -- to take the arguments into account

      PrimOpId op _
        | primOpIsDiv op
        , [arg1, Lit lit] <- args
        -> not (isZeroLit lit) && expr_ok primop_ok arg1
              -- Special case for dividing operations that fail
              -- In general they are NOT ok-for-speculation
              -- (which primop_ok will catch), but they ARE OK
              -- if the divisor is definitely non-zero.
              -- Often there is a literal divisor, and this
              -- can get rid of a thunk in an inner loop

        | SeqOp <- op  -- See Note [exprOkForSpeculation and SeqOp/DataToTagOp]
        -> False       --     for the special cases for SeqOp and DataToTagOp
        | DataToTagOp <- op
        -> False
        | KeepAliveOp <- op
        -> False

        | otherwise
        -> primop_ok op  -- Check the primop itself
        && and (zipWith arg_ok arg_tys args)  -- Check the arguments

      _  -- Unlifted types
         -- c.f. the Var case of exprIsHNF
         | Just Unlifted <- typeLevity_maybe (idType fun)
         -> assertPpr (n_val_args == 0) (ppr fun $$ ppr args)
            True  -- Our only unlifted types are Int# etc, so will have
                  -- no value args.  The assert is just to check this.
                  -- If we added unlifted function types this would change,
                  -- and we'd need to actually test n_val_args == 0.

         -- Partial applications
         | idArity fun > n_val_args ->
           and (zipWith arg_ok arg_tys args)  -- Check the arguments

         -- Functions that terminate fast without raising exceptions etc
         -- See Note [Discarding unnecessary unsafeEqualityProofs]
         | fun `hasKey` unsafeEqualityProofIdKey -> True

         | otherwise -> False
             -- NB: even in the nullary case, do /not/ check
             --     for evaluated-ness of the fun;
             --     see Note [exprOkForSpeculation and evaluated variables]
  where
    n_val_args   = valArgCount args
    (arg_tys, _) = splitPiTys (idType fun)

    -- Used for arguments to primops and to partial applications
    arg_ok :: TyBinder -> CoreExpr -> Bool
    arg_ok (Named _) _ = True   -- A type argument
    arg_ok (Anon _ ty) arg      -- A term argument
       | Just Lifted <- typeLevity_maybe (scaledThing ty)
       = True -- See Note [Primops with lifted arguments]
       | otherwise
       = expr_ok primop_ok arg

-----------------------------
altsAreExhaustive :: [Alt b] -> Bool
-- True  <=> the case alternatives are definitely exhaustive
-- False <=> they may or may not be
altsAreExhaustive []
  = False    -- Should not happen
altsAreExhaustive (Alt con1 _ _ : alts)
  = case con1 of
      DEFAULT   -> True
      LitAlt {} -> False
      DataAlt c -> alts `lengthIs` (tyConFamilySize (dataConTyCon c) - 1)
      -- It is possible to have an exhaustive case that does not
      -- enumerate all constructors, notably in a GADT match, but
      -- we behave conservatively here -- I don't think it's important
      -- enough to deserve special treatment

-- | Should we look past this tick when eta-expanding the given function?
--
-- See Note [Ticks and mandatory eta expansion]
-- Takes the function we are applying as argument.
etaExpansionTick :: Id -> GenTickish pass -> Bool
etaExpansionTick id t
  = hasNoBinding id &&
    ( tickishFloatable t || isProfTick t )

{- Note [exprOkForSpeculation: case expressions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
exprOkForSpeculation accepts very special case expressions.
Reason: (a ==# b) is ok-for-speculation, but the litEq rules
in GHC.Core.Opt.ConstantFold convert it (a ==# 3#) to
   case a of { DEFAULT -> 0#; 3# -> 1# }
for excellent reasons described in
  GHC.Core.Opt.ConstantFold Note [The litEq rule: converting equality to case].
So, annoyingly, we want that case expression to be
ok-for-speculation too. Bother.

But we restrict it sharply:

* We restrict it to unlifted scrutinees. Consider this:
     case x of y {
       DEFAULT -> ... (let v::Int# = case y of { True  -> e1
                                               ; False -> e2 }
                       in ...) ...

  Does the RHS of v satisfy the let-can-float invariant?  Previously we said
  yes, on the grounds that y is evaluated.  But the binder-swap done
  by GHC.Core.Opt.SetLevels would transform the inner alternative to
     DEFAULT -> ... (let v::Int# = case x of { ... }
                     in ...) ....
  which does /not/ satisfy the let-can-float invariant, because x is
  not evaluated. See Note [Binder-swap during float-out]
  in GHC.Core.Opt.SetLevels.  To avoid this awkwardness it seems simpler
  to stick to unlifted scrutinees where the issue does not
  arise.

* We restrict it to exhaustive alternatives. A non-exhaustive
  case manifestly isn't ok-for-speculation. for example,
  this is a valid program (albeit a slightly dodgy one)
    let v = case x of { B -> ...; C -> ... }
    in case x of
         A -> ...
         _ ->  ...v...v....
  Should v be considered ok-for-speculation?  Its scrutinee may be
  evaluated, but the alternatives are incomplete so we should not
  evaluate it strictly.

  Now, all this is for lifted types, but it'd be the same for any
  finite unlifted type. We don't have many of them, but we might
  add unlifted algebraic types in due course.


----- Historical note: #15696: --------
  Previously GHC.Core.Opt.SetLevels used exprOkForSpeculation to guide
  floating of single-alternative cases; it now uses exprIsHNF
  Note [Floating single-alternative cases].

  But in those days, consider
    case e of x { DEAFULT ->
      ...(case x of y
            A -> ...
            _ -> ...(case (case x of { B -> p; C -> p }) of
                       I# r -> blah)...
  If GHC.Core.Opt.SetLevels considers the inner nested case as
  ok-for-speculation it can do case-floating (in GHC.Core.Opt.SetLevels).
  So we'd float to:
    case e of x { DEAFULT ->
    case (case x of { B -> p; C -> p }) of I# r ->
    ...(case x of y
            A -> ...
            _ -> ...blah...)...
  which is utterly bogus (seg fault); see #5453.

----- Historical note: #3717: --------
    foo :: Int -> Int
    foo 0 = 0
    foo n = (if n < 5 then 1 else 2) `seq` foo (n-1)

In earlier GHCs, we got this:
    T.$wfoo =
      \ (ww :: GHC.Prim.Int#) ->
        case ww of ds {
          __DEFAULT -> case (case <# ds 5 of _ {
                          GHC.Types.False -> lvl1;
                          GHC.Types.True -> lvl})
                       of _ { __DEFAULT ->
                       T.$wfoo (GHC.Prim.-# ds_XkE 1) };
          0 -> 0 }

Before join-points etc we could only get rid of two cases (which are
redundant) by recognising that the (case <# ds 5 of { ... }) is
ok-for-speculation, even though it has /lifted/ type.  But now join
points do the job nicely.
------- End of historical note ------------


Note [Primops with lifted arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Is this ok-for-speculation (see #13027)?
   reallyUnsafePtrEquality# a b
Well, yes.  The primop accepts lifted arguments and does not
evaluate them.  Indeed, in general primops are, well, primitive
and do not perform evaluation.

Bottom line:
  * In exprOkForSpeculation we simply ignore all lifted arguments.
  * In the rare case of primops that /do/ evaluate their arguments,
    (namely DataToTagOp and SeqOp) return False; see
    Note [exprOkForSpeculation and evaluated variables]

Note [exprOkForSpeculation and SeqOp/DataToTagOp]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Most primops with lifted arguments don't evaluate them
(see Note [Primops with lifted arguments]), so we can ignore
that argument entirely when doing exprOkForSpeculation.

But DataToTagOp and SeqOp are exceptions to that rule.
For reasons described in Note [exprOkForSpeculation and
evaluated variables], we simply return False for them.

Not doing this made #5129 go bad.
Lots of discussion in #15696.

Note [exprOkForSpeculation and evaluated variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Recall that
  seq#       :: forall a s. a -> State# s -> (# State# s, a #)
  dataToTag# :: forall a.   a -> Int#
must always evaluate their first argument.

Now consider these examples:
 * case x of y { DEFAULT -> ....y.... }
   Should 'y' (alone) be considered ok-for-speculation?

 * case x of y { DEFAULT -> ....let z = dataToTag# y... }
   Should (dataToTag# y) be considered ok-for-spec?

You could argue 'yes', because in the case alternative we know that
'y' is evaluated.  But the binder-swap transformation, which is
extremely useful for float-out, changes these expressions to
   case x of y { DEFAULT -> ....x.... }
   case x of y { DEFAULT -> ....let z = dataToTag# x... }

And now the expression does not obey the let-can-float invariant!  Yikes!
Moreover we really might float (dataToTag# x) outside the case,
and then it really, really doesn't obey the let-can-float invariant.

The solution is simple: exprOkForSpeculation does not try to take
advantage of the evaluated-ness of (lifted) variables.  And it returns
False (always) for DataToTagOp and SeqOp.

Note that exprIsHNF /can/ and does take advantage of evaluated-ness;
it doesn't have the trickiness of the let-can-float invariant to worry about.

Note [Discarding unnecessary unsafeEqualityProofs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In #20143 we found
   case unsafeEqualityProof @t1 @t2 of UnsafeRefl cv[dead] -> blah
where 'blah' didn't mention 'cv'.  We'd like to discard this
redundant use of unsafeEqualityProof, via GHC.Core.Opt.Simplify.rebuildCase.
To do this we need to know
  (a) that cv is unused (done by OccAnal), and
  (b) that unsafeEqualityProof terminates rapidly without side effects.

At the moment we check that explicitly here in exprOkForSideEffects,
but one might imagine a more systematic check in future.


************************************************************************
*                                                                      *
             exprIsHNF, exprIsConLike
*                                                                      *
************************************************************************
-}

-- Note [exprIsHNF]             See also Note [exprIsCheap and exprIsHNF]
-- ~~~~~~~~~~~~~~~~
-- | exprIsHNF returns true for expressions that are certainly /already/
-- evaluated to /head/ normal form.  This is used to decide whether it's ok
-- to change:
--
-- > case x of _ -> e
--
--    into:
--
-- > e
--
-- and to decide whether it's safe to discard a 'seq'.
--
-- So, it does /not/ treat variables as evaluated, unless they say they are.
-- However, it /does/ treat partial applications and constructor applications
-- as values, even if their arguments are non-trivial, provided the argument
-- type is lifted. For example, both of these are values:
--
-- > (:) (f x) (map f xs)
-- > map (...redex...)
--
-- because 'seq' on such things completes immediately.
--
-- For unlifted argument types, we have to be careful:
--
-- > C (f x :: Int#)
--
-- Suppose @f x@ diverges; then @C (f x)@ is not a value.
-- We check for this using needsCaseBinding below
exprIsHNF :: CoreExpr -> Bool           -- True => Value-lambda, constructor, PAP
exprIsHNF = exprIsHNFlike isDataConWorkId isEvaldUnfolding

-- | Similar to 'exprIsHNF' but includes CONLIKE functions as well as
-- data constructors. Conlike arguments are considered interesting by the
-- inliner.
exprIsConLike :: CoreExpr -> Bool       -- True => lambda, conlike, PAP
exprIsConLike = exprIsHNFlike isConLikeId isConLikeUnfolding

-- | Returns true for values or value-like expressions. These are lambdas,
-- constructors / CONLIKE functions (as determined by the function argument)
-- or PAPs.
--
exprIsHNFlike :: HasDebugCallStack => (Var -> Bool) -> (Unfolding -> Bool) -> CoreExpr -> Bool
exprIsHNFlike is_con is_con_unf = is_hnf_like
  where
    is_hnf_like (Var v) -- NB: There are no value args at this point
      =  id_app_is_value v 0 -- Catches nullary constructors,
                             --      so that [] and () are values, for example
                             -- and (e.g.) primops that don't have unfoldings
      || is_con_unf (idUnfolding v)
        -- Check the thing's unfolding; it might be bound to a value
        --   or to a guaranteed-evaluated variable (isEvaldUnfolding)
        --   Contrast with Note [exprOkForSpeculation and evaluated variables]
        -- We don't look through loop breakers here, which is a bit conservative
        -- but otherwise I worry that if an Id's unfolding is just itself,
        -- we could get an infinite loop
      || ( typeLevity_maybe (idType v) == Just Unlifted )
        -- Unlifted binders are always evaluated (#20140)

    is_hnf_like (Lit l)          = not (isLitRubbish l)
        -- Regarding a LitRubbish as ConLike leads to unproductive inlining in
        -- WWRec, see #20035
    is_hnf_like (Type _)         = True       -- Types are honorary Values;
                                              -- we don't mind copying them
    is_hnf_like (Coercion _)     = True       -- Same for coercions
    is_hnf_like (Lam b e)        = isRuntimeVar b || is_hnf_like e
    is_hnf_like (Tick tickish e) = not (tickishCounts tickish)
                                   && is_hnf_like e
                                      -- See Note [exprIsHNF Tick]
    is_hnf_like (Cast e _)       = is_hnf_like e
    is_hnf_like (App e a)
      | isValArg a               = app_is_value e 1
      | otherwise                = is_hnf_like e
    is_hnf_like (Let _ e)        = is_hnf_like e  -- Lazy let(rec)s don't affect us
    is_hnf_like _                = False

    -- 'n' is the number of value args to which the expression is applied
    -- And n>0: there is at least one value argument
    app_is_value :: CoreExpr -> Int -> Bool
    app_is_value (Var f)    nva = id_app_is_value f nva
    app_is_value (Tick _ f) nva = app_is_value f nva
    app_is_value (Cast f _) nva = app_is_value f nva
    app_is_value (App f a)  nva
      | isValArg a              =
        app_is_value f (nva + 1) &&
        not (needsCaseBinding (exprType a) a)
          -- For example  f (x /# y)  where f has arity two, and the first
          -- argument is unboxed. This is not a value!
          -- But  f 34#  is a value.
          -- NB: Check app_is_value first, the arity check is cheaper
      | otherwise               = app_is_value f nva
    app_is_value _          _   = False

    id_app_is_value id n_val_args
       = is_con id
       || idArity id > n_val_args

{-
Note [exprIsHNF Tick]
~~~~~~~~~~~~~~~~~~~~~
We can discard source annotations on HNFs as long as they aren't
tick-like:

  scc c (\x . e)    =>  \x . e
  scc c (C x1..xn)  =>  C x1..xn

So we regard these as HNFs.  Tick annotations that tick are not
regarded as HNF if the expression they surround is HNF, because the
tick is there to tell us that the expression was evaluated, so we
don't want to discard a seq on it.
-}

-- | Can we bind this 'CoreExpr' at the top level?
exprIsTopLevelBindable :: CoreExpr -> Type -> Bool
-- See Note [Core top-level string literals]
-- Precondition: exprType expr = ty
-- Top-level literal strings can't even be wrapped in ticks
--   see Note [Core top-level string literals] in "GHC.Core"
exprIsTopLevelBindable expr ty
  = not (mightBeUnliftedType ty)
    -- Note that 'expr' may not have a fixed runtime representation here,
    -- consequently we must use 'mightBeUnliftedType' rather than 'isUnliftedType',
    -- as the latter would panic.
  || exprIsTickedString expr

-- | Check if the expression is zero or more Ticks wrapped around a literal
-- string.
exprIsTickedString :: CoreExpr -> Bool
exprIsTickedString = isJust . exprIsTickedString_maybe

-- | Extract a literal string from an expression that is zero or more Ticks
-- wrapped around a literal string. Returns Nothing if the expression has a
-- different shape.
-- Used to "look through" Ticks in places that need to handle literal strings.
exprIsTickedString_maybe :: CoreExpr -> Maybe ByteString
exprIsTickedString_maybe (Lit (LitString bs)) = Just bs
exprIsTickedString_maybe (Tick t e)
  -- we don't tick literals with CostCentre ticks, compare to mkTick
  | tickishPlace t == PlaceCostCentre = Nothing
  | otherwise = exprIsTickedString_maybe e
exprIsTickedString_maybe _ = Nothing

{-
************************************************************************
*                                                                      *
             Instantiating data constructors
*                                                                      *
************************************************************************

These InstPat functions go here to avoid circularity between DataCon and Id
-}

dataConRepInstPat   ::                 [Unique] -> Mult -> DataCon -> [Type] -> ([TyCoVar], [Id])
dataConRepFSInstPat :: [FastString] -> [Unique] -> Mult -> DataCon -> [Type] -> ([TyCoVar], [Id])

dataConRepInstPat   = dataConInstPat (repeat ((fsLit "ipv")))
dataConRepFSInstPat = dataConInstPat

dataConInstPat :: [FastString]          -- A long enough list of FSs to use for names
               -> [Unique]              -- An equally long list of uniques, at least one for each binder
               -> Mult                  -- The multiplicity annotation of the case expression: scales the multiplicity of variables
               -> DataCon
               -> [Type]                -- Types to instantiate the universally quantified tyvars
               -> ([TyCoVar], [Id])     -- Return instantiated variables
-- dataConInstPat arg_fun fss us mult con inst_tys returns a tuple
-- (ex_tvs, arg_ids),
--
--   ex_tvs are intended to be used as binders for existential type args
--
--   arg_ids are indended to be used as binders for value arguments,
--     and their types have been instantiated with inst_tys and ex_tys
--     The arg_ids include both evidence and
--     programmer-specified arguments (both after rep-ing)
--
-- Example.
--  The following constructor T1
--
--  data T a where
--    T1 :: forall b. Int -> b -> T(a,b)
--    ...
--
--  has representation type
--   forall a. forall a1. forall b. (a ~ (a1,b)) =>
--     Int -> b -> T a
--
--  dataConInstPat fss us T1 (a1',b') will return
--
--  ([a1'', b''], [c :: (a1', b')~(a1'', b''), x :: Int, y :: b''])
--
--  where the double-primed variables are created with the FastStrings and
--  Uniques given as fss and us
dataConInstPat fss uniqs mult con inst_tys
  = assert (univ_tvs `equalLength` inst_tys) $
    (ex_bndrs, arg_ids)
  where
    univ_tvs = dataConUnivTyVars con
    ex_tvs   = dataConExTyCoVars con
    arg_tys  = dataConRepArgTys con
    arg_strs = dataConRepStrictness con  -- 1-1 with arg_tys
    n_ex = length ex_tvs

      -- split the Uniques and FastStrings
    (ex_uniqs, id_uniqs) = splitAt n_ex uniqs
    (ex_fss,   id_fss)   = splitAt n_ex fss

      -- Make the instantiating substitution for universals
    univ_subst = zipTvSubst univ_tvs inst_tys

      -- Make existential type variables, applying and extending the substitution
    (full_subst, ex_bndrs) = mapAccumL mk_ex_var univ_subst
                                       (zip3 ex_tvs ex_fss ex_uniqs)

    mk_ex_var :: TCvSubst -> (TyCoVar, FastString, Unique) -> (TCvSubst, TyCoVar)
    mk_ex_var subst (tv, fs, uniq) = (Type.extendTCvSubstWithClone subst tv
                                       new_tv
                                     , new_tv)
      where
        new_tv | isTyVar tv
               = mkTyVar (mkSysTvName uniq fs) kind
               | otherwise
               = mkCoVar (mkSystemVarName uniq fs) kind
        kind   = Type.substTyUnchecked subst (varType tv)

      -- Make value vars, instantiating types
    arg_ids = zipWith4 mk_id_var id_uniqs id_fss arg_tys arg_strs
    mk_id_var uniq fs (Scaled m ty) str
      = setCaseBndrEvald str $  -- See Note [Mark evaluated arguments]
        mkLocalIdOrCoVar name (mult `mkMultMul` m) (Type.substTy full_subst ty)
      where
        name = mkInternalName uniq (mkVarOccFS fs) noSrcSpan

{-
Note [Mark evaluated arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When pattern matching on a constructor with strict fields, the binder
can have an 'evaldUnfolding'.  Moreover, it *should* have one, so that
when loading an interface file unfolding like:
  data T = MkT !Int
  f x = case x of { MkT y -> let v::Int# = case y of I# n -> n+1
                             in ... }
we don't want Lint to complain.  The 'y' is evaluated, so the
case in the RHS of the binding for 'v' is fine.  But only if we
*know* that 'y' is evaluated.

c.f. add_evals in GHC.Core.Opt.Simplify.simplAlt

************************************************************************
*                                                                      *
         Equality
*                                                                      *
************************************************************************
-}

-- | A cheap equality test which bales out fast!
--      If it returns @True@ the arguments are definitely equal,
--      otherwise, they may or may not be equal.
cheapEqExpr :: Expr b -> Expr b -> Bool
cheapEqExpr = cheapEqExpr' (const False)

-- | Cheap expression equality test, can ignore ticks by type.
cheapEqExpr' :: (CoreTickish -> Bool) -> Expr b -> Expr b -> Bool
{-# INLINE cheapEqExpr' #-}
cheapEqExpr' ignoreTick e1 e2
  = go e1 e2
  where
    go (Var v1)   (Var v2)         = v1 == v2
    go (Lit lit1) (Lit lit2)       = lit1 == lit2
    go (Type t1)  (Type t2)        = t1 `eqType` t2
    go (Coercion c1) (Coercion c2) = c1 `eqCoercion` c2
    go (App f1 a1) (App f2 a2)     = f1 `go` f2 && a1 `go` a2
    go (Cast e1 t1) (Cast e2 t2)   = e1 `go` e2 && t1 `eqCoercion` t2

    go (Tick t1 e1) e2 | ignoreTick t1 = go e1 e2
    go e1 (Tick t2 e2) | ignoreTick t2 = go e1 e2
    go (Tick t1 e1) (Tick t2 e2) = t1 == t2 && e1 `go` e2

    go _ _ = False



eqExpr :: InScopeSet -> CoreExpr -> CoreExpr -> Bool
-- Compares for equality, modulo alpha
-- TODO: remove eqExpr once GHC 9.4 is released
eqExpr _ = eqCoreExpr
{-# DEPRECATED eqExpr "Use 'GHC.Core.Map.Expr.eqCoreExpr', 'eqExpr' will be removed in GHC 9.6" #-}

-- Used by diffBinds, which is itself only used in GHC.Core.Lint.lintAnnots
eqTickish :: RnEnv2 -> CoreTickish -> CoreTickish -> Bool
eqTickish env (Breakpoint lext lid lids) (Breakpoint rext rid rids)
      = lid == rid &&
        map (rnOccL env) lids == map (rnOccR env) rids &&
        lext == rext
eqTickish _ l r = l == r

-- | Finds differences between core bindings, see @diffExpr@.
--
-- The main problem here is that while we expect the binds to have the
-- same order in both lists, this is not guaranteed. To do this
-- properly we'd either have to do some sort of unification or check
-- all possible mappings, which would be seriously expensive. So
-- instead we simply match single bindings as far as we can. This
-- leaves us just with mutually recursive and/or mismatching bindings,
-- which we then speculatively match by ordering them. It's by no means
-- perfect, but gets the job done well enough.
--
-- Only used in GHC.Core.Lint.lintAnnots
diffBinds :: Bool -> RnEnv2 -> [(Var, CoreExpr)] -> [(Var, CoreExpr)]
          -> ([SDoc], RnEnv2)
diffBinds top env binds1 = go (length binds1) env binds1
 where go _    env []     []
          = ([], env)
       go fuel env binds1 binds2
          -- No binds left to compare? Bail out early.
          | null binds1 || null binds2
          = (warn env binds1 binds2, env)
          -- Iterated over all binds without finding a match? Then
          -- try speculatively matching binders by order.
          | fuel == 0
          = if not $ env `inRnEnvL` fst (head binds1)
            then let env' = uncurry (rnBndrs2 env) $ unzip $
                            zip (sort $ map fst binds1) (sort $ map fst binds2)
                 in go (length binds1) env' binds1 binds2
            -- If we have already tried that, give up
            else (warn env binds1 binds2, env)
       go fuel env ((bndr1,expr1):binds1) binds2
          | let matchExpr (bndr,expr) =
                  (isTyVar bndr || not top || null (diffIdInfo env bndr bndr1)) &&
                  null (diffExpr top (rnBndr2 env bndr1 bndr) expr1 expr)

          , (binds2l, (bndr2,_):binds2r) <- break matchExpr binds2
          = go (length binds1) (rnBndr2 env bndr1 bndr2)
                binds1 (binds2l ++ binds2r)
          | otherwise -- No match, so push back (FIXME O(n^2))
          = go (fuel-1) env (binds1++[(bndr1,expr1)]) binds2
       go _ _ _ _ = panic "diffBinds: impossible" -- GHC isn't smart enough

       -- We have tried everything, but couldn't find a good match. So
       -- now we just return the comparison results when we pair up
       -- the binds in a pseudo-random order.
       warn env binds1 binds2 =
         concatMap (uncurry (diffBind env)) (zip binds1' binds2') ++
         unmatched "unmatched left-hand:" (drop l binds1') ++
         unmatched "unmatched right-hand:" (drop l binds2')
        where binds1' = sortBy (comparing fst) binds1
              binds2' = sortBy (comparing fst) binds2
              l = min (length binds1') (length binds2')
       unmatched _   [] = []
       unmatched txt bs = [text txt $$ ppr (Rec bs)]
       diffBind env (bndr1,expr1) (bndr2,expr2)
         | ds@(_:_) <- diffExpr top env expr1 expr2
         = locBind "in binding" bndr1 bndr2 ds
         -- Special case for TyVar, which we checked were bound to the same types in
         -- diffExpr, but don't have any IdInfo we would panic if called diffIdInfo.
         -- These let-bound types are created temporarily by the simplifier but inlined
         -- immediately.
         | isTyVar bndr1 && isTyVar bndr2
         = []
         | otherwise
         = diffIdInfo env bndr1 bndr2

-- | Finds differences between core expressions, modulo alpha and
-- renaming. Setting @top@ means that the @IdInfo@ of bindings will be
-- checked for differences as well.
diffExpr :: Bool -> RnEnv2 -> CoreExpr -> CoreExpr -> [SDoc]
diffExpr _   env (Var v1)   (Var v2)   | rnOccL env v1 == rnOccR env v2 = []
diffExpr _   _   (Lit lit1) (Lit lit2) | lit1 == lit2                   = []
diffExpr _   env (Type t1)  (Type t2)  | eqTypeX env t1 t2              = []
diffExpr _   env (Coercion co1) (Coercion co2)
                                       | eqCoercionX env co1 co2        = []
diffExpr top env (Cast e1 co1)  (Cast e2 co2)
  | eqCoercionX env co1 co2                = diffExpr top env e1 e2
diffExpr top env (Tick n1 e1)   e2
  | not (tickishIsCode n1)                 = diffExpr top env e1 e2
diffExpr top env e1             (Tick n2 e2)
  | not (tickishIsCode n2)                 = diffExpr top env e1 e2
diffExpr top env (Tick n1 e1)   (Tick n2 e2)
  | eqTickish env n1 n2                    = diffExpr top env e1 e2
 -- The error message of failed pattern matches will contain
 -- generated names, which are allowed to differ.
diffExpr _   _   (App (App (Var absent) _) _)
                 (App (App (Var absent2) _) _)
  | isDeadEndId absent && isDeadEndId absent2 = []
diffExpr top env (App f1 a1)    (App f2 a2)
  = diffExpr top env f1 f2 ++ diffExpr top env a1 a2
diffExpr top env (Lam b1 e1)  (Lam b2 e2)
  | eqTypeX env (varType b1) (varType b2)   -- False for Id/TyVar combination
  = diffExpr top (rnBndr2 env b1 b2) e1 e2
diffExpr top env (Let bs1 e1) (Let bs2 e2)
  = let (ds, env') = diffBinds top env (flattenBinds [bs1]) (flattenBinds [bs2])
    in ds ++ diffExpr top env' e1 e2
diffExpr top env (Case e1 b1 t1 a1) (Case e2 b2 t2 a2)
  | equalLength a1 a2 && not (null a1) || eqTypeX env t1 t2
    -- See Note [Empty case alternatives] in GHC.Data.TrieMap
  = diffExpr top env e1 e2 ++ concat (zipWith diffAlt a1 a2)
  where env' = rnBndr2 env b1 b2
        diffAlt (Alt c1 bs1 e1) (Alt c2 bs2 e2)
          | c1 /= c2  = [text "alt-cons " <> ppr c1 <> text " /= " <> ppr c2]
          | otherwise = diffExpr top (rnBndrs2 env' bs1 bs2) e1 e2
diffExpr _  _ e1 e2
  = [fsep [ppr e1, text "/=", ppr e2]]

-- | Find differences in @IdInfo@. We will especially check whether
-- the unfoldings match, if present (see @diffUnfold@).
diffIdInfo :: RnEnv2 -> Var -> Var -> [SDoc]
diffIdInfo env bndr1 bndr2
  | arityInfo info1 == arityInfo info2
    && cafInfo info1 == cafInfo info2
    && oneShotInfo info1 == oneShotInfo info2
    && inlinePragInfo info1 == inlinePragInfo info2
    && occInfo info1 == occInfo info2
    && demandInfo info1 == demandInfo info2
    && callArityInfo info1 == callArityInfo info2
  = locBind "in unfolding of" bndr1 bndr2 $
    diffUnfold env (realUnfoldingInfo info1) (realUnfoldingInfo info2)
  | otherwise
  = locBind "in Id info of" bndr1 bndr2
    [fsep [pprBndr LetBind bndr1, text "/=", pprBndr LetBind bndr2]]
  where info1 = idInfo bndr1; info2 = idInfo bndr2

-- | Find differences in unfoldings. Note that we will not check for
-- differences of @IdInfo@ in unfoldings, as this is generally
-- redundant, and can lead to an exponential blow-up in complexity.
diffUnfold :: RnEnv2 -> Unfolding -> Unfolding -> [SDoc]
diffUnfold _   NoUnfolding    NoUnfolding                 = []
diffUnfold _   BootUnfolding  BootUnfolding               = []
diffUnfold _   (OtherCon cs1) (OtherCon cs2) | cs1 == cs2 = []
diffUnfold env (DFunUnfolding bs1 c1 a1)
               (DFunUnfolding bs2 c2 a2)
  | c1 == c2 && equalLength bs1 bs2
  = concatMap (uncurry (diffExpr False env')) (zip a1 a2)
  where env' = rnBndrs2 env bs1 bs2
diffUnfold env (CoreUnfolding t1 _ _ v1 cl1 wf1 x1 g1)
               (CoreUnfolding t2 _ _ v2 cl2 wf2 x2 g2)
  | v1 == v2 && cl1 == cl2
    && wf1 == wf2 && x1 == x2 && g1 == g2
  = diffExpr False env t1 t2
diffUnfold _   uf1 uf2
  = [fsep [ppr uf1, text "/=", ppr uf2]]

-- | Add location information to diff messages
locBind :: String -> Var -> Var -> [SDoc] -> [SDoc]
locBind loc b1 b2 diffs = map addLoc diffs
  where addLoc d            = d $$ nest 2 (parens (text loc <+> bindLoc))
        bindLoc | b1 == b2  = ppr b1
                | otherwise = ppr b1 <> char '/' <> ppr b2


{- *********************************************************************
*                                                                      *
\subsection{Determining non-updatable right-hand-sides}
*                                                                      *
************************************************************************

Top-level constructor applications can usually be allocated
statically, but they can't if the constructor, or any of the
arguments, come from another DLL (because we can't refer to static
labels in other DLLs).

If this happens we simply make the RHS into an updatable thunk,
and 'execute' it rather than allocating it statically.
-}

{-
************************************************************************
*                                                                      *
\subsection{Type utilities}
*                                                                      *
************************************************************************
-}

-- | True if the type has no non-bottom elements, e.g. when it is an empty
-- datatype, or a GADT with non-satisfiable type parameters, e.g. Int :~: Bool.
-- See Note [Bottoming expressions]
--
-- See Note [No alternatives lint check] for another use of this function.
isEmptyTy :: Type -> Bool
isEmptyTy ty
    -- Data types where, given the particular type parameters, no data
    -- constructor matches, are empty.
    -- This includes data types with no constructors, e.g. Data.Void.Void.
    | Just (tc, inst_tys) <- splitTyConApp_maybe ty
    , Just dcs <- tyConDataCons_maybe tc
    , all (dataConCannotMatch inst_tys) dcs
    = True
    | otherwise
    = False

-- | If @normSplitTyConApp_maybe _ ty = Just (tc, tys, co)@
-- then @ty |> co = tc tys@. It's 'splitTyConApp_maybe', but looks through
-- coercions via 'topNormaliseType_maybe'. Hence the \"norm\" prefix.
normSplitTyConApp_maybe :: FamInstEnvs -> Type -> Maybe (TyCon, [Type], Coercion)
normSplitTyConApp_maybe fam_envs ty
  | let Reduction co ty1 = topNormaliseType_maybe fam_envs ty
                           `orElse` (mkReflRedn Representational ty)
  , Just (tc, tc_args) <- splitTyConApp_maybe ty1
  = Just (tc, tc_args, co)
normSplitTyConApp_maybe _ _ = Nothing

{-
*****************************************************
*
* StaticPtr
*
*****************************************************
-}

-- | @collectMakeStaticArgs (makeStatic t srcLoc e)@ yields
-- @Just (makeStatic, t, srcLoc, e)@.
--
-- Returns @Nothing@ for every other expression.
collectMakeStaticArgs
  :: CoreExpr -> Maybe (CoreExpr, Type, CoreExpr, CoreExpr)
collectMakeStaticArgs e
    | (fun@(Var b), [Type t, loc, arg], _) <- collectArgsTicks (const True) e
    , idName b == makeStaticName = Just (fun, t, loc, arg)
collectMakeStaticArgs _          = Nothing

{-
************************************************************************
*                                                                      *
\subsection{Join points}
*                                                                      *
************************************************************************
-}

-- | Does this binding bind a join point (or a recursive group of join points)?
isJoinBind :: CoreBind -> Bool
isJoinBind (NonRec b _)       = isJoinId b
isJoinBind (Rec ((b, _) : _)) = isJoinId b
isJoinBind _                  = False

dumpIdInfoOfProgram :: Bool -> (IdInfo -> SDoc) -> CoreProgram -> SDoc
dumpIdInfoOfProgram dump_locals ppr_id_info binds = vcat (map printId ids)
  where
  ids = sortBy (stableNameCmp `on` getName) (concatMap getIds binds)
  getIds (NonRec i _) = [ i ]
  getIds (Rec bs)     = map fst bs
  -- By default only include full info for exported ids, unless we run in the verbose
  -- pprDebug mode.
  printId id | isExportedId id || dump_locals = ppr id <> colon <+> (ppr_id_info (idInfo id))
             | otherwise       = empty

{-
************************************************************************
*                                                                      *
\subsection{Tag inference things}
*                                                                      *
************************************************************************
-}

-- | For a binding we:
-- * Look at the args
-- * Mark any with Unf=OtherCon[] as call-by-value, unless it's an unlifted type already.
-- * Potentially combine it with existing call-by-value marks (from ww)
-- * Update the id
-- See Note [Attaching CBV Marks to ids].
computeCbvInfo :: HasCallStack
               => Id            -- The function
               -> CoreExpr      -- It's RHS
               -> Id
computeCbvInfo id rhs =
  -- pprTrace "computeCbv" (hang (ppr id) 2 (ppr dmd $$ ppr dmds)) $
  -- TODO: For perf reasons we could skip looking at non VanillaId/StrictWorkerId/JoinId bindings
  cbv_bndr
  where
    (_,val_args,_body) = collectTyAndValBinders rhs
    new_marks = mkCbvMarks val_args
    cbv_marks = assertPpr (checkMarks id new_marks)
        (ppr id <+> ppr (idType id) $$ text "old:" <> ppr (idCbvMarks_maybe id) $$ text "new:" <> ppr new_marks $$ text "rhs:" <> ppr rhs)
        new_marks
    cbv_bndr
        | valid_unlifted_worker val_args
        -- Avoid retaining the original rhs
        = cbv_marks `seqList` setIdCbvMarks id cbv_marks
        | otherwise =
          -- pprTraceDebug "tidyCbvInfo: Worker seems to take unboxed tuple/sum types!" (ppr id <+> ppr rhs)
          id
    -- We don't set CBV marks on workers which take unboxed tuples or sums as arguments.
    -- Doing so would require us to compute the result of unarise here in order to properly determine
    -- argument positions at runtime.
    -- In practice this doesn't matter much. Most "interesting" functions will get a W/W split which will eliminate
    -- unboxed tuple arguments, and unboxed sums are rarely used.
    valid_unlifted_worker args =
      -- pprTrace "valid_unlifted" (ppr id $$ ppr args) $
      not $ (any (\arg -> isMultiValArg arg) args)
    isMultiValArg id =
      let ty = idType id
      in not (isStateType ty) && (isUnboxedTupleType ty || isUnboxedSumType ty)
    -- Only keep relevant marks. We *don't* have to cover all arguments. Only these
    -- that we might want to pass call-by-value.
    trimMarks :: [CbvMark] -> [Id] -> [CbvMark]
    trimMarks marks val_args =
        map fst .
          -- Starting at the end, drop all non-cbv marks, and marks applied to unlifted types
          dropWhileEndLE (\(m,v) -> not (isMarkedCbv m) || isUnliftedType (idType v)) $
            -- NB: function arguments must have a fixed RuntimeRep, so isUnliftedType can't crash.
          zip marks val_args

    mkCbvMarks :: ([Id]) -> [CbvMark]
    mkCbvMarks = map mkMark
      where
        cbv_arg arg = isEvaldUnfolding (idUnfolding arg)
        mkMark arg
          | cbv_arg arg
          , not $ isUnliftedType (idType arg)
            -- NB: isUnliftedType can't crash here as function arguments have a fixed RuntimeRep
          = MarkedCbv
          | otherwise
          = NotMarkedCbv
    -- If we determined earlier one an argument should be passed cbv it should
    -- still be so here.
    checkMarks id new_marks
      | Just old_marks <- idCbvMarks_maybe id
      = length (trimMarks old_marks val_args) <= length new_marks &&
        and (zipWith checkNewMark old_marks new_marks)
      | otherwise = True
    checkNewMark old new =
      isMarkedCbv new || (not $ isMarkedCbv old)


{- *********************************************************************
*                                                                      *
             unsafeEqualityProof
*                                                                      *
********************************************************************* -}

isUnsafeEqualityProof :: CoreExpr -> Bool
-- See (U3) and (U4) in
-- Note [Implementing unsafeCoerce] in base:Unsafe.Coerce
isUnsafeEqualityProof e
  | Var v `App` Type _ `App` Type _ `App` Type _ <- e
  = v `hasKey` unsafeEqualityProofIdKey
  | otherwise
  = False