summaryrefslogtreecommitdiff
path: root/compiler/GHC/Core/Type.hs
blob: 1cacfca4689bb482ee6daad53ae8dde8057c27f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
-- (c) The University of Glasgow 2006
-- (c) The GRASP/AQUA Project, Glasgow University, 1998
--
-- Type - public interface

{-# LANGUAGE FlexibleContexts, PatternSynonyms, ViewPatterns, MultiWayIf #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}

-- | Main functions for manipulating types and type-related things
module GHC.Core.Type (
        -- Note some of this is just re-exports from TyCon..

        -- * Main data types representing Types
        -- $type_classification

        -- $representation_types
        Type, ArgFlag(..), AnonArgFlag(..),
        Specificity(..),
        KindOrType, PredType, ThetaType,
        Var, TyVar, isTyVar, TyCoVar, TyCoBinder, TyCoVarBinder, TyVarBinder,
        Mult, Scaled,
        KnotTied,

        -- ** Constructing and deconstructing types
        mkTyVarTy, mkTyVarTys, getTyVar, getTyVar_maybe, repGetTyVar_maybe,
        getCastedTyVar_maybe, tyVarKind, varType,

        mkAppTy, mkAppTys, splitAppTy, splitAppTys, repSplitAppTys,
        splitAppTy_maybe, repSplitAppTy_maybe, tcRepSplitAppTy_maybe,

        mkFunTy, mkVisFunTy, mkInvisFunTy,
        mkVisFunTys,
        mkVisFunTyMany, mkInvisFunTyMany,
        mkVisFunTysMany, mkInvisFunTysMany,
        splitFunTy, splitFunTy_maybe,
        splitFunTys, funResultTy, funArgTy,

        mkTyConApp, mkTyConTy, mkTYPEapp,
        tyConAppTyCon_maybe, tyConAppTyConPicky_maybe,
        tyConAppArgs_maybe, tyConAppTyCon, tyConAppArgs,
        splitTyConApp_maybe, splitTyConApp, tyConAppArgN,
        tcSplitTyConApp_maybe,
        splitListTyConApp_maybe,
        repSplitTyConApp_maybe,
        tcRepSplitTyConApp_maybe,

        mkForAllTy, mkForAllTys, mkInvisForAllTys, mkTyCoInvForAllTys,
        mkSpecForAllTy, mkSpecForAllTys,
        mkVisForAllTys, mkTyCoInvForAllTy,
        mkInfForAllTy, mkInfForAllTys,
        splitForAllTyCoVars,
        splitForAllReqTVBinders, splitForAllInvisTVBinders,
        splitForAllTyCoVarBinders,
        splitForAllTyCoVar_maybe, splitForAllTyCoVar,
        splitForAllTyVar_maybe, splitForAllCoVar_maybe,
        splitPiTy_maybe, splitPiTy, splitPiTys,
        mkTyConBindersPreferAnon,
        mkPiTy, mkPiTys,
        piResultTy, piResultTys,
        applyTysX, dropForAlls,
        mkFamilyTyConApp,
        buildSynTyCon,

        mkNumLitTy, isNumLitTy,
        mkStrLitTy, isStrLitTy,
        mkCharLitTy, isCharLitTy,
        isLitTy,

        isPredTy,

        getRuntimeRep_maybe, kindRep_maybe, kindRep,

        mkCastTy, mkCoercionTy, splitCastTy_maybe,

        userTypeError_maybe, pprUserTypeErrorTy,

        coAxNthLHS,
        stripCoercionTy,

        splitInvisPiTys, splitInvisPiTysN,
        invisibleTyBndrCount,
        filterOutInvisibleTypes, filterOutInferredTypes,
        partitionInvisibleTypes, partitionInvisibles,
        tyConArgFlags, appTyArgFlags,

        -- ** Analyzing types
        TyCoMapper(..), mapTyCo, mapTyCoX,
        TyCoFolder(..), foldTyCo,

        -- (Newtypes)
        newTyConInstRhs,

        -- ** Binders
        sameVis,
        mkTyCoVarBinder, mkTyCoVarBinders,
        mkTyVarBinder, mkTyVarBinders,
        tyVarSpecToBinders,
        mkAnonBinder,
        isAnonTyCoBinder,
        binderVar, binderVars, binderType, binderArgFlag,
        tyCoBinderType, tyCoBinderVar_maybe,
        tyBinderType,
        binderRelevantType_maybe,
        isVisibleArgFlag, isInvisibleArgFlag, isVisibleBinder,
        isInvisibleBinder, isNamedBinder,
        tyConBindersTyCoBinders,

        -- ** Common type constructors
        funTyCon, unrestrictedFunTyCon,

        -- ** Predicates on types
        isTyVarTy, isFunTy, isCoercionTy,
        isCoercionTy_maybe, isForAllTy,
        isForAllTy_ty, isForAllTy_co,
        isPiTy, isTauTy, isFamFreeTy,
        isCoVarType, isAtomicTy,

        isValidJoinPointType,
        tyConAppNeedsKindSig,

        -- *** Levity and boxity
        isLiftedType_maybe,
        isLiftedTypeKind, isUnliftedTypeKind, isBoxedTypeKind, pickyIsLiftedTypeKind,
        isLiftedRuntimeRep, isUnliftedRuntimeRep, isLiftedRuntimeRep_maybe,
        isBoxedRuntimeRep,
        isLiftedLevity, isUnliftedLevity,
        isUnliftedType, isBoxedType, mightBeUnliftedType, isUnboxedTupleType, isUnboxedSumType,
        isStateType,
        isAlgType, isDataFamilyAppType,
        isPrimitiveType, isStrictType,
        isLevityTy, isLevityVar,
        isRuntimeRepTy, isRuntimeRepVar, isRuntimeRepKindedTy,
        dropRuntimeRepArgs,
        getRuntimeRep, getLevity, getLevity_maybe,

        -- * Multiplicity

        isMultiplicityTy, isMultiplicityVar,
        unrestricted, linear, tymult,
        mkScaled, irrelevantMult, scaledSet,
        pattern One, pattern Many,
        isOneDataConTy, isManyDataConTy,
        isLinearType,

        -- * Main data types representing Kinds
        Kind,

        -- ** Finding the kind of a type
        typeKind, tcTypeKind, typeHasFixedRuntimeRep, resultHasFixedRuntimeRep,
        tcIsLiftedTypeKind, tcIsConstraintKind, tcReturnsConstraintKind,
        tcIsBoxedTypeKind, tcIsRuntimeTypeKind,

        -- ** Common Kind
        liftedTypeKind, unliftedTypeKind,

        -- * Type free variables
        tyCoFVsOfType, tyCoFVsBndr, tyCoFVsVarBndr, tyCoFVsVarBndrs,
        tyCoVarsOfType, tyCoVarsOfTypes,
        tyCoVarsOfTypeDSet,
        coVarsOfType,
        coVarsOfTypes,

        anyFreeVarsOfType, anyFreeVarsOfTypes,
        noFreeVarsOfType,
        splitVisVarsOfType, splitVisVarsOfTypes,
        expandTypeSynonyms,
        typeSize, occCheckExpand,

        -- ** Closing over kinds
        closeOverKindsDSet, closeOverKindsList,
        closeOverKinds,

        -- * Well-scoped lists of variables
        scopedSort, tyCoVarsOfTypeWellScoped,
        tyCoVarsOfTypesWellScoped,

        -- * Type comparison
        eqType, eqTypeX, eqTypes, nonDetCmpType, nonDetCmpTypes, nonDetCmpTypeX,
        nonDetCmpTypesX, nonDetCmpTc,
        eqVarBndrs,

        -- * Forcing evaluation of types
        seqType, seqTypes,

        -- * Other views onto Types
        coreView, tcView,

        tyConsOfType,

        -- * Main type substitution data types
        TvSubstEnv,     -- Representation widely visible
        TCvSubst(..),    -- Representation visible to a few friends

        -- ** Manipulating type substitutions
        emptyTvSubstEnv, emptyTCvSubst, mkEmptyTCvSubst,

        mkTCvSubst, zipTvSubst, mkTvSubstPrs,
        zipTCvSubst,
        notElemTCvSubst,
        getTvSubstEnv, setTvSubstEnv,
        zapTCvSubst, getTCvInScope, getTCvSubstRangeFVs,
        extendTCvInScope, extendTCvInScopeList, extendTCvInScopeSet,
        extendTCvSubst, extendCvSubst,
        extendTvSubst, extendTvSubstBinderAndInScope,
        extendTvSubstList, extendTvSubstAndInScope,
        extendTCvSubstList,
        extendTvSubstWithClone,
        extendTCvSubstWithClone,
        isInScope, composeTCvSubstEnv, composeTCvSubst, zipTyEnv, zipCoEnv,
        isEmptyTCvSubst, unionTCvSubst,

        -- ** Performing substitution on types and kinds
        substTy, substTys, substScaledTy, substScaledTys, substTyWith, substTysWith, substTheta,
        substTyAddInScope,
        substTyUnchecked, substTysUnchecked, substScaledTyUnchecked, substScaledTysUnchecked,
        substThetaUnchecked, substTyWithUnchecked,
        substCoUnchecked, substCoWithUnchecked,
        substTyVarBndr, substTyVarBndrs, substTyVar, substTyVars,
        substVarBndr, substVarBndrs,
        substTyCoBndr,
        cloneTyVarBndr, cloneTyVarBndrs, lookupTyVar,

        -- * Tidying type related things up for printing
        tidyType,      tidyTypes,
        tidyOpenType,  tidyOpenTypes,
        tidyVarBndr, tidyVarBndrs, tidyFreeTyCoVars,
        tidyOpenTyCoVar, tidyOpenTyCoVars,
        tidyTyCoVarOcc,
        tidyTopType,
        tidyTyCoVarBinder, tidyTyCoVarBinders,

        -- * Kinds
        isConstraintKindCon,
        classifiesTypeWithValues,
        isConcrete, isFixedRuntimeRepKind,
    ) where

import GHC.Prelude

import GHC.Types.Basic

-- We import the representation and primitive functions from GHC.Core.TyCo.Rep.
-- Many things are reexported, but not the representation!

import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Subst
import GHC.Core.TyCo.Tidy
import GHC.Core.TyCo.FVs

-- friends:
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Unique.Set

import GHC.Core.TyCon
import GHC.Builtin.Types.Prim
import {-# SOURCE #-} GHC.Builtin.Types
                                 ( charTy, naturalTy, listTyCon
                                 , typeSymbolKind, liftedTypeKind, unliftedTypeKind
                                 , liftedRepTy, unliftedRepTy, zeroBitRepTy
                                 , boxedRepDataConTyCon
                                 , constraintKind, zeroBitTypeKind
                                 , unrestrictedFunTyCon
                                 , manyDataConTy, oneDataConTy )
import GHC.Types.Name( Name )
import GHC.Builtin.Names
import GHC.Core.Coercion.Axiom
import {-# SOURCE #-} GHC.Core.Coercion
   ( mkNomReflCo, mkGReflCo, mkReflCo
   , mkTyConAppCo, mkAppCo, mkCoVarCo, mkAxiomRuleCo
   , mkForAllCo, mkFunCo, mkAxiomInstCo, mkUnivCo
   , mkSymCo, mkTransCo, mkNthCo, mkLRCo, mkInstCo
   , mkKindCo, mkSubCo
   , decomposePiCos, coercionKind, coercionLKind
   , coercionRKind, coercionType
   , isReflexiveCo, seqCo )

-- others
import GHC.Utils.Misc
import GHC.Utils.FV
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Data.FastString
import GHC.Data.Pair
import GHC.Data.List.SetOps
import GHC.Types.Unique ( nonDetCmpUnique )

import GHC.Data.Maybe   ( orElse, expectJust )
import Data.Maybe       ( isJust )
import Control.Monad    ( guard )
-- import GHC.Utils.Trace

-- $type_classification
-- #type_classification#
--
-- Types are any, but at least one, of:
--
-- [Boxed]              Iff its representation is a pointer to an object on the
--                      GC'd heap. Operationally, heap objects can be entered as
--                      a means of evaluation.
--
-- [Lifted]             Iff it has bottom as an element: An instance of a
--                      lifted type might diverge when evaluated.
--                      GHC Haskell's unboxed types are unlifted.
--                      An unboxed, but lifted type is not very useful.
--                      (Example: A byte-represented type, where evaluating 0xff
--                      computes the 12345678th collatz number modulo 0xff.)
--                      Only lifted types may be unified with a type variable.
--
-- [Algebraic]          Iff it is a type with one or more constructors, whether
--                      declared with @data@ or @newtype@.
--                      An algebraic type is one that can be deconstructed
--                      with a case expression. There are algebraic types that
--                      are not lifted types, like unlifted data types or
--                      unboxed tuples.
--
-- [Data]               Iff it is a type declared with @data@, or a boxed tuple.
--                      There are also /unlifted/ data types.
--
-- [Primitive]          Iff it is a built-in type that can't be expressed in Haskell.
--
-- [Unlifted]           Anything that isn't lifted is considered unlifted.
--
-- Currently, all primitive types are unlifted, but that's not necessarily
-- the case: for example, @Int@ could be primitive.
--
-- Some primitive types are unboxed, such as @Int#@, whereas some are boxed
-- but unlifted (such as @ByteArray#@).  The only primitive types that we
-- classify as algebraic are the unboxed tuples.
--
-- Some examples of type classifications that may make this a bit clearer are:
--
-- @
-- Type          primitive       boxed           lifted          algebraic
-- -----------------------------------------------------------------------------
-- Int#          Yes             No              No              No
-- ByteArray#    Yes             Yes             No              No
-- (\# a, b \#)  Yes             No              No              Yes
-- (\# a | b \#) Yes             No              No              Yes
-- (  a, b  )    No              Yes             Yes             Yes
-- [a]           No              Yes             Yes             Yes
-- @

-- $representation_types
-- A /source type/ is a type that is a separate type as far as the type checker is
-- concerned, but which has a more low-level representation as far as Core-to-Core
-- passes and the rest of the back end is concerned.
--
-- You don't normally have to worry about this, as the utility functions in
-- this module will automatically convert a source into a representation type
-- if they are spotted, to the best of its abilities. If you don't want this
-- to happen, use the equivalent functions from the "TcType" module.

{-
************************************************************************
*                                                                      *
                Type representation
*                                                                      *
************************************************************************

Note [coreView vs tcView]
~~~~~~~~~~~~~~~~~~~~~~~~~
So far as the typechecker is concerned, 'Constraint' and 'TYPE
LiftedRep' are distinct kinds.

But in Core these two are treated as identical.

We implement this by making 'coreView' convert 'Constraint' to 'TYPE
LiftedRep' on the fly.  The function tcView (used in the type checker)
does not do this. Accordingly, tcView is used in type-checker-oriented
functions (including the pure unifier, used in instance resolution),
while coreView is used during e.g. optimisation passes.

See also #11715, which tracks removing this inconsistency.

The inconsistency actually leads to a potential soundness bug, in that
Constraint and Type are considered *apart* by the type family engine.
To wit, we can write

  type family F a
  type instance F Type = Bool
  type instance F Constraint = Int

and (because Type ~# Constraint in Core), thus build a coercion between
Int and Bool. I (Richard E) conjecture that this never happens in practice,
but it's very uncomfortable. This, essentially, is the root problem
underneath #11715, which is quite resistant to an easy fix. The best
idea is to have roles in kind coercions, but that has yet to be implemented.
See also "A Role for Dependent Types in Haskell", ICFP 2019, which describes
how roles in kinds might work out.

One annoying consequence of this inconsistency is that we can get ill-kinded
updates to metavariables. #20356 is a case in point. Simplifying somewhat,
we end up with
  [W] (alpha :: Constraint)  ~  (Int :: Type)
This is heterogeneous, so we produce
  [W] co :: (Constraint ~ Type)
and transform our original wanted to become
  [W] alpha ~ Int |> sym co
in accordance with Note [Equalities with incompatible kinds] in GHC.Tc.Solver.Canonical.
Our transformed wanted is now homogeneous (both sides have kind Constraint)
and so we unify alpha := Int |> sym co.

However, it's not so easy: when we build the cast (Int |> sym co), we actually
just get Int back. This is because we forbid reflexive casts (invariant (EQ2) of
Note [Respecting definitional equality] in GHC.Core.TyCo.Rep), and co looks
reflexive: it relates Type and Constraint, even though these are considered
identical in Core. Above, when we tried to say alpha := Int |> sym co, we
really ended up doing alpha := Int -- even though alpha :: Constraint and
Int :: Type have different kinds. Nothing has really gone wrong, though:
we still emitted [W] co :: (Constraint ~ Type), which will be insoluble
and lead to a decent error message. We simply need not to fall over at the
moment of unification, because all will be OK in the end. We thus use the
Core eqType, not the Haskell tcEqType, in the kind check for a meta-tyvar
unification in GHC.Tc.Utils.TcMType.writeMetaTyVarRef.

-}

-- | Gives the typechecker view of a type. This unwraps synonyms but
-- leaves 'Constraint' alone. c.f. 'coreView', which turns 'Constraint' into
-- 'Type'. Returns 'Nothing' if no unwrapping happens.
-- See also Note [coreView vs tcView]
tcView :: Type -> Maybe Type
tcView (TyConApp tc tys)
  | res@(Just _) <- expandSynTyConApp_maybe tc tys
  = res
tcView _ = Nothing
-- See Note [Inlining coreView].
{-# INLINE tcView #-}

coreView :: Type -> Maybe Type
-- ^ This function strips off the /top layer only/ of a type synonym
-- application (if any) its underlying representation type.
-- Returns 'Nothing' if there is nothing to look through.
-- This function considers 'Constraint' to be a synonym of @Type@.
--
-- This function does not look through type family applications.
--
-- By being non-recursive and inlined, this case analysis gets efficiently
-- joined onto the case analysis that the caller is already doing
coreView ty@(TyConApp tc tys)
  | res@(Just _) <- expandSynTyConApp_maybe tc tys
  = res

  -- At the Core level, Constraint = Type
  -- See Note [coreView vs tcView]
  | isConstraintKindCon tc
  = assertPpr (null tys) (ppr ty) $
    Just liftedTypeKind

coreView _ = Nothing
-- See Note [Inlining coreView].
{-# INLINE coreView #-}

-----------------------------------------------

-- | @expandSynTyConApp_maybe tc tys@ expands the RHS of type synonym @tc@
-- instantiated at arguments @tys@, or returns 'Nothing' if @tc@ is not a
-- synonym.
expandSynTyConApp_maybe :: TyCon -> [Type] -> Maybe Type
{-# INLINE expandSynTyConApp_maybe #-}
-- This INLINE will inline the call to expandSynTyConApp_maybe in coreView,
-- which will eliminate the allocat ion Just/Nothing in the result
-- Don't be tempted to make `expand_syn` (which is NOINLIN) return the
-- Just/Nothing, else you'll increase allocation
expandSynTyConApp_maybe tc arg_tys
  | Just (tvs, rhs) <- synTyConDefn_maybe tc
  , arg_tys `lengthAtLeast` (tyConArity tc)
  = Just (expand_syn tvs rhs arg_tys)
  | otherwise
  = Nothing

-- | A helper for 'expandSynTyConApp_maybe' to avoid inlining this cold path
-- into call-sites.
--
-- Precondition: the call is saturated or over-saturated;
--               i.e. length tvs <= length arg_tys
expand_syn :: [TyVar]  -- ^ the variables bound by the synonym
           -> Type     -- ^ the RHS of the synonym
           -> [Type]   -- ^ the type arguments the synonym is instantiated at.
           -> Type
{-# NOINLINE expand_syn #-} -- We never want to inline this cold-path.

expand_syn tvs rhs arg_tys
  -- No substitution necessary if either tvs or tys is empty
  -- This is both more efficient, and steers clear of an infinite
  -- loop; see Note [Care using synonyms to compress types]
  | null arg_tys  = assert (null tvs) rhs
  | null tvs      = mkAppTys rhs arg_tys
  | otherwise     = go empty_subst tvs arg_tys
  where
    empty_subst = mkEmptyTCvSubst in_scope
    in_scope = mkInScopeSet $ shallowTyCoVarsOfTypes $ arg_tys
      -- The free vars of 'rhs' should all be bound by 'tenv',
      -- so we only need the free vars of tys
      -- See also Note [The substitution invariant] in GHC.Core.TyCo.Subst.

    go subst [] tys
      | null tys  = rhs'  -- Exactly Saturated
      | otherwise = mkAppTys rhs' tys
          -- Its important to use mkAppTys, rather than (foldl AppTy),
          -- because the function part might well return a
          -- partially-applied type constructor; indeed, usually will!
      where
        rhs' = substTy subst rhs

    go subst (tv:tvs) (ty:tys) = go (extendTvSubst subst tv ty) tvs tys

    go _ (_:_) [] = pprPanic "expand_syn" (ppr tvs $$ ppr rhs $$ ppr arg_tys)
                   -- Under-saturated, precondition failed



coreFullView :: Type -> Type
-- ^ Iterates 'coreView' until there is no more to synonym to expand.
-- See Note [Inlining coreView].
coreFullView ty@(TyConApp tc _)
  | isTypeSynonymTyCon tc || isConstraintKindCon tc = go ty
  where
    go ty
      | Just ty' <- coreView ty = go ty'
      | otherwise = ty

coreFullView ty = ty
{-# INLINE coreFullView #-}

{- Note [Inlining coreView]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is very common to have a function

  f :: Type -> ...
  f ty | Just ty' <- coreView ty = f ty'
  f (TyVarTy ...) = ...
  f ...           = ...

If f is not otherwise recursive, the initial call to coreView
causes f to become recursive, which kills the possibility of
inlining. Instead, for non-recursive functions, we prefer to
use coreFullView, which guarantees to unwrap top-level type
synonyms. It can be inlined and is efficient and non-allocating
in its fast path. For this to really be fast, all calls made
on its fast path must also be inlined, linked back to this Note.
-}

-----------------------------------------------
expandTypeSynonyms :: Type -> Type
-- ^ Expand out all type synonyms.  Actually, it'd suffice to expand out
-- just the ones that discard type variables (e.g.  type Funny a = Int)
-- But we don't know which those are currently, so we just expand all.
--
-- 'expandTypeSynonyms' only expands out type synonyms mentioned in the type,
-- not in the kinds of any TyCon or TyVar mentioned in the type.
--
-- Keep this synchronized with 'synonymTyConsOfType'
expandTypeSynonyms ty
  = go (mkEmptyTCvSubst in_scope) ty
  where
    in_scope = mkInScopeSet (tyCoVarsOfType ty)

    go subst (TyConApp tc tys)
      | Just (tenv, rhs, tys') <- expandSynTyCon_maybe tc expanded_tys
      = let subst' = mkTvSubst in_scope (mkVarEnv tenv)
            -- Make a fresh substitution; rhs has nothing to
            -- do with anything that has happened so far
            -- NB: if you make changes here, be sure to build an
            --     /idempotent/ substitution, even in the nested case
            --        type T a b = a -> b
            --        type S x y = T y x
            -- (#11665)
        in  mkAppTys (go subst' rhs) tys'
      | otherwise
      = TyConApp tc expanded_tys
      where
        expanded_tys = (map (go subst) tys)

    go _     (LitTy l)     = LitTy l
    go subst (TyVarTy tv)  = substTyVar subst tv
    go subst (AppTy t1 t2) = mkAppTy (go subst t1) (go subst t2)
    go subst ty@(FunTy _ mult arg res)
      = ty { ft_mult = go subst mult, ft_arg = go subst arg, ft_res = go subst res }
    go subst (ForAllTy (Bndr tv vis) t)
      = let (subst', tv') = substVarBndrUsing go subst tv in
        ForAllTy (Bndr tv' vis) (go subst' t)
    go subst (CastTy ty co)  = mkCastTy (go subst ty) (go_co subst co)
    go subst (CoercionTy co) = mkCoercionTy (go_co subst co)

    go_mco _     MRefl    = MRefl
    go_mco subst (MCo co) = MCo (go_co subst co)

    go_co subst (Refl ty)
      = mkNomReflCo (go subst ty)
    go_co subst (GRefl r ty mco)
      = mkGReflCo r (go subst ty) (go_mco subst mco)
       -- NB: coercions are always expanded upon creation
    go_co subst (TyConAppCo r tc args)
      = mkTyConAppCo r tc (map (go_co subst) args)
    go_co subst (AppCo co arg)
      = mkAppCo (go_co subst co) (go_co subst arg)
    go_co subst (ForAllCo tv kind_co co)
      = let (subst', tv', kind_co') = go_cobndr subst tv kind_co in
        mkForAllCo tv' kind_co' (go_co subst' co)
    go_co subst (FunCo r w co1 co2)
      = mkFunCo r (go_co subst w) (go_co subst co1) (go_co subst co2)
    go_co subst (CoVarCo cv)
      = substCoVar subst cv
    go_co subst (AxiomInstCo ax ind args)
      = mkAxiomInstCo ax ind (map (go_co subst) args)
    go_co subst (UnivCo p r t1 t2)
      = mkUnivCo (go_prov subst p) r (go subst t1) (go subst t2)
    go_co subst (SymCo co)
      = mkSymCo (go_co subst co)
    go_co subst (TransCo co1 co2)
      = mkTransCo (go_co subst co1) (go_co subst co2)
    go_co subst (NthCo r n co)
      = mkNthCo r n (go_co subst co)
    go_co subst (LRCo lr co)
      = mkLRCo lr (go_co subst co)
    go_co subst (InstCo co arg)
      = mkInstCo (go_co subst co) (go_co subst arg)
    go_co subst (KindCo co)
      = mkKindCo (go_co subst co)
    go_co subst (SubCo co)
      = mkSubCo (go_co subst co)
    go_co subst (AxiomRuleCo ax cs)
      = AxiomRuleCo ax (map (go_co subst) cs)
    go_co _ (HoleCo h)
      = pprPanic "expandTypeSynonyms hit a hole" (ppr h)

    go_prov subst (PhantomProv co)    = PhantomProv (go_co subst co)
    go_prov subst (ProofIrrelProv co) = ProofIrrelProv (go_co subst co)
    go_prov _     p@(PluginProv _)    = p
    go_prov _     p@(CorePrepProv _)  = p

      -- the "False" and "const" are to accommodate the type of
      -- substForAllCoBndrUsing, which is general enough to
      -- handle coercion optimization (which sometimes swaps the
      -- order of a coercion)
    go_cobndr subst = substForAllCoBndrUsing False (go_co subst) subst

-- | An INLINE helper for function such as 'kindRep_maybe' below.
--
-- @isTyConKeyApp_maybe key ty@ returns @Just tys@ iff
-- the type @ty = T tys@, where T's unique = key
isTyConKeyApp_maybe :: Unique -> Type -> Maybe [Type]
isTyConKeyApp_maybe key ty
  | TyConApp tc args <- coreFullView ty
  , tc `hasKey` key
  = Just args
  | otherwise
  = Nothing
{-# INLINE isTyConKeyApp_maybe #-}

-- | Extract the RuntimeRep classifier of a type from its kind. For example,
-- @kindRep * = LiftedRep@; Panics if this is not possible.
-- Treats * and Constraint as the same
kindRep :: HasDebugCallStack => Kind -> Type
kindRep k = case kindRep_maybe k of
              Just r  -> r
              Nothing -> pprPanic "kindRep" (ppr k)

-- | Given a kind (TYPE rr), extract its RuntimeRep classifier rr.
-- For example, @kindRep_maybe * = Just LiftedRep@
-- Returns 'Nothing' if the kind is not of form (TYPE rr)
-- Treats * and Constraint as the same
kindRep_maybe :: HasDebugCallStack => Kind -> Maybe Type
kindRep_maybe kind
  | Just [arg] <- isTyConKeyApp_maybe tYPETyConKey kind = Just arg
  | otherwise                                           = Nothing

-- | Returns True if the kind classifies types which are allocated on
-- the GC'd heap and False otherwise. Note that this returns False for
-- representation-polymorphic kinds, which may be specialized to a kind that
-- classifies AddrRep or even unboxed kinds.
isBoxedTypeKind :: Kind -> Bool
isBoxedTypeKind kind
  = case kindRep_maybe kind of
      Just rep -> isBoxedRuntimeRep rep
      Nothing  -> False

-- | This version considers Constraint to be the same as *. Returns True
-- if the argument is equivalent to Type/Constraint and False otherwise.
-- See Note [Kind Constraint and kind Type]
isLiftedTypeKind :: Kind -> Bool
isLiftedTypeKind kind
  = case kindRep_maybe kind of
      Just rep -> isLiftedRuntimeRep rep
      Nothing  -> False

pickyIsLiftedTypeKind :: Kind -> Bool
-- Checks whether the kind is literally
--      TYPE LiftedRep
-- or   TYPE ('BoxedRep 'Lifted)
-- or   Type
-- without expanding type synonyms or anything
-- Used only when deciding whether to suppress the ":: *" in
-- (a :: *) when printing kinded type variables
-- See Note [Suppressing * kinds] in GHC.Core.TyCo.Ppr
pickyIsLiftedTypeKind kind
  | TyConApp tc [arg] <- kind
  , tc `hasKey` tYPETyConKey
  , TyConApp rr_tc rr_args <- arg = case rr_args of
      [] -> rr_tc `hasKey` liftedRepTyConKey
      [rr_arg]
        | rr_tc `hasKey` boxedRepDataConKey
        , TyConApp lev [] <- rr_arg
        , lev `hasKey` liftedDataConKey -> True
      _ -> False
  | TyConApp tc [] <- kind
  , tc `hasKey` liftedTypeKindTyConKey = True
  | otherwise                          = False

-- | Returns True if the kind classifies unlifted types (like 'Int#') and False
-- otherwise. Note that this returns False for representation-polymorphic
-- kinds, which may be specialized to a kind that classifies unlifted types.
isUnliftedTypeKind :: Kind -> Bool
isUnliftedTypeKind kind
  = case kindRep_maybe kind of
      Just rep -> isUnliftedRuntimeRep rep
      Nothing  -> False

-- | See 'isBoxedRuntimeRep_maybe'.
isBoxedRuntimeRep :: Type -> Bool
isBoxedRuntimeRep rep = isJust (isBoxedRuntimeRep_maybe rep)

-- | `isBoxedRuntimeRep_maybe (rep :: RuntimeRep)` returns `Just lev` if `rep`
-- expands to `Boxed lev` and returns `Nothing` otherwise.
--
-- Types with this runtime rep are represented by pointers on the GC'd heap.
isBoxedRuntimeRep_maybe :: Type -> Maybe Type
isBoxedRuntimeRep_maybe rep
  | Just [lev] <- isTyConKeyApp_maybe boxedRepDataConKey rep
  = Just lev
  | otherwise
  = Nothing

-- | Check whether a type of kind 'RuntimeRep' is lifted, unlifted, or unknown.
--
-- @isLiftedRuntimeRep rr@ returns:
--
--   * @Just True @ if @rr@ is @LiftedRep :: RuntimeRep@
--   * @Just False@ if @rr@ is definitely not lifted, e.g. @IntRep@
--   * @Nothing   @ if not known (e.g. it's a type variable or a type family application).
isLiftedRuntimeRep_maybe :: Type -> Maybe Bool
isLiftedRuntimeRep_maybe rep
  | TyConApp rr_tc args <- coreFullView rep
  , isPromotedDataCon rr_tc =
      -- NB: args might be non-empty e.g. TupleRep [r1, .., rn]
      if (rr_tc `hasKey` boxedRepDataConKey)
        then case args of
          [lev] | isLiftedLevity   lev -> Just True
                | isUnliftedLevity lev -> Just False
          _                            -> Nothing
        else Just False
        -- Avoid searching all the unlifted RuntimeRep type cons
        -- In the RuntimeRep data type, only LiftedRep is lifted
        -- But be careful of type families (F tys) :: RuntimeRep,
        -- hence the isPromotedDataCon rr_tc
isLiftedRuntimeRep_maybe _ = Nothing

-- | Check whether a type of kind 'RuntimeRep' is lifted.
--
-- 'isLiftedRuntimeRep' is:
--
--  * True of @LiftedRep :: RuntimeRep@
--  * False of type variables, type family applications,
--    and of other reps such as @IntRep :: RuntimeRep@.
isLiftedRuntimeRep :: Type -> Bool
isLiftedRuntimeRep rep
  | Just True <- isLiftedRuntimeRep_maybe rep
  = True
  | otherwise
  = False

-- | Check whether a type of kind 'RuntimeRep' is unlifted.
--
--  * True of definitely unlifted 'RuntimeRep's such as
--    'UnliftedRep', 'IntRep', 'FloatRep', ...
--  * False of 'LiftedRep',
--  * False for type variables and type family applications.
isUnliftedRuntimeRep :: Type -> Bool
isUnliftedRuntimeRep rep
  | Just False <- isLiftedRuntimeRep_maybe rep
  = True
  | otherwise
  = False

-- | An INLINE helper for functions such as 'isLiftedLevity' and 'isUnliftedLevity'.
--
-- Checks whether the type is a nullary 'TyCon' application,
-- for a 'TyCon' with the given 'Unique'.
isNullaryTyConKeyApp :: Unique -> Type -> Bool
isNullaryTyConKeyApp key ty
  | Just args <- isTyConKeyApp_maybe key ty
  = assert (null args) True
  | otherwise
  = False
{-# INLINE isNullaryTyConKeyApp #-}

isLiftedLevity :: Type -> Bool
isLiftedLevity = isNullaryTyConKeyApp liftedDataConKey

isUnliftedLevity :: Type -> Bool
isUnliftedLevity = isNullaryTyConKeyApp unliftedDataConKey

-- | Is this the type 'Levity'?
isLevityTy :: Type -> Bool
isLevityTy = isNullaryTyConKeyApp levityTyConKey

-- | Is this the type 'RuntimeRep'?
isRuntimeRepTy :: Type -> Bool
isRuntimeRepTy = isNullaryTyConKeyApp runtimeRepTyConKey

-- | Is a tyvar of type 'RuntimeRep'?
isRuntimeRepVar :: TyVar -> Bool
isRuntimeRepVar = isRuntimeRepTy . tyVarKind

-- | Is a tyvar of type 'Levity'?
isLevityVar :: TyVar -> Bool
isLevityVar = isLevityTy . tyVarKind

-- | Is this the type 'Multiplicity'?
isMultiplicityTy :: Type -> Bool
isMultiplicityTy  = isNullaryTyConKeyApp multiplicityTyConKey

-- | Is a tyvar of type 'Multiplicity'?
isMultiplicityVar :: TyVar -> Bool
isMultiplicityVar = isMultiplicityTy . tyVarKind

{- *********************************************************************
*                                                                      *
               mapType
*                                                                      *
************************************************************************

These functions do a map-like operation over types, performing some operation
on all variables and binding sites. Primarily used for zonking.

Note [Efficiency for ForAllCo case of mapTyCoX]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As noted in Note [Forall coercions] in GHC.Core.TyCo.Rep, a ForAllCo is a bit redundant.
It stores a TyCoVar and a Coercion, where the kind of the TyCoVar always matches
the left-hand kind of the coercion. This is convenient lots of the time, but
not when mapping a function over a coercion.

The problem is that tcm_tybinder will affect the TyCoVar's kind and
mapCoercion will affect the Coercion, and we hope that the results will be
the same. Even if they are the same (which should generally happen with
correct algorithms), then there is an efficiency issue. In particular,
this problem seems to make what should be a linear algorithm into a potentially
exponential one. But it's only going to be bad in the case where there's
lots of foralls in the kinds of other foralls. Like this:

  forall a : (forall b : (forall c : ...). ...). ...

This construction seems unlikely. So we'll do the inefficient, easy way
for now.

Note [Specialising mappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
These INLINE pragmas are indispensable. mapTyCo and mapTyCoX are used
to implement zonking, and it's vital that they get specialised to the TcM
monad and the particular mapper in use.

Even specialising to the monad alone made a 20% allocation difference
in perf/compiler/T5030.

See Note [Specialising foldType] in "GHC.Core.TyCo.Rep" for more details of this
idiom.
-}

-- | This describes how a "map" operation over a type/coercion should behave
data TyCoMapper env m
  = TyCoMapper
      { tcm_tyvar :: env -> TyVar -> m Type
      , tcm_covar :: env -> CoVar -> m Coercion
      , tcm_hole  :: env -> CoercionHole -> m Coercion
          -- ^ What to do with coercion holes.
          -- See Note [Coercion holes] in "GHC.Core.TyCo.Rep".

      , tcm_tycobinder :: env -> TyCoVar -> ArgFlag -> m (env, TyCoVar)
          -- ^ The returned env is used in the extended scope

      , tcm_tycon :: TyCon -> m TyCon
          -- ^ This is used only for TcTyCons
          -- a) To zonk TcTyCons
          -- b) To turn TcTyCons into TyCons.
          --    See Note [Type checking recursive type and class declarations]
          --    in "GHC.Tc.TyCl"
      }

{-# INLINE mapTyCo #-}  -- See Note [Specialising mappers]
mapTyCo :: Monad m => TyCoMapper () m
         -> ( Type       -> m Type
            , [Type]     -> m [Type]
            , Coercion   -> m Coercion
            , [Coercion] -> m[Coercion])
mapTyCo mapper
  = case mapTyCoX mapper of
     (go_ty, go_tys, go_co, go_cos)
        -> (go_ty (), go_tys (), go_co (), go_cos ())

{-# INLINE mapTyCoX #-}  -- See Note [Specialising mappers]
mapTyCoX :: Monad m => TyCoMapper env m
         -> ( env -> Type       -> m Type
            , env -> [Type]     -> m [Type]
            , env -> Coercion   -> m Coercion
            , env -> [Coercion] -> m[Coercion])
mapTyCoX (TyCoMapper { tcm_tyvar = tyvar
                     , tcm_tycobinder = tycobinder
                     , tcm_tycon = tycon
                     , tcm_covar = covar
                     , tcm_hole = cohole })
  = (go_ty, go_tys, go_co, go_cos)
  where
    go_tys _   []       = return []
    go_tys env (ty:tys) = (:) <$> go_ty env ty <*> go_tys env tys

    go_ty env (TyVarTy tv)    = tyvar env tv
    go_ty env (AppTy t1 t2)   = mkAppTy <$> go_ty env t1 <*> go_ty env t2
    go_ty _   ty@(LitTy {})   = return ty
    go_ty env (CastTy ty co)  = mkCastTy <$> go_ty env ty <*> go_co env co
    go_ty env (CoercionTy co) = CoercionTy <$> go_co env co

    go_ty env ty@(FunTy _ w arg res)
      = do { w' <- go_ty env w; arg' <- go_ty env arg; res' <- go_ty env res
           ; return (ty { ft_mult = w', ft_arg = arg', ft_res = res' }) }

    go_ty env ty@(TyConApp tc tys)
      | isTcTyCon tc
      = do { tc' <- tycon tc
           ; mkTyConApp tc' <$> go_tys env tys }

      -- Not a TcTyCon
      | null tys    -- Avoid allocation in this very
      = return ty   -- common case (E.g. Int, LiftedRep etc)

      | otherwise
      = mkTyConApp tc <$> go_tys env tys

    go_ty env (ForAllTy (Bndr tv vis) inner)
      = do { (env', tv') <- tycobinder env tv vis
           ; inner' <- go_ty env' inner
           ; return $ ForAllTy (Bndr tv' vis) inner' }

    go_cos _   []       = return []
    go_cos env (co:cos) = (:) <$> go_co env co <*> go_cos env cos

    go_mco _   MRefl    = return MRefl
    go_mco env (MCo co) = MCo <$> (go_co env co)

    go_co env (Refl ty)           = Refl <$> go_ty env ty
    go_co env (GRefl r ty mco)    = mkGReflCo r <$> go_ty env ty <*> go_mco env mco
    go_co env (AppCo c1 c2)       = mkAppCo <$> go_co env c1 <*> go_co env c2
    go_co env (FunCo r cw c1 c2)   = mkFunCo r <$> go_co env cw <*> go_co env c1 <*> go_co env c2
    go_co env (CoVarCo cv)        = covar env cv
    go_co env (HoleCo hole)       = cohole env hole
    go_co env (UnivCo p r t1 t2)  = mkUnivCo <$> go_prov env p <*> pure r
                                    <*> go_ty env t1 <*> go_ty env t2
    go_co env (SymCo co)          = mkSymCo <$> go_co env co
    go_co env (TransCo c1 c2)     = mkTransCo <$> go_co env c1 <*> go_co env c2
    go_co env (AxiomRuleCo r cos) = AxiomRuleCo r <$> go_cos env cos
    go_co env (NthCo r i co)      = mkNthCo r i <$> go_co env co
    go_co env (LRCo lr co)        = mkLRCo lr <$> go_co env co
    go_co env (InstCo co arg)     = mkInstCo <$> go_co env co <*> go_co env arg
    go_co env (KindCo co)         = mkKindCo <$> go_co env co
    go_co env (SubCo co)          = mkSubCo <$> go_co env co
    go_co env (AxiomInstCo ax i cos) = mkAxiomInstCo ax i <$> go_cos env cos
    go_co env co@(TyConAppCo r tc cos)
      | isTcTyCon tc
      = do { tc' <- tycon tc
           ; mkTyConAppCo r tc' <$> go_cos env cos }

      -- Not a TcTyCon
      | null cos    -- Avoid allocation in this very
      = return co   -- common case (E.g. Int, LiftedRep etc)

      | otherwise
      = mkTyConAppCo r tc <$> go_cos env cos
    go_co env (ForAllCo tv kind_co co)
      = do { kind_co' <- go_co env kind_co
           ; (env', tv') <- tycobinder env tv Inferred
           ; co' <- go_co env' co
           ; return $ mkForAllCo tv' kind_co' co' }
        -- See Note [Efficiency for ForAllCo case of mapTyCoX]

    go_prov env (PhantomProv co)    = PhantomProv <$> go_co env co
    go_prov env (ProofIrrelProv co) = ProofIrrelProv <$> go_co env co
    go_prov _   p@(PluginProv _)    = return p
    go_prov _   p@(CorePrepProv _)  = return p


{-
************************************************************************
*                                                                      *
\subsection{Constructor-specific functions}
*                                                                      *
************************************************************************


---------------------------------------------------------------------
                                TyVarTy
                                ~~~~~~~
-}

-- | Attempts to obtain the type variable underlying a 'Type', and panics with the
-- given message if this is not a type variable type. See also 'getTyVar_maybe'
getTyVar :: String -> Type -> TyVar
getTyVar msg ty = case getTyVar_maybe ty of
                    Just tv -> tv
                    Nothing -> panic ("getTyVar: " ++ msg)

isTyVarTy :: Type -> Bool
isTyVarTy ty = isJust (getTyVar_maybe ty)

-- | Attempts to obtain the type variable underlying a 'Type'
getTyVar_maybe :: Type -> Maybe TyVar
getTyVar_maybe = repGetTyVar_maybe . coreFullView

-- | If the type is a tyvar, possibly under a cast, returns it, along
-- with the coercion. Thus, the co is :: kind tv ~N kind ty
getCastedTyVar_maybe :: Type -> Maybe (TyVar, CoercionN)
getCastedTyVar_maybe ty = case coreFullView ty of
  CastTy (TyVarTy tv) co -> Just (tv, co)
  TyVarTy tv             -> Just (tv, mkReflCo Nominal (tyVarKind tv))
  _                      -> Nothing

-- | Attempts to obtain the type variable underlying a 'Type', without
-- any expansion
repGetTyVar_maybe :: Type -> Maybe TyVar
repGetTyVar_maybe (TyVarTy tv) = Just tv
repGetTyVar_maybe _            = Nothing

{-
---------------------------------------------------------------------
                                AppTy
                                ~~~~~
We need to be pretty careful with AppTy to make sure we obey the
invariant that a TyConApp is always visibly so.  mkAppTy maintains the
invariant: use it.

Note [Decomposing fat arrow c=>t]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Can we unify (a b) with (Eq a => ty)?   If we do so, we end up with
a partial application like ((=>) Eq a) which doesn't make sense in
source Haskell.  In contrast, we *can* unify (a b) with (t1 -> t2).
Here's an example (#9858) of how you might do it:
   i :: (Typeable a, Typeable b) => Proxy (a b) -> TypeRep
   i p = typeRep p

   j = i (Proxy :: Proxy (Eq Int => Int))
The type (Proxy (Eq Int => Int)) is only accepted with -XImpredicativeTypes,
but suppose we want that.  But then in the call to 'i', we end
up decomposing (Eq Int => Int), and we definitely don't want that.

This really only applies to the type checker; in Core, '=>' and '->'
are the same, as are 'Constraint' and '*'.  But for now I've put
the test in repSplitAppTy_maybe, which applies throughout, because
the other calls to splitAppTy are in GHC.Core.Unify, which is also used by
the type checker (e.g. when matching type-function equations).

-}

-- | Applies a type to another, as in e.g. @k a@
mkAppTy :: Type -> Type -> Type
  -- See Note [Respecting definitional equality], invariant (EQ1).
mkAppTy (CastTy fun_ty co) arg_ty
  | ([arg_co], res_co) <- decomposePiCos co (coercionKind co) [arg_ty]
  = (fun_ty `mkAppTy` (arg_ty `mkCastTy` arg_co)) `mkCastTy` res_co

mkAppTy (TyConApp tc tys) ty2 = mkTyConApp tc (tys ++ [ty2])
mkAppTy ty1               ty2 = AppTy ty1 ty2
        -- Note that the TyConApp could be an
        -- under-saturated type synonym.  GHC allows that; e.g.
        --      type Foo k = k a -> k a
        --      type Id x = x
        --      foo :: Foo Id -> Foo Id
        --
        -- Here Id is partially applied in the type sig for Foo,
        -- but once the type synonyms are expanded all is well
        --
        -- Moreover in GHC.Tc.Types.tcInferTyApps we build up a type
        --   (T t1 t2 t3) one argument at a type, thus forming
        --   (T t1), (T t1 t2), etc

mkAppTys :: Type -> [Type] -> Type
mkAppTys ty1                []   = ty1
mkAppTys (CastTy fun_ty co) arg_tys  -- much more efficient then nested mkAppTy
                                     -- Why do this? See (EQ1) of
                                     -- Note [Respecting definitional equality]
                                     -- in GHC.Core.TyCo.Rep
  = foldl' AppTy ((mkAppTys fun_ty casted_arg_tys) `mkCastTy` res_co) leftovers
  where
    (arg_cos, res_co) = decomposePiCos co (coercionKind co) arg_tys
    (args_to_cast, leftovers) = splitAtList arg_cos arg_tys
    casted_arg_tys = zipWith mkCastTy args_to_cast arg_cos
mkAppTys (TyConApp tc tys1) tys2 = mkTyConApp tc (tys1 ++ tys2)
mkAppTys ty1                tys2 = foldl' AppTy ty1 tys2

-------------
splitAppTy_maybe :: Type -> Maybe (Type, Type)
-- ^ Attempt to take a type application apart, whether it is a
-- function, type constructor, or plain type application. Note
-- that type family applications are NEVER unsaturated by this!
splitAppTy_maybe = repSplitAppTy_maybe . coreFullView

-------------
repSplitAppTy_maybe :: HasDebugCallStack => Type -> Maybe (Type,Type)
-- ^ Does the AppTy split as in 'splitAppTy_maybe', but assumes that
-- any Core view stuff is already done
repSplitAppTy_maybe (FunTy _ w ty1 ty2)
  = Just (TyConApp funTyCon [w, rep1, rep2, ty1], ty2)
  where
    rep1 = getRuntimeRep ty1
    rep2 = getRuntimeRep ty2

repSplitAppTy_maybe (AppTy ty1 ty2)
  = Just (ty1, ty2)

repSplitAppTy_maybe (TyConApp tc tys)
  | not (mustBeSaturated tc) || tys `lengthExceeds` tyConArity tc
  , Just (tys', ty') <- snocView tys
  = Just (TyConApp tc tys', ty')    -- Never create unsaturated type family apps!

repSplitAppTy_maybe _other = Nothing

-- This one doesn't break apart (c => t).
-- See Note [Decomposing fat arrow c=>t]
-- Defined here to avoid module loops between Unify and TcType.
tcRepSplitAppTy_maybe :: Type -> Maybe (Type,Type)
-- ^ Does the AppTy split as in 'tcSplitAppTy_maybe', but assumes that
-- any coreView stuff is already done. Refuses to look through (c => t)
tcRepSplitAppTy_maybe (FunTy { ft_af = af, ft_mult = w, ft_arg = ty1, ft_res = ty2 })
  | VisArg <- af   -- See Note [Decomposing fat arrow c=>t]

  -- See Note [The Purely Kinded Type Invariant (PKTI)] in GHC.Tc.Gen.HsType,
  -- Wrinkle around FunTy
  , Just rep1 <- getRuntimeRep_maybe ty1
  , Just rep2 <- getRuntimeRep_maybe ty2
  = Just (TyConApp funTyCon [w, rep1, rep2, ty1], ty2)

  | otherwise
  = Nothing

tcRepSplitAppTy_maybe (AppTy ty1 ty2)    = Just (ty1, ty2)
tcRepSplitAppTy_maybe (TyConApp tc tys)
  | not (mustBeSaturated tc) || tys `lengthExceeds` tyConArity tc
  , Just (tys', ty') <- snocView tys
  = Just (TyConApp tc tys', ty')    -- Never create unsaturated type family apps!
tcRepSplitAppTy_maybe _other = Nothing

-------------
splitAppTy :: Type -> (Type, Type)
-- ^ Attempts to take a type application apart, as in 'splitAppTy_maybe',
-- and panics if this is not possible
splitAppTy ty = case splitAppTy_maybe ty of
                Just pr -> pr
                Nothing -> panic "splitAppTy"

-------------
splitAppTys :: Type -> (Type, [Type])
-- ^ Recursively splits a type as far as is possible, leaving a residual
-- type being applied to and the type arguments applied to it. Never fails,
-- even if that means returning an empty list of type applications.
splitAppTys ty = split ty ty []
  where
    split orig_ty ty args | Just ty' <- coreView ty = split orig_ty ty' args
    split _       (AppTy ty arg)        args = split ty ty (arg:args)
    split _       (TyConApp tc tc_args) args
      = let -- keep type families saturated
            n | mustBeSaturated tc = tyConArity tc
              | otherwise          = 0
            (tc_args1, tc_args2) = splitAt n tc_args
        in
        (TyConApp tc tc_args1, tc_args2 ++ args)
    split _   (FunTy _ w ty1 ty2) args
      = assert (null args )
        (TyConApp funTyCon [], [w, rep1, rep2, ty1, ty2])
      where
        rep1 = getRuntimeRep ty1
        rep2 = getRuntimeRep ty2

    split orig_ty _                     args  = (orig_ty, args)

-- | Like 'splitAppTys', but doesn't look through type synonyms
repSplitAppTys :: HasDebugCallStack => Type -> (Type, [Type])
repSplitAppTys ty = split ty []
  where
    split (AppTy ty arg) args = split ty (arg:args)
    split (TyConApp tc tc_args) args
      = let n | mustBeSaturated tc = tyConArity tc
              | otherwise          = 0
            (tc_args1, tc_args2) = splitAt n tc_args
        in
        (TyConApp tc tc_args1, tc_args2 ++ args)
    split (FunTy _ w ty1 ty2) args
      = assert (null args )
        (TyConApp funTyCon [], [w, rep1, rep2, ty1, ty2])
      where
        rep1 = getRuntimeRep ty1
        rep2 = getRuntimeRep ty2

    split ty args = (ty, args)

{-
                      LitTy
                      ~~~~~
-}

mkNumLitTy :: Integer -> Type
mkNumLitTy n = LitTy (NumTyLit n)

-- | Is this a numeric literal. We also look through type synonyms.
isNumLitTy :: Type -> Maybe Integer
isNumLitTy ty
  | LitTy (NumTyLit n) <- coreFullView ty = Just n
  | otherwise                             = Nothing

mkStrLitTy :: FastString -> Type
mkStrLitTy s = LitTy (StrTyLit s)

-- | Is this a symbol literal. We also look through type synonyms.
isStrLitTy :: Type -> Maybe FastString
isStrLitTy ty
  | LitTy (StrTyLit s) <- coreFullView ty = Just s
  | otherwise                             = Nothing

mkCharLitTy :: Char -> Type
mkCharLitTy c = LitTy (CharTyLit c)

-- | Is this a char literal? We also look through type synonyms.
isCharLitTy :: Type -> Maybe Char
isCharLitTy ty
  | LitTy (CharTyLit s) <- coreFullView ty = Just s
  | otherwise                              = Nothing


-- | Is this a type literal (symbol, numeric, or char)?
isLitTy :: Type -> Maybe TyLit
isLitTy ty
  | LitTy l <- coreFullView ty = Just l
  | otherwise                  = Nothing

-- | Is this type a custom user error?
-- If so, give us the kind and the error message.
userTypeError_maybe :: Type -> Maybe Type
userTypeError_maybe t
  = do { (tc, _kind : msg : _) <- splitTyConApp_maybe t
          -- There may be more than 2 arguments, if the type error is
          -- used as a type constructor (e.g. at kind `Type -> Type`).

       ; guard (tyConName tc == errorMessageTypeErrorFamName)
       ; return msg }

-- | Render a type corresponding to a user type error into a SDoc.
pprUserTypeErrorTy :: Type -> SDoc
pprUserTypeErrorTy ty =
  case splitTyConApp_maybe ty of

    -- Text "Something"
    Just (tc,[txt])
      | tyConName tc == typeErrorTextDataConName
      , Just str <- isStrLitTy txt -> ftext str

    -- ShowType t
    Just (tc,[_k,t])
      | tyConName tc == typeErrorShowTypeDataConName -> ppr t

    -- t1 :<>: t2
    Just (tc,[t1,t2])
      | tyConName tc == typeErrorAppendDataConName ->
        pprUserTypeErrorTy t1 <> pprUserTypeErrorTy t2

    -- t1 :$$: t2
    Just (tc,[t1,t2])
      | tyConName tc == typeErrorVAppendDataConName ->
        pprUserTypeErrorTy t1 $$ pprUserTypeErrorTy t2

    -- An unevaluated type function
    _ -> ppr ty




{-
---------------------------------------------------------------------
                                FunTy
                                ~~~~~

Note [Representation of function types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Functions (e.g. Int -> Char) can be thought of as being applications
of funTyCon (known in Haskell surface syntax as (->)), (note that
`RuntimeRep' quantifiers are left inferred)

    (->) :: forall {r1 :: RuntimeRep} {r2 :: RuntimeRep}
                   (a :: TYPE r1) (b :: TYPE r2).
            a -> b -> Type

However, for efficiency's sake we represent saturated applications of (->)
with FunTy. For instance, the type,

    (->) r1 r2 a b

is equivalent to,

    FunTy (Anon a) b

Note how the RuntimeReps are implied in the FunTy representation. For this
reason we must be careful when reconstructing the TyConApp representation (see,
for instance, splitTyConApp_maybe).

In the compiler we maintain the invariant that all saturated applications of
(->) are represented with FunTy.

See #11714.
-}

splitFunTy :: Type -> (Mult, Type, Type)
-- ^ Attempts to extract the multiplicity, argument and result types from a type,
-- and panics if that is not possible. See also 'splitFunTy_maybe'
splitFunTy = expectJust "splitFunTy" . splitFunTy_maybe

{-# INLINE splitFunTy_maybe #-}
splitFunTy_maybe :: Type -> Maybe (Mult, Type, Type)
-- ^ Attempts to extract the multiplicity, argument and result types from a type
splitFunTy_maybe ty
  | FunTy _ w arg res <- coreFullView ty = Just (w, arg, res)
  | otherwise                            = Nothing

splitFunTys :: Type -> ([Scaled Type], Type)
splitFunTys ty = split [] ty ty
  where
      -- common case first
    split args _       (FunTy _ w arg res) = split ((Scaled w arg):args) res res
    split args orig_ty ty | Just ty' <- coreView ty = split args orig_ty ty'
    split args orig_ty _                   = (reverse args, orig_ty)

funResultTy :: Type -> Type
-- ^ Extract the function result type and panic if that is not possible
funResultTy ty
  | FunTy { ft_res = res } <- coreFullView ty = res
  | otherwise                                 = pprPanic "funResultTy" (ppr ty)

funArgTy :: Type -> Type
-- ^ Extract the function argument type and panic if that is not possible
funArgTy ty
  | FunTy { ft_arg = arg } <- coreFullView ty = arg
  | otherwise                                 = pprPanic "funArgTy" (ppr ty)

-- ^ Just like 'piResultTys' but for a single argument
-- Try not to iterate 'piResultTy', because it's inefficient to substitute
-- one variable at a time; instead use 'piResultTys"
piResultTy :: HasDebugCallStack => Type -> Type ->  Type
piResultTy ty arg = case piResultTy_maybe ty arg of
                      Just res -> res
                      Nothing  -> pprPanic "piResultTy" (ppr ty $$ ppr arg)

piResultTy_maybe :: Type -> Type -> Maybe Type
-- We don't need a 'tc' version, because
-- this function behaves the same for Type and Constraint
piResultTy_maybe ty arg = case coreFullView ty of
  FunTy { ft_res = res } -> Just res

  ForAllTy (Bndr tv _) res
    -> let empty_subst = mkEmptyTCvSubst $ mkInScopeSet $
                         tyCoVarsOfTypes [arg,res]
       in Just (substTy (extendTCvSubst empty_subst tv arg) res)

  _ -> Nothing

-- | (piResultTys f_ty [ty1, .., tyn]) gives the type of (f ty1 .. tyn)
--   where f :: f_ty
-- 'piResultTys' is interesting because:
--      1. 'f_ty' may have more for-alls than there are args
--      2. Less obviously, it may have fewer for-alls
-- For case 2. think of:
--   piResultTys (forall a.a) [forall b.b, Int]
-- This really can happen, but only (I think) in situations involving
-- undefined.  For example:
--       undefined :: forall a. a
-- Term: undefined @(forall b. b->b) @Int
-- This term should have type (Int -> Int), but notice that
-- there are more type args than foralls in 'undefined's type.

-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism] in GHC.Core.Lint

-- This is a heavily used function (e.g. from typeKind),
-- so we pay attention to efficiency, especially in the special case
-- where there are no for-alls so we are just dropping arrows from
-- a function type/kind.
piResultTys :: HasDebugCallStack => Type -> [Type] -> Type
piResultTys ty [] = ty
piResultTys ty orig_args@(arg:args)
  | FunTy { ft_res = res } <- ty
  = piResultTys res args

  | ForAllTy (Bndr tv _) res <- ty
  = go (extendTCvSubst init_subst tv arg) res args

  | Just ty' <- coreView ty
  = piResultTys ty' orig_args

  | otherwise
  = pprPanic "piResultTys1" (ppr ty $$ ppr orig_args)
  where
    init_subst = mkEmptyTCvSubst $ mkInScopeSet (tyCoVarsOfTypes (ty:orig_args))

    go :: TCvSubst -> Type -> [Type] -> Type
    go subst ty [] = substTyUnchecked subst ty

    go subst ty all_args@(arg:args)
      | FunTy { ft_res = res } <- ty
      = go subst res args

      | ForAllTy (Bndr tv _) res <- ty
      = go (extendTCvSubst subst tv arg) res args

      | Just ty' <- coreView ty
      = go subst ty' all_args

      | not (isEmptyTCvSubst subst)  -- See Note [Care with kind instantiation]
      = go init_subst
          (substTy subst ty)
          all_args

      | otherwise
      = -- We have not run out of arguments, but the function doesn't
        -- have the right kind to apply to them; so panic.
        -- Without the explicit isEmptyVarEnv test, an ill-kinded type
        -- would give an infinite loop, which is very unhelpful
        -- c.f. #15473
        pprPanic "piResultTys2" (ppr ty $$ ppr orig_args $$ ppr all_args)

applyTysX :: [TyVar] -> Type -> [Type] -> Type
-- applyTyxX beta-reduces (/\tvs. body_ty) arg_tys
-- Assumes that (/\tvs. body_ty) is closed
applyTysX tvs body_ty arg_tys
  = assertPpr (arg_tys `lengthAtLeast` n_tvs) pp_stuff $
    assertPpr (tyCoVarsOfType body_ty `subVarSet` mkVarSet tvs) pp_stuff $
    mkAppTys (substTyWith tvs (take n_tvs arg_tys) body_ty)
             (drop n_tvs arg_tys)
  where
    pp_stuff = vcat [ppr tvs, ppr body_ty, ppr arg_tys]
    n_tvs = length tvs



{- Note [Care with kind instantiation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
  T :: forall k. k
and we are finding the kind of
  T (forall b. b -> b) * Int
Then
  T (forall b. b->b) :: k[ k :-> forall b. b->b]
                     :: forall b. b -> b
So
  T (forall b. b->b) * :: (b -> b)[ b :-> *]
                       :: * -> *

In other words we must instantiate the forall!

Similarly (#15428)
   S :: forall k f. k -> f k
and we are finding the kind of
   S * (* ->) Int Bool
We have
   S * (* ->) :: (k -> f k)[ k :-> *, f :-> (* ->)]
              :: * -> * -> *
So again we must instantiate.

The same thing happens in GHC.CoreToIface.toIfaceAppArgsX.

---------------------------------------------------------------------
                                TyConApp
                                ~~~~~~~~
-}

-- splitTyConApp "looks through" synonyms, because they don't
-- mean a distinct type, but all other type-constructor applications
-- including functions are returned as Just ..

-- | Retrieve the tycon heading this type, if there is one. Does /not/
-- look through synonyms.
tyConAppTyConPicky_maybe :: Type -> Maybe TyCon
tyConAppTyConPicky_maybe (TyConApp tc _) = Just tc
tyConAppTyConPicky_maybe (FunTy {})      = Just funTyCon
tyConAppTyConPicky_maybe _               = Nothing


-- | The same as @fst . splitTyConApp@
{-# INLINE tyConAppTyCon_maybe #-}
tyConAppTyCon_maybe :: Type -> Maybe TyCon
tyConAppTyCon_maybe ty = case coreFullView ty of
  TyConApp tc _ -> Just tc
  FunTy {}      -> Just funTyCon
  _             -> Nothing

tyConAppTyCon :: HasDebugCallStack => Type -> TyCon
tyConAppTyCon ty = tyConAppTyCon_maybe ty `orElse` pprPanic "tyConAppTyCon" (ppr ty)

-- | The same as @snd . splitTyConApp@
tyConAppArgs_maybe :: Type -> Maybe [Type]
tyConAppArgs_maybe ty = case coreFullView ty of
  TyConApp _ tys -> Just tys
  FunTy _ w arg res
    | Just rep1 <- getRuntimeRep_maybe arg
    , Just rep2 <- getRuntimeRep_maybe res
    -> Just [w, rep1, rep2, arg, res]
  _ -> Nothing

tyConAppArgs :: Type -> [Type]
tyConAppArgs ty = tyConAppArgs_maybe ty `orElse` pprPanic "tyConAppArgs" (ppr ty)

tyConAppArgN :: Int -> Type -> Type
-- Executing Nth
tyConAppArgN n ty
  = case tyConAppArgs_maybe ty of
      Just tys -> tys `getNth` n
      Nothing  -> pprPanic "tyConAppArgN" (ppr n <+> ppr ty)

-- | Attempts to tease a type apart into a type constructor and the application
-- of a number of arguments to that constructor. Panics if that is not possible.
-- See also 'splitTyConApp_maybe'
splitTyConApp :: Type -> (TyCon, [Type])
splitTyConApp ty = case splitTyConApp_maybe ty of
                   Just stuff -> stuff
                   Nothing    -> pprPanic "splitTyConApp" (ppr ty)

-- | Attempts to tease a type apart into a type constructor and the application
-- of a number of arguments to that constructor
splitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe = repSplitTyConApp_maybe . coreFullView

-- | Split a type constructor application into its type constructor and
-- applied types. Note that this may fail in the case of a 'FunTy' with an
-- argument of unknown kind 'FunTy' (e.g. @FunTy (a :: k) Int@. since the kind
-- of @a@ isn't of the form @TYPE rep@). Consequently, you may need to zonk your
-- type before using this function.
--
-- This does *not* split types headed with (=>), as that's not a TyCon in the
-- type-checker.
--
-- If you only need the 'TyCon', consider using 'tcTyConAppTyCon_maybe'.
tcSplitTyConApp_maybe :: HasCallStack => Type -> Maybe (TyCon, [Type])
-- Defined here to avoid module loops between Unify and TcType.
tcSplitTyConApp_maybe ty | Just ty' <- tcView ty = tcSplitTyConApp_maybe ty'
                         | otherwise             = tcRepSplitTyConApp_maybe ty

-------------------
repSplitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type])
-- ^ Like 'splitTyConApp_maybe', but doesn't look through synonyms. This
-- assumes the synonyms have already been dealt with.
repSplitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys)
repSplitTyConApp_maybe (FunTy _ w arg res)
  -- NB: we're in Core, so no check for VisArg
  = Just (funTyCon, [w, arg_rep, res_rep, arg, res])
  where
    arg_rep = getRuntimeRep arg
    res_rep = getRuntimeRep res
repSplitTyConApp_maybe _ = Nothing

tcRepSplitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type])
-- ^ Like 'tcSplitTyConApp_maybe', but doesn't look through synonyms. This
-- assumes the synonyms have already been dealt with.
--
-- Moreover, for a FunTy, it only succeeds if the argument types
-- have enough info to extract the runtime-rep arguments that
-- the funTyCon requires.  This will usually be true;
-- but may be temporarily false during canonicalization:
--     see Note [Decomposing FunTy] in GHC.Tc.Solver.Canonical
--     and Note [The Purely Kinded Type Invariant (PKTI)] in GHC.Tc.Gen.HsType,
--         Wrinkle around FunTy
tcRepSplitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys)
tcRepSplitTyConApp_maybe (FunTy VisArg w arg res)
  -- NB: VisArg. See Note [Decomposing fat arrow c=>t]
  | Just arg_rep <- getRuntimeRep_maybe arg
  , Just res_rep <- getRuntimeRep_maybe res
  = Just (funTyCon, [w, arg_rep, res_rep, arg, res])
tcRepSplitTyConApp_maybe _ = Nothing

-------------------
-- | Attempts to tease a list type apart and gives the type of the elements if
-- successful (looks through type synonyms)
splitListTyConApp_maybe :: Type -> Maybe Type
splitListTyConApp_maybe ty = case splitTyConApp_maybe ty of
  Just (tc,[e]) | tc == listTyCon -> Just e
  _other                          -> Nothing

newTyConInstRhs :: TyCon -> [Type] -> Type
-- ^ Unwrap one 'layer' of newtype on a type constructor and its
-- arguments, using an eta-reduced version of the @newtype@ if possible.
-- This requires tys to have at least @newTyConInstArity tycon@ elements.
newTyConInstRhs tycon tys
    = assertPpr (tvs `leLength` tys) (ppr tycon $$ ppr tys $$ ppr tvs) $
      applyTysX tvs rhs tys
  where
    (tvs, rhs) = newTyConEtadRhs tycon

{-
---------------------------------------------------------------------
                           CastTy
                           ~~~~~~
A casted type has its *kind* casted into something new.
-}

splitCastTy_maybe :: Type -> Maybe (Type, Coercion)
splitCastTy_maybe ty
  | CastTy ty' co <- coreFullView ty = Just (ty', co)
  | otherwise                        = Nothing

-- | Make a 'CastTy'. The Coercion must be nominal. Checks the
-- Coercion for reflexivity, dropping it if it's reflexive.
-- See @Note [Respecting definitional equality]@ in "GHC.Core.TyCo.Rep"
mkCastTy :: Type -> Coercion -> Type
mkCastTy orig_ty co | isReflexiveCo co = orig_ty  -- (EQ2) from the Note
-- NB: Do the slow check here. This is important to keep the splitXXX
-- functions working properly. Otherwise, we may end up with something
-- like (((->) |> something_reflexive_but_not_obviously_so) biz baz)
-- fails under splitFunTy_maybe. This happened with the cheaper check
-- in test dependent/should_compile/dynamic-paper.
mkCastTy orig_ty co = mk_cast_ty orig_ty co

-- | Like 'mkCastTy', but avoids checking the coercion for reflexivity,
-- as that can be expensive.
mk_cast_ty :: Type -> Coercion -> Type
mk_cast_ty orig_ty co = go orig_ty
  where
    go :: Type -> Type
    -- See Note [Using coreView in mk_cast_ty]
    go ty | Just ty' <- coreView ty = go ty'

    go (CastTy ty co1)
      -- (EQ3) from the Note
      = mkCastTy ty (co1 `mkTransCo` co)
          -- call mkCastTy again for the reflexivity check

    go (ForAllTy (Bndr tv vis) inner_ty)
      -- (EQ4) from the Note
      -- See Note [Weird typing rule for ForAllTy] in GHC.Core.TyCo.Rep.
      | isTyVar tv
      , let fvs = tyCoVarsOfCo co
      = -- have to make sure that pushing the co in doesn't capture the bound var!
        if tv `elemVarSet` fvs
        then let empty_subst = mkEmptyTCvSubst (mkInScopeSet fvs)
                 (subst, tv') = substVarBndr empty_subst tv
             in ForAllTy (Bndr tv' vis) (substTy subst inner_ty `mk_cast_ty` co)
        else ForAllTy (Bndr tv vis) (inner_ty `mk_cast_ty` co)

    go _ = CastTy orig_ty co -- NB: orig_ty: preserve synonyms if possible

{-
Note [Using coreView in mk_cast_ty]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Invariants (EQ3) and (EQ4) of Note [Respecting definitional equality] in
GHC.Core.TyCo.Rep must apply regardless of type synonyms. For instance,
consider this example (#19742):

   type EqSameNat = () |> co
   useNatEq :: EqSameNat |> sym co

(Those casts aren't visible in the user-source code, of course; see #19742 for
what the user might write.)

The type `EqSameNat |> sym co` looks as if it satisfies (EQ3), as it has no
nested casts, but if we expand EqSameNat, we see that it doesn't.
And then Bad Things happen.

The solution is easy: just use `coreView` when establishing (EQ3) and (EQ4) in
`mk_cast_ty`.
-}

tyConBindersTyCoBinders :: [TyConBinder] -> [TyCoBinder]
-- Return the tyConBinders in TyCoBinder form
tyConBindersTyCoBinders = map to_tyb
  where
    to_tyb (Bndr tv (NamedTCB vis)) = Named (Bndr tv vis)
    to_tyb (Bndr tv (AnonTCB af))   = Anon af (tymult (varType tv))

-- | (mkTyConTy tc) returns (TyConApp tc [])
-- but arranges to share that TyConApp among all calls
-- See Note [Sharing nullary TyConApps] in GHC.Core.TyCon
mkTyConTy :: TyCon -> Type
mkTyConTy tycon = tyConNullaryTy tycon

-- | A key function: builds a 'TyConApp' or 'FunTy' as appropriate to
-- its arguments.  Applies its arguments to the constructor from left to right.
mkTyConApp :: TyCon -> [Type] -> Type
mkTyConApp tycon []
  = -- See Note [Sharing nullary TyConApps] in GHC.Core.TyCon
    mkTyConTy tycon

mkTyConApp tycon tys@(ty1:rest)
  | key == funTyConKey
  = case tys of
      [w, _rep1,_rep2,arg,res] -> FunTy { ft_af = VisArg, ft_mult = w
                                        , ft_arg = arg, ft_res = res }
      _ -> bale_out

  -- See Note [Using synonyms to compress types]
  | key == tYPETyConKey
  = assert (null rest) $
--    mkTYPEapp_maybe ty1 `orElse` bale_out
    case mkTYPEapp_maybe ty1 of
      Just ty -> ty -- pprTrace "mkTYPEapp:yes" (ppr ty) ty
      Nothing -> bale_out -- pprTrace "mkTYPEapp:no" (ppr bale_out) bale_out

  -- See Note [Using synonyms to compress types]
  | key == boxedRepDataConTyConKey
  = assert (null rest) $
--     mkBoxedRepApp_maybe ty1 `orElse` bale_out
    case mkBoxedRepApp_maybe ty1 of
      Just ty -> ty -- pprTrace "mkBoxedRepApp:yes" (ppr ty) ty
      Nothing -> bale_out -- pprTrace "mkBoxedRepApp:no" (ppr bale_out) bale_out

  | key == tupleRepDataConTyConKey
  = case mkTupleRepApp_maybe ty1 of
      Just ty -> ty -- pprTrace "mkTupleRepApp:yes" (ppr ty) ty
      Nothing -> bale_out -- pprTrace "mkTupleRepApp:no" (ppr bale_out) bale_out

  -- The catch-all case
  | otherwise
  = bale_out
  where
    key = tyConUnique tycon
    bale_out = TyConApp tycon tys

mkTYPEapp :: Type -> Type
mkTYPEapp rr
  = case mkTYPEapp_maybe rr of
       Just ty -> ty
       Nothing -> TyConApp tYPETyCon [rr]

mkTYPEapp_maybe :: Type -> Maybe Type
-- ^ Given a @RuntimeRep@, applies @TYPE@ to it.
-- On the fly it rewrites
--      TYPE LiftedRep      -->   liftedTypeKind    (a synonym)
--      TYPE UnliftedRep    -->   unliftedTypeKind  (ditto)
--      TYPE ZeroBitRep     -->   zeroBitTypeKind   (ditto)
-- NB: no need to check for TYPE (BoxedRep Lifted), TYPE (BoxedRep Unlifted)
--     because those inner types should already have been rewritten
--     to LiftedRep and UnliftedRep respectively, by mkTyConApp
--
-- see Note [TYPE and RuntimeRep] in GHC.Builtin.Types.Prim.
-- See Note [Using synonyms to compress types] in GHC.Core.Type
{-# NOINLINE mkTYPEapp_maybe #-}
mkTYPEapp_maybe (TyConApp tc args)
  | key == liftedRepTyConKey    = assert (null args) $ Just liftedTypeKind   -- TYPE LiftedRep
  | key == unliftedRepTyConKey  = assert (null args) $ Just unliftedTypeKind -- TYPE UnliftedRep
  | key == zeroBitRepTyConKey   = assert (null args) $ Just zeroBitTypeKind  -- TYPE ZeroBitRep
  where
    key = tyConUnique tc
mkTYPEapp_maybe _ = Nothing

mkBoxedRepApp_maybe :: Type -> Maybe Type
-- ^ Given a `Levity`, apply `BoxedRep` to it
-- On the fly, rewrite
--      BoxedRep Lifted     -->   liftedRepTy    (a synonym)
--      BoxedRep Unlifted   -->   unliftedRepTy  (ditto)
-- See Note [TYPE and RuntimeRep] in GHC.Builtin.Types.Prim.
-- See Note [Using synonyms to compress types] in GHC.Core.Type
{-# NOINLINE mkBoxedRepApp_maybe #-}
mkBoxedRepApp_maybe (TyConApp tc args)
  | key == liftedDataConKey   = assert (null args) $ Just liftedRepTy    -- BoxedRep Lifted
  | key == unliftedDataConKey = assert (null args) $ Just unliftedRepTy  -- BoxedRep Unlifted
  where
    key = tyConUnique tc
mkBoxedRepApp_maybe _ = Nothing

mkTupleRepApp_maybe :: Type -> Maybe Type
-- ^ Given a `[RuntimeRep]`, apply `TupleRep` to it
-- On the fly, rewrite
--      TupleRep [] -> zeroBitRepTy   (a synonym)
-- See Note [TYPE and RuntimeRep] in GHC.Builtin.Types.Prim.
-- See Note [Using synonyms to compress types] in GHC.Core.Type
{-# NOINLINE mkTupleRepApp_maybe #-}
mkTupleRepApp_maybe (TyConApp tc args)
  | key == nilDataConKey = assert (isSingleton args) $ Just zeroBitRepTy  -- ZeroBitRep
  where
    key = tyConUnique tc
mkTupleRepApp_maybe _ = Nothing

{- Note [Using synonyms to compress types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Was: Prefer Type over TYPE (BoxedRep Lifted)]

The Core of nearly any program will have numerous occurrences of the Types

   TyConApp BoxedRep [TyConApp Lifted []]    -- Synonym LiftedRep
   TyConApp BoxedRep [TyConApp Unlifted []]  -- Synonym UnliftedREp
   TyConApp TYPE [TyConApp LiftedRep []]     -- Synonym Type
   TyConApp TYPE [TyConApp UnliftedRep []]   -- Synonym UnliftedType

While investigating #17292 we found that these constituted a majority
of all TyConApp constructors on the heap:

    (From a sample of 100000 TyConApp closures)
    0x45f3523    - 28732 - `Type`
    0x420b840702 - 9629  - generic type constructors
    0x42055b7e46 - 9596
    0x420559b582 - 9511
    0x420bb15a1e - 9509
    0x420b86c6ba - 9501
    0x42055bac1e - 9496
    0x45e68fd    - 538   - `TYPE ...`

Consequently, we try hard to ensure that operations on such types are
efficient. Specifically, we strive to

 a. Avoid heap allocation of such types; use a single static TyConApp
 b. Use a small (shallow in the tree-depth sense) representation
    for such types

Goal (b) is particularly useful as it makes traversals (e.g. free variable
traversal, substitution, and comparison) more efficient.
Comparison in particular takes special advantage of nullary type synonym
applications (e.g. things like @TyConApp typeTyCon []@), Note [Comparing
nullary type synonyms] in "GHC.Core.Type".

To accomplish these we use a number of tricks, implemented by mkTyConApp.

 1. Instead of (TyConApp BoxedRep [TyConApp Lifted []]),
    we prefer a statically-allocated (TyConApp LiftedRep [])
    where `LiftedRep` is a type synonym:
       type LiftedRep = BoxedRep Lifted
    Similarly for UnliftedRep

 2. Instead of (TyConApp TYPE [TyConApp LiftedRep []])
    we prefer the statically-allocated (TyConApp Type [])
    where `Type` is a type synonym
       type Type = TYPE LiftedRep
    Similarly for UnliftedType

These serve goal (b) since there are no applied type arguments to traverse,
e.g., during comparison.

 3. We have a single, statically allocated top-level binding to
    represent `TyConApp GHC.Types.Type []` (namely
    'GHC.Builtin.Types.Prim.liftedTypeKind'), ensuring that we don't
    need to allocate such types (goal (a)).  See functions
    mkTYPEapp and mkBoxedRepApp

 4. We use the sharing mechanism described in Note [Sharing nullary TyConApps]
    in GHC.Core.TyCon to ensure that we never need to allocate such
    nullary applications (goal (a)).

See #17958, #20541

Note [Care using synonyms to compress types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Using a synonym to compress a types has a tricky wrinkle. Consider
coreView applied to (TyConApp LiftedRep [])

* coreView expands the LiftedRep synonym:
     type LiftedRep = BoxedRep Lifted

* Danger: we might apply the empty substitution to the RHS of the
  synonym.  And substTy calls mkTyConApp BoxedRep [Lifted]. And
  mkTyConApp compresses that back to LiftedRep.  Loop!

* Solution: in expandSynTyConApp_maybe, don't call substTy for nullary
  type synonyms.  That's more efficient anyway.
-}



{-
--------------------------------------------------------------------
                            CoercionTy
                            ~~~~~~~~~~
CoercionTy allows us to inject coercions into types. A CoercionTy
should appear only in the right-hand side of an application.
-}

mkCoercionTy :: Coercion -> Type
mkCoercionTy = CoercionTy

isCoercionTy :: Type -> Bool
isCoercionTy (CoercionTy _) = True
isCoercionTy _              = False

isCoercionTy_maybe :: Type -> Maybe Coercion
isCoercionTy_maybe (CoercionTy co) = Just co
isCoercionTy_maybe _               = Nothing

stripCoercionTy :: Type -> Coercion
stripCoercionTy (CoercionTy co) = co
stripCoercionTy ty              = pprPanic "stripCoercionTy" (ppr ty)

{-
---------------------------------------------------------------------
                                SynTy
                                ~~~~~

Notes on type synonyms
~~~~~~~~~~~~~~~~~~~~~~
The various "split" functions (splitFunTy, splitRhoTy, splitForAllTy) try
to return type synonyms wherever possible. Thus

        type Foo a = a -> a

we want
        splitFunTys (a -> Foo a) = ([a], Foo a)
not                                ([a], a -> a)

The reason is that we then get better (shorter) type signatures in
interfaces.  Notably this plays a role in tcTySigs in GHC.Tc.Gen.Bind.


---------------------------------------------------------------------
                                ForAllTy
                                ~~~~~~~~
-}

-- | Make a dependent forall over an 'Inferred' variable
mkTyCoInvForAllTy :: TyCoVar -> Type -> Type
mkTyCoInvForAllTy tv ty
  | isCoVar tv
  , not (tv `elemVarSet` tyCoVarsOfType ty)
  = mkVisFunTyMany (varType tv) ty
  | otherwise
  = ForAllTy (Bndr tv Inferred) ty

-- | Like 'mkTyCoInvForAllTy', but tv should be a tyvar
mkInfForAllTy :: TyVar -> Type -> Type
mkInfForAllTy tv ty = assert (isTyVar tv )
                      ForAllTy (Bndr tv Inferred) ty

-- | Like 'mkForAllTys', but assumes all variables are dependent and
-- 'Inferred', a common case
mkTyCoInvForAllTys :: [TyCoVar] -> Type -> Type
mkTyCoInvForAllTys tvs ty = foldr mkTyCoInvForAllTy ty tvs

-- | Like 'mkTyCoInvForAllTys', but tvs should be a list of tyvar
mkInfForAllTys :: [TyVar] -> Type -> Type
mkInfForAllTys tvs ty = foldr mkInfForAllTy ty tvs

-- | Like 'mkForAllTy', but assumes the variable is dependent and 'Specified',
-- a common case
mkSpecForAllTy :: TyVar -> Type -> Type
mkSpecForAllTy tv ty = assert (isTyVar tv )
                       -- covar is always Inferred, so input should be tyvar
                       ForAllTy (Bndr tv Specified) ty

-- | Like 'mkForAllTys', but assumes all variables are dependent and
-- 'Specified', a common case
mkSpecForAllTys :: [TyVar] -> Type -> Type
mkSpecForAllTys tvs ty = foldr mkSpecForAllTy ty tvs

-- | Like mkForAllTys, but assumes all variables are dependent and visible
mkVisForAllTys :: [TyVar] -> Type -> Type
mkVisForAllTys tvs = assert (all isTyVar tvs )
                     -- covar is always Inferred, so all inputs should be tyvar
                     mkForAllTys [ Bndr tv Required | tv <- tvs ]

-- | Given a list of type-level vars and the free vars of a result kind,
-- makes TyCoBinders, preferring anonymous binders
-- if the variable is, in fact, not dependent.
-- e.g.    mkTyConBindersPreferAnon [(k:*),(b:k),(c:k)] (k->k)
-- We want (k:*) Named, (b:k) Anon, (c:k) Anon
--
-- All non-coercion binders are /visible/.
mkTyConBindersPreferAnon :: [TyVar]      -- ^ binders
                         -> TyCoVarSet   -- ^ free variables of result
                         -> [TyConBinder]
mkTyConBindersPreferAnon vars inner_tkvs = assert (all isTyVar vars)
                                           fst (go vars)
  where
    go :: [TyVar] -> ([TyConBinder], VarSet) -- also returns the free vars
    go [] = ([], inner_tkvs)
    go (v:vs) | v `elemVarSet` fvs
              = ( Bndr v (NamedTCB Required) : binders
                , fvs `delVarSet` v `unionVarSet` kind_vars )
              | otherwise
              = ( Bndr v (AnonTCB VisArg) : binders
                , fvs `unionVarSet` kind_vars )
      where
        (binders, fvs) = go vs
        kind_vars      = tyCoVarsOfType $ tyVarKind v

-- | Take a ForAllTy apart, returning the list of tycovars and the result type.
-- This always succeeds, even if it returns only an empty list. Note that the
-- result type returned may have free variables that were bound by a forall.
splitForAllTyCoVars :: Type -> ([TyCoVar], Type)
splitForAllTyCoVars ty = split ty ty []
  where
    split _       (ForAllTy (Bndr tv _) ty)    tvs = split ty ty (tv:tvs)
    split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs
    split orig_ty _                            tvs = (reverse tvs, orig_ty)

-- | Splits the longest initial sequence of 'ForAllTy's that satisfy
-- @argf_pred@, returning the binders transformed by @argf_pred@
splitSomeForAllTyCoVarBndrs :: (ArgFlag -> Maybe af) -> Type -> ([VarBndr TyCoVar af], Type)
splitSomeForAllTyCoVarBndrs argf_pred ty = split ty ty []
  where
    split _ (ForAllTy (Bndr tcv argf) ty) tvs
      | Just argf' <- argf_pred argf               = split ty ty (Bndr tcv argf' : tvs)
    split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs
    split orig_ty _                            tvs = (reverse tvs, orig_ty)

-- | Like 'splitForAllTyCoVars', but only splits 'ForAllTy's with 'Required' type
-- variable binders. Furthermore, each returned tyvar is annotated with '()'.
splitForAllReqTVBinders :: Type -> ([ReqTVBinder], Type)
splitForAllReqTVBinders ty = splitSomeForAllTyCoVarBndrs argf_pred ty
  where
    argf_pred :: ArgFlag -> Maybe ()
    argf_pred Required       = Just ()
    argf_pred (Invisible {}) = Nothing

-- | Like 'splitForAllTyCoVars', but only splits 'ForAllTy's with 'Invisible' type
-- variable binders. Furthermore, each returned tyvar is annotated with its
-- 'Specificity'.
splitForAllInvisTVBinders :: Type -> ([InvisTVBinder], Type)
splitForAllInvisTVBinders ty = splitSomeForAllTyCoVarBndrs argf_pred ty
  where
    argf_pred :: ArgFlag -> Maybe Specificity
    argf_pred Required         = Nothing
    argf_pred (Invisible spec) = Just spec

-- | Like 'splitForAllTyCoVars', but split only for tyvars.
-- This always succeeds, even if it returns only an empty list. Note that the
-- result type returned may have free variables that were bound by a forall.
splitForAllTyVars :: Type -> ([TyVar], Type)
splitForAllTyVars ty = split ty ty []
  where
    split _ (ForAllTy (Bndr tv _) ty) tvs | isTyVar tv = split ty ty (tv:tvs)
    split orig_ty ty tvs | Just ty' <- coreView ty     = split orig_ty ty' tvs
    split orig_ty _                   tvs              = (reverse tvs, orig_ty)

-- | Checks whether this is a proper forall (with a named binder)
isForAllTy :: Type -> Bool
isForAllTy ty
  | ForAllTy {} <- coreFullView ty = True
  | otherwise                      = False

-- | Like `isForAllTy`, but returns True only if it is a tyvar binder
isForAllTy_ty :: Type -> Bool
isForAllTy_ty ty
  | ForAllTy (Bndr tv _) _ <- coreFullView ty
  , isTyVar tv
  = True

  | otherwise = False

-- | Like `isForAllTy`, but returns True only if it is a covar binder
isForAllTy_co :: Type -> Bool
isForAllTy_co ty
  | ForAllTy (Bndr tv _) _ <- coreFullView ty
  , isCoVar tv
  = True

  | otherwise = False

-- | Is this a function or forall?
isPiTy :: Type -> Bool
isPiTy ty = case coreFullView ty of
  ForAllTy {} -> True
  FunTy {}    -> True
  _           -> False

-- | Is this a function?
isFunTy :: Type -> Bool
isFunTy ty
  | FunTy {} <- coreFullView ty = True
  | otherwise                   = False

-- | Take a forall type apart, or panics if that is not possible.
splitForAllTyCoVar :: Type -> (TyCoVar, Type)
splitForAllTyCoVar ty
  | Just answer <- splitForAllTyCoVar_maybe ty = answer
  | otherwise                                  = pprPanic "splitForAllTyCoVar" (ppr ty)

-- | Drops all ForAllTys
dropForAlls :: Type -> Type
dropForAlls ty = go ty
  where
    go (ForAllTy _ res)            = go res
    go ty | Just ty' <- coreView ty = go ty'
    go res                         = res

-- | Attempts to take a forall type apart, but only if it's a proper forall,
-- with a named binder
splitForAllTyCoVar_maybe :: Type -> Maybe (TyCoVar, Type)
splitForAllTyCoVar_maybe ty
  | ForAllTy (Bndr tv _) inner_ty <- coreFullView ty = Just (tv, inner_ty)
  | otherwise                                        = Nothing

-- | Like 'splitForAllTyCoVar_maybe', but only returns Just if it is a tyvar binder.
splitForAllTyVar_maybe :: Type -> Maybe (TyCoVar, Type)
splitForAllTyVar_maybe ty
  | ForAllTy (Bndr tv _) inner_ty <- coreFullView ty
  , isTyVar tv
  = Just (tv, inner_ty)

  | otherwise = Nothing

-- | Like 'splitForAllTyCoVar_maybe', but only returns Just if it is a covar binder.
splitForAllCoVar_maybe :: Type -> Maybe (TyCoVar, Type)
splitForAllCoVar_maybe ty
  | ForAllTy (Bndr tv _) inner_ty <- coreFullView ty
  , isCoVar tv
  = Just (tv, inner_ty)

  | otherwise = Nothing

-- | Attempts to take a forall type apart; works with proper foralls and
-- functions
{-# INLINE splitPiTy_maybe #-}  -- callers will immediately deconstruct
splitPiTy_maybe :: Type -> Maybe (TyCoBinder, Type)
splitPiTy_maybe ty = case coreFullView ty of
  ForAllTy bndr ty -> Just (Named bndr, ty)
  FunTy { ft_af = af, ft_mult = w, ft_arg = arg, ft_res = res}
                   -> Just (Anon af (mkScaled w arg), res)
  _                -> Nothing

-- | Takes a forall type apart, or panics
splitPiTy :: Type -> (TyCoBinder, Type)
splitPiTy ty
  | Just answer <- splitPiTy_maybe ty = answer
  | otherwise                         = pprPanic "splitPiTy" (ppr ty)

-- | Split off all TyCoBinders to a type, splitting both proper foralls
-- and functions
splitPiTys :: Type -> ([TyCoBinder], Type)
splitPiTys ty = split ty ty []
  where
    split _       (ForAllTy b res) bs = split res res (Named b  : bs)
    split _       (FunTy { ft_af = af, ft_mult = w, ft_arg = arg, ft_res = res }) bs
                                      = split res res (Anon af (Scaled w arg) : bs)
    split orig_ty ty bs | Just ty' <- coreView ty = split orig_ty ty' bs
    split orig_ty _                bs = (reverse bs, orig_ty)

-- | Like 'splitPiTys' but split off only /named/ binders
--   and returns 'TyCoVarBinder's rather than 'TyCoBinder's
splitForAllTyCoVarBinders :: Type -> ([TyCoVarBinder], Type)
splitForAllTyCoVarBinders ty = split ty ty []
  where
    split orig_ty ty bs | Just ty' <- coreView ty = split orig_ty ty' bs
    split _       (ForAllTy b res) bs = split res res (b:bs)
    split orig_ty _                bs = (reverse bs, orig_ty)
{-# INLINE splitForAllTyCoVarBinders #-}

invisibleTyBndrCount :: Type -> Int
-- Returns the number of leading invisible forall'd binders in the type
-- Includes invisible predicate arguments; e.g. for
--    e.g.  forall {k}. (k ~ *) => k -> k
-- returns 2 not 1
invisibleTyBndrCount ty = length (fst (splitInvisPiTys ty))

-- | Like 'splitPiTys', but returns only *invisible* binders, including constraints.
-- Stops at the first visible binder.
splitInvisPiTys :: Type -> ([TyCoBinder], Type)
splitInvisPiTys ty = split ty ty []
   where
    split _ (ForAllTy b res) bs
      | Bndr _ vis <- b
      , isInvisibleArgFlag vis   = split res res (Named b  : bs)
    split _ (FunTy { ft_af = InvisArg, ft_mult = mult, ft_arg = arg, ft_res = res })  bs
                                 = split res res (Anon InvisArg (mkScaled mult arg) : bs)
    split orig_ty ty bs
      | Just ty' <- coreView ty  = split orig_ty ty' bs
    split orig_ty _          bs  = (reverse bs, orig_ty)

splitInvisPiTysN :: Int -> Type -> ([TyCoBinder], Type)
-- ^ Same as 'splitInvisPiTys', but stop when
--   - you have found @n@ 'TyCoBinder's,
--   - or you run out of invisible binders
splitInvisPiTysN n ty = split n ty ty []
   where
    split n orig_ty ty bs
      | n == 0                  = (reverse bs, orig_ty)
      | Just ty' <- coreView ty = split n orig_ty ty' bs
      | ForAllTy b res <- ty
      , Bndr _ vis <- b
      , isInvisibleArgFlag vis  = split (n-1) res res (Named b  : bs)
      | FunTy { ft_af = InvisArg, ft_mult = mult, ft_arg = arg, ft_res = res } <- ty
                                = split (n-1) res res (Anon InvisArg (Scaled mult arg) : bs)
      | otherwise               = (reverse bs, orig_ty)

-- | Given a 'TyCon' and a list of argument types, filter out any invisible
-- (i.e., 'Inferred' or 'Specified') arguments.
filterOutInvisibleTypes :: TyCon -> [Type] -> [Type]
filterOutInvisibleTypes tc tys = snd $ partitionInvisibleTypes tc tys

-- | Given a 'TyCon' and a list of argument types, filter out any 'Inferred'
-- arguments.
filterOutInferredTypes :: TyCon -> [Type] -> [Type]
filterOutInferredTypes tc tys =
  filterByList (map (/= Inferred) $ tyConArgFlags tc tys) tys

-- | Given a 'TyCon' and a list of argument types, partition the arguments
-- into:
--
-- 1. 'Inferred' or 'Specified' (i.e., invisible) arguments and
--
-- 2. 'Required' (i.e., visible) arguments
partitionInvisibleTypes :: TyCon -> [Type] -> ([Type], [Type])
partitionInvisibleTypes tc tys =
  partitionByList (map isInvisibleArgFlag $ tyConArgFlags tc tys) tys

-- | Given a list of things paired with their visibilities, partition the
-- things into (invisible things, visible things).
partitionInvisibles :: [(a, ArgFlag)] -> ([a], [a])
partitionInvisibles = partitionWith pick_invis
  where
    pick_invis :: (a, ArgFlag) -> Either a a
    pick_invis (thing, vis) | isInvisibleArgFlag vis = Left thing
                            | otherwise              = Right thing

-- | Given a 'TyCon' and a list of argument types to which the 'TyCon' is
-- applied, determine each argument's visibility
-- ('Inferred', 'Specified', or 'Required').
--
-- Wrinkle: consider the following scenario:
--
-- > T :: forall k. k -> k
-- > tyConArgFlags T [forall m. m -> m -> m, S, R, Q]
--
-- After substituting, we get
--
-- > T (forall m. m -> m -> m) :: (forall m. m -> m -> m) -> forall n. n -> n -> n
--
-- Thus, the first argument is invisible, @S@ is visible, @R@ is invisible again,
-- and @Q@ is visible.
tyConArgFlags :: TyCon -> [Type] -> [ArgFlag]
tyConArgFlags tc = fun_kind_arg_flags (tyConKind tc)

-- | Given a 'Type' and a list of argument types to which the 'Type' is
-- applied, determine each argument's visibility
-- ('Inferred', 'Specified', or 'Required').
--
-- Most of the time, the arguments will be 'Required', but not always. Consider
-- @f :: forall a. a -> Type@. In @f Type Bool@, the first argument (@Type@) is
-- 'Specified' and the second argument (@Bool@) is 'Required'. It is precisely
-- this sort of higher-rank situation in which 'appTyArgFlags' comes in handy,
-- since @f Type Bool@ would be represented in Core using 'AppTy's.
-- (See also #15792).
appTyArgFlags :: Type -> [Type] -> [ArgFlag]
appTyArgFlags ty = fun_kind_arg_flags (typeKind ty)

-- | Given a function kind and a list of argument types (where each argument's
-- kind aligns with the corresponding position in the argument kind), determine
-- each argument's visibility ('Inferred', 'Specified', or 'Required').
fun_kind_arg_flags :: Kind -> [Type] -> [ArgFlag]
fun_kind_arg_flags = go emptyTCvSubst
  where
    go subst ki arg_tys
      | Just ki' <- coreView ki = go subst ki' arg_tys
    go _ _ [] = []
    go subst (ForAllTy (Bndr tv argf) res_ki) (arg_ty:arg_tys)
      = argf : go subst' res_ki arg_tys
      where
        subst' = extendTvSubst subst tv arg_ty
    go subst (TyVarTy tv) arg_tys
      | Just ki <- lookupTyVar subst tv = go subst ki arg_tys
    -- This FunTy case is important to handle kinds with nested foralls, such
    -- as this kind (inspired by #16518):
    --
    --   forall {k1} k2. k1 -> k2 -> forall k3. k3 -> Type
    --
    -- Here, we want to get the following ArgFlags:
    --
    -- [Inferred,   Specified, Required, Required, Specified, Required]
    -- forall {k1}. forall k2. k1 ->     k2 ->     forall k3. k3 ->     Type
    go subst (FunTy{ft_af = af, ft_res = res_ki}) (_:arg_tys)
      = argf : go subst res_ki arg_tys
      where
        argf = case af of
                 VisArg   -> Required
                 InvisArg -> Inferred
    go _ _ arg_tys = map (const Required) arg_tys
                        -- something is ill-kinded. But this can happen
                        -- when printing errors. Assume everything is Required.

-- @isTauTy@ tests if a type has no foralls or (=>)
isTauTy :: Type -> Bool
isTauTy ty | Just ty' <- coreView ty = isTauTy ty'
isTauTy (TyVarTy _)       = True
isTauTy (LitTy {})        = True
isTauTy (TyConApp tc tys) = all isTauTy tys && isTauTyCon tc
isTauTy (AppTy a b)       = isTauTy a && isTauTy b
isTauTy (FunTy af w a b)    = case af of
                                InvisArg -> False                               -- e.g., Eq a => b
                                VisArg   -> isTauTy w && isTauTy a && isTauTy b -- e.g., a -> b
isTauTy (ForAllTy {})     = False
isTauTy (CastTy ty _)     = isTauTy ty
isTauTy (CoercionTy _)    = False  -- Not sure about this

isAtomicTy :: Type -> Bool
-- True if the type is just a single token, and can be printed compactly
-- Used when deciding how to lay out type error messages; see the
-- call in GHC.Tc.Errors
isAtomicTy (TyVarTy {})    = True
isAtomicTy (LitTy {})      = True
isAtomicTy (TyConApp _ []) = True

isAtomicTy ty | isLiftedTypeKind ty = True
   -- 'Type' prints compactly as *
   -- See GHC.Iface.Type.ppr_kind_type

isAtomicTy _ = False

{-
%************************************************************************
%*                                                                      *
   TyCoBinders
%*                                                                      *
%************************************************************************
-}

-- | Make an anonymous binder
mkAnonBinder :: AnonArgFlag -> Scaled Type -> TyCoBinder
mkAnonBinder = Anon

-- | Does this binder bind a variable that is /not/ erased? Returns
-- 'True' for anonymous binders.
isAnonTyCoBinder :: TyCoBinder -> Bool
isAnonTyCoBinder (Named {}) = False
isAnonTyCoBinder (Anon {})  = True

tyCoBinderVar_maybe :: TyCoBinder -> Maybe TyCoVar
tyCoBinderVar_maybe (Named tv) = Just $ binderVar tv
tyCoBinderVar_maybe _          = Nothing

tyCoBinderType :: TyCoBinder -> Type
tyCoBinderType (Named tvb) = binderType tvb
tyCoBinderType (Anon _ ty)   = scaledThing ty

tyBinderType :: TyBinder -> Type
tyBinderType (Named (Bndr tv _))
  = assert (isTyVar tv )
    tyVarKind tv
tyBinderType (Anon _ ty)   = scaledThing ty

-- | Extract a relevant type, if there is one.
binderRelevantType_maybe :: TyCoBinder -> Maybe Type
binderRelevantType_maybe (Named {}) = Nothing
binderRelevantType_maybe (Anon _ ty)  = Just (scaledThing ty)

{-
************************************************************************
*                                                                      *
\subsection{Type families}
*                                                                      *
************************************************************************
-}

mkFamilyTyConApp :: TyCon -> [Type] -> Type
-- ^ Given a family instance TyCon and its arg types, return the
-- corresponding family type.  E.g:
--
-- > data family T a
-- > data instance T (Maybe b) = MkT b
--
-- Where the instance tycon is :RTL, so:
--
-- > mkFamilyTyConApp :RTL Int  =  T (Maybe Int)
mkFamilyTyConApp tc tys
  | Just (fam_tc, fam_tys) <- tyConFamInst_maybe tc
  , let tvs = tyConTyVars tc
        fam_subst = assertPpr (tvs `equalLength` tys) (ppr tc <+> ppr tys) $
                    zipTvSubst tvs tys
  = mkTyConApp fam_tc (substTys fam_subst fam_tys)
  | otherwise
  = mkTyConApp tc tys

-- | Get the type on the LHS of a coercion induced by a type/data
-- family instance.
coAxNthLHS :: CoAxiom br -> Int -> Type
coAxNthLHS ax ind =
  mkTyConApp (coAxiomTyCon ax) (coAxBranchLHS (coAxiomNthBranch ax ind))

isFamFreeTy :: Type -> Bool
isFamFreeTy ty | Just ty' <- coreView ty = isFamFreeTy ty'
isFamFreeTy (TyVarTy _)       = True
isFamFreeTy (LitTy {})        = True
isFamFreeTy (TyConApp tc tys) = all isFamFreeTy tys && isFamFreeTyCon tc
isFamFreeTy (AppTy a b)       = isFamFreeTy a && isFamFreeTy b
isFamFreeTy (FunTy _ w a b)   = isFamFreeTy w && isFamFreeTy a && isFamFreeTy b
isFamFreeTy (ForAllTy _ ty)   = isFamFreeTy ty
isFamFreeTy (CastTy ty _)     = isFamFreeTy ty
isFamFreeTy (CoercionTy _)    = False  -- Not sure about this

-- | Does this type classify a core (unlifted) Coercion?
-- At either role nominal or representational
--    (t1 ~# t2) or (t1 ~R# t2)
-- See Note [Types for coercions, predicates, and evidence] in "GHC.Core.TyCo.Rep"
isCoVarType :: Type -> Bool
  -- ToDo: should we check saturation?
isCoVarType ty
  | Just tc <- tyConAppTyCon_maybe ty
  = tc `hasKey` eqPrimTyConKey || tc `hasKey` eqReprPrimTyConKey
  | otherwise
  = False

buildSynTyCon :: Name -> [KnotTied TyConBinder] -> Kind   -- ^ /result/ kind
              -> [Role] -> KnotTied Type -> TyCon
-- This function is here because here is where we have
--   isFamFree and isTauTy
buildSynTyCon name binders res_kind roles rhs
  = mkSynonymTyCon name binders res_kind roles rhs is_tau is_fam_free is_forgetful
  where
    is_tau       = isTauTy rhs
    is_fam_free  = isFamFreeTy rhs
    is_forgetful = any (not . (`elemVarSet` tyCoVarsOfType rhs) . binderVar) binders ||
                   uniqSetAny isForgetfulSynTyCon (tyConsOfType rhs)
         -- NB: This is allowed to be conservative, returning True more often
         -- than it should. See comments on GHC.Core.TyCon.isForgetfulSynTyCon

{-
************************************************************************
*                                                                      *
\subsection{Liftedness}
*                                                                      *
************************************************************************
-}

-- | Returns Just True if this type is surely lifted, Just False
-- if it is surely unlifted, Nothing if we can't be sure (i.e., it is
-- representation-polymorphic), and panics if the kind does not have the shape
-- TYPE r.
isLiftedType_maybe :: HasDebugCallStack => Type -> Maybe Bool
isLiftedType_maybe ty = case coreFullView (getRuntimeRep ty) of
  ty' | isLiftedRuntimeRep ty'  -> Just True
      | isUnliftedRuntimeRep ty' -> Just False
  TyConApp {}                   -> Just False  -- Everything else is unlifted
  _                             -> Nothing     -- representation-polymorphic

-- | See "Type#type_classification" for what an unlifted type is.
-- Panics on representation-polymorphic types; See 'mightBeUnliftedType' for
-- a more approximate predicate that behaves better in the presence of
-- representation polymorphism.
isUnliftedType :: HasDebugCallStack => Type -> Bool
        -- isUnliftedType returns True for forall'd unlifted types:
        --      x :: forall a. Int#
        -- I found bindings like these were getting floated to the top level.
        -- They are pretty bogus types, mind you.  It would be better never to
        -- construct them
isUnliftedType ty
  = not (isLiftedType_maybe ty `orElse`
         pprPanic "isUnliftedType" (ppr ty <+> dcolon <+> ppr (typeKind ty)))

-- | State token type.
isStateType :: Type -> Bool
isStateType ty
  = case tyConAppTyCon_maybe ty of
        Just tycon -> tycon == statePrimTyCon
        _          -> False

-- | Returns:
--
-- * 'False' if the type is /guaranteed/ lifted or
-- * 'True' if it is unlifted, OR we aren't sure
--    (e.g. in a representation-polymorphic case)
mightBeUnliftedType :: Type -> Bool
mightBeUnliftedType ty
  = case isLiftedType_maybe ty of
      Just is_lifted -> not is_lifted
      Nothing -> True

-- | See "Type#type_classification" for what a boxed type is.
-- Panics on representation-polymorphic types; See 'mightBeUnliftedType' for
-- a more approximate predicate that behaves better in the presence of
-- representation polymorphism.
isBoxedType :: Type -> Bool
isBoxedType ty = isBoxedRuntimeRep (getRuntimeRep ty)

-- | Is this a type of kind RuntimeRep? (e.g. LiftedRep)
isRuntimeRepKindedTy :: Type -> Bool
isRuntimeRepKindedTy = isRuntimeRepTy . typeKind

-- | Drops prefix of RuntimeRep constructors in 'TyConApp's. Useful for e.g.
-- dropping 'LiftedRep arguments of unboxed tuple TyCon applications:
--
--   dropRuntimeRepArgs [ 'LiftedRep, 'IntRep
--                      , String, Int# ] == [String, Int#]
--
dropRuntimeRepArgs :: [Type] -> [Type]
dropRuntimeRepArgs = dropWhile isRuntimeRepKindedTy

-- | Extract the RuntimeRep classifier of a type. For instance,
-- @getRuntimeRep_maybe Int = Just LiftedRep@. Returns 'Nothing' if this is not
-- possible.
getRuntimeRep_maybe :: HasDebugCallStack
                    => Type -> Maybe Type
getRuntimeRep_maybe = kindRep_maybe . typeKind

-- | Extract the RuntimeRep classifier of a type. For instance,
-- @getRuntimeRep_maybe Int = LiftedRep@. Panics if this is not possible.
getRuntimeRep :: HasDebugCallStack => Type -> Type
getRuntimeRep ty
  = case getRuntimeRep_maybe ty of
      Just r  -> r
      Nothing -> pprPanic "getRuntimeRep" (ppr ty <+> dcolon <+> ppr (typeKind ty))

-- | Extract the 'Levity' of a type. For example, @getLevity_maybe Int = Just Lifted@,
-- @getLevity (Array# Int) = Just Unlifted@, @getLevity Float# = Nothing@.
--
-- Returns 'Nothing' if this is not possible. Does not look through type family applications.
getLevity_maybe :: HasDebugCallStack => Type -> Maybe Type
getLevity_maybe ty
  | Just rep <- getRuntimeRep_maybe ty
  , Just (tc, [lev]) <- splitTyConApp_maybe rep
  , tc == boxedRepDataConTyCon
  = Just lev
  | otherwise
  = Nothing

-- | Extract the 'Levity' of a type. For example, @getLevity Int = Lifted@,
-- or @getLevity (Array# Int) = Unlifted@.
--
-- Panics if this is not possible. Does not look through type family applications.
getLevity :: HasDebugCallStack => Type -> Type
getLevity ty
  | Just lev <- getLevity_maybe ty
  = lev
  | otherwise
  = pprPanic "getLevity" (ppr ty <+> dcolon <+> ppr (typeKind ty))

isUnboxedTupleType :: Type -> Bool
isUnboxedTupleType ty
  = tyConAppTyCon (getRuntimeRep ty) `hasKey` tupleRepDataConKey
  -- NB: Do not use typePrimRep, as that can't tell the difference between
  -- unboxed tuples and unboxed sums


isUnboxedSumType :: Type -> Bool
isUnboxedSumType ty
  = tyConAppTyCon (getRuntimeRep ty) `hasKey` sumRepDataConKey

-- | See "Type#type_classification" for what an algebraic type is.
-- Should only be applied to /types/, as opposed to e.g. partially
-- saturated type constructors
isAlgType :: Type -> Bool
isAlgType ty
  = case splitTyConApp_maybe ty of
      Just (tc, ty_args) -> assert (ty_args `lengthIs` tyConArity tc )
                            isAlgTyCon tc
      _other             -> False

-- | Check whether a type is a data family type
isDataFamilyAppType :: Type -> Bool
isDataFamilyAppType ty = case tyConAppTyCon_maybe ty of
                           Just tc -> isDataFamilyTyCon tc
                           _       -> False

-- | Computes whether an argument (or let right hand side) should
-- be computed strictly or lazily, based only on its type.
-- Currently, it's just 'isUnliftedType'.
-- Panics on representation-polymorphic types.
isStrictType :: HasDebugCallStack => Type -> Bool
isStrictType = isUnliftedType

isPrimitiveType :: Type -> Bool
-- ^ Returns true of types that are opaque to Haskell.
isPrimitiveType ty = case splitTyConApp_maybe ty of
                        Just (tc, ty_args) -> assert (ty_args `lengthIs` tyConArity tc )
                                              isPrimTyCon tc
                        _                  -> False

{-
************************************************************************
*                                                                      *
\subsection{Join points}
*                                                                      *
************************************************************************
-}

-- | Determine whether a type could be the type of a join point of given total
-- arity, according to the polymorphism rule. A join point cannot be polymorphic
-- in its return type, since given
--   join j @a @b x y z = e1 in e2,
-- the types of e1 and e2 must be the same, and a and b are not in scope for e2.
-- (See Note [The polymorphism rule of join points] in "GHC.Core".) Returns False
-- also if the type simply doesn't have enough arguments.
--
-- Note that we need to know how many arguments (type *and* value) the putative
-- join point takes; for instance, if
--   j :: forall a. a -> Int
-- then j could be a binary join point returning an Int, but it could *not* be a
-- unary join point returning a -> Int.
--
-- TODO: See Note [Excess polymorphism and join points]
isValidJoinPointType :: JoinArity -> Type -> Bool
isValidJoinPointType arity ty
  = valid_under emptyVarSet arity ty
  where
    valid_under tvs arity ty
      | arity == 0
      = tvs `disjointVarSet` tyCoVarsOfType ty
      | Just (t, ty') <- splitForAllTyCoVar_maybe ty
      = valid_under (tvs `extendVarSet` t) (arity-1) ty'
      | Just (_, _, res_ty) <- splitFunTy_maybe ty
      = valid_under tvs (arity-1) res_ty
      | otherwise
      = False

{- Note [Excess polymorphism and join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In principle, if a function would be a join point except that it fails
the polymorphism rule (see Note [The polymorphism rule of join points] in
GHC.Core), it can still be made a join point with some effort. This is because
all tail calls must return the same type (they return to the same context!), and
thus if the return type depends on an argument, that argument must always be the
same.

For instance, consider:

  let f :: forall a. a -> Char -> [a]
      f @a x c = ... f @a y 'a' ...
  in ... f @Int 1 'b' ... f @Int 2 'c' ...

(where the calls are tail calls). `f` fails the polymorphism rule because its
return type is [a], where [a] is bound. But since the type argument is always
'Int', we can rewrite it as:

  let f' :: Int -> Char -> [Int]
      f' x c = ... f' y 'a' ...
  in ... f' 1 'b' ... f 2 'c' ...

and now we can make f' a join point:

  join f' :: Int -> Char -> [Int]
       f' x c = ... jump f' y 'a' ...
  in ... jump f' 1 'b' ... jump f' 2 'c' ...

It's not clear that this comes up often, however. TODO: Measure how often and
add this analysis if necessary.  See #14620.


************************************************************************
*                                                                      *
\subsection{Sequencing on types}
*                                                                      *
************************************************************************
-}

seqType :: Type -> ()
seqType (LitTy n)                   = n `seq` ()
seqType (TyVarTy tv)                = tv `seq` ()
seqType (AppTy t1 t2)               = seqType t1 `seq` seqType t2
seqType (FunTy _ w t1 t2)           = seqType w `seq` seqType t1 `seq` seqType t2
seqType (TyConApp tc tys)           = tc `seq` seqTypes tys
seqType (ForAllTy (Bndr tv _) ty)   = seqType (varType tv) `seq` seqType ty
seqType (CastTy ty co)              = seqType ty `seq` seqCo co
seqType (CoercionTy co)             = seqCo co

seqTypes :: [Type] -> ()
seqTypes []       = ()
seqTypes (ty:tys) = seqType ty `seq` seqTypes tys

{-
************************************************************************
*                                                                      *
                Comparison for types
        (We don't use instances so that we know where it happens)
*                                                                      *
************************************************************************

Note [Equality on AppTys]
~~~~~~~~~~~~~~~~~~~~~~~~~
In our cast-ignoring equality, we want to say that the following two
are equal:

  (Maybe |> co) (Int |> co')   ~?       Maybe Int

But the left is an AppTy while the right is a TyConApp. The solution is
to use repSplitAppTy_maybe to break up the TyConApp into its pieces and
then continue. Easy to do, but also easy to forget to do.

Note [Comparing nullary type synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the task of testing equality between two 'Type's of the form

  TyConApp tc []

where @tc@ is a type synonym. A naive way to perform this comparison these
would first expand the synonym and then compare the resulting expansions.

However, this is obviously wasteful and the RHS of @tc@ may be large; it is
much better to rather compare the TyCons directly. Consequently, before
expanding type synonyms in type comparisons we first look for a nullary
TyConApp and simply compare the TyCons if we find one. Of course, if we find
that the TyCons are *not* equal then we still need to perform the expansion as
their RHSs may still be equal.

We perform this optimisation in a number of places:

 * GHC.Core.Types.eqType
 * GHC.Core.Types.nonDetCmpType
 * GHC.Core.Unify.unify_ty
 * TcCanonical.can_eq_nc'
 * TcUnify.uType

This optimisation is especially helpful for the ubiquitous GHC.Types.Type,
since GHC prefers to use the type synonym over @TYPE 'LiftedRep@ applications
whenever possible. See Note [Using synonyms to compress types] in
GHC.Core.Type for details.

-}

eqType :: Type -> Type -> Bool
-- ^ Type equality on source types. Does not look through @newtypes@,
-- 'PredType's or type families, but it does look through type synonyms.
-- This first checks that the kinds of the types are equal and then
-- checks whether the types are equal, ignoring casts and coercions.
-- (The kind check is a recursive call, but since all kinds have type
-- @Type@, there is no need to check the types of kinds.)
-- See also Note [Non-trivial definitional equality] in "GHC.Core.TyCo.Rep".
eqType t1 t2 = isEqual $ nonDetCmpType t1 t2
  -- It's OK to use nonDetCmpType here and eqType is deterministic,
  -- nonDetCmpType does equality deterministically

-- | Compare types with respect to a (presumably) non-empty 'RnEnv2'.
eqTypeX :: RnEnv2 -> Type -> Type -> Bool
eqTypeX env t1 t2 = isEqual $ nonDetCmpTypeX env t1 t2
  -- It's OK to use nonDetCmpType here and eqTypeX is deterministic,
  -- nonDetCmpTypeX does equality deterministically

-- | Type equality on lists of types, looking through type synonyms
-- but not newtypes.
eqTypes :: [Type] -> [Type] -> Bool
eqTypes tys1 tys2 = isEqual $ nonDetCmpTypes tys1 tys2
  -- It's OK to use nonDetCmpType here and eqTypes is deterministic,
  -- nonDetCmpTypes does equality deterministically

eqVarBndrs :: RnEnv2 -> [Var] -> [Var] -> Maybe RnEnv2
-- Check that the var lists are the same length
-- and have matching kinds; if so, extend the RnEnv2
-- Returns Nothing if they don't match
eqVarBndrs env [] []
 = Just env
eqVarBndrs env (tv1:tvs1) (tv2:tvs2)
 | eqTypeX env (varType tv1) (varType tv2)
 = eqVarBndrs (rnBndr2 env tv1 tv2) tvs1 tvs2
eqVarBndrs _ _ _= Nothing

-- Now here comes the real worker

{-
Note [nonDetCmpType nondeterminism]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
nonDetCmpType is implemented in terms of nonDetCmpTypeX. nonDetCmpTypeX
uses nonDetCmpTc which compares TyCons by their Unique value. Using Uniques for
ordering leads to nondeterminism. We hit the same problem in the TyVarTy case,
comparing type variables is nondeterministic, note the call to nonDetCmpVar in
nonDetCmpTypeX.
See Note [Unique Determinism] for more details.

Note [Computing equality on types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several places within GHC that depend on the precise choice of
definitional equality used. If we change that definition, all these places
must be updated. This Note merely serves as a place for all these places
to refer to, so searching for references to this Note will find every place
that needs to be updated.

See also Note [Non-trivial definitional equality] in GHC.Core.TyCo.Rep.

-}

nonDetCmpType :: Type -> Type -> Ordering
nonDetCmpType (TyConApp tc1 []) (TyConApp tc2 []) | tc1 == tc2
  = EQ
nonDetCmpType t1 t2
  -- we know k1 and k2 have the same kind, because they both have kind *.
  = nonDetCmpTypeX rn_env t1 t2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyCoVarsOfTypes [t1, t2]))
{-# INLINE nonDetCmpType #-}

nonDetCmpTypes :: [Type] -> [Type] -> Ordering
nonDetCmpTypes ts1 ts2 = nonDetCmpTypesX rn_env ts1 ts2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyCoVarsOfTypes (ts1 ++ ts2)))

-- | An ordering relation between two 'Type's (known below as @t1 :: k1@
-- and @t2 :: k2@)
data TypeOrdering = TLT  -- ^ @t1 < t2@
                  | TEQ  -- ^ @t1 ~ t2@ and there are no casts in either,
                         -- therefore we can conclude @k1 ~ k2@
                  | TEQX -- ^ @t1 ~ t2@ yet one of the types contains a cast so
                         -- they may differ in kind.
                  | TGT  -- ^ @t1 > t2@
                  deriving (Eq, Ord, Enum, Bounded)

nonDetCmpTypeX :: RnEnv2 -> Type -> Type -> Ordering  -- Main workhorse
    -- See Note [Non-trivial definitional equality] in GHC.Core.TyCo.Rep
    -- See Note [Computing equality on types]
nonDetCmpTypeX env orig_t1 orig_t2 =
    case go env orig_t1 orig_t2 of
      -- If there are casts then we also need to do a comparison of the kinds of
      -- the types being compared
      TEQX          -> toOrdering $ go env k1 k2
      ty_ordering   -> toOrdering ty_ordering
  where
    k1 = typeKind orig_t1
    k2 = typeKind orig_t2

    toOrdering :: TypeOrdering -> Ordering
    toOrdering TLT  = LT
    toOrdering TEQ  = EQ
    toOrdering TEQX = EQ
    toOrdering TGT  = GT

    liftOrdering :: Ordering -> TypeOrdering
    liftOrdering LT = TLT
    liftOrdering EQ = TEQ
    liftOrdering GT = TGT

    thenCmpTy :: TypeOrdering -> TypeOrdering -> TypeOrdering
    thenCmpTy TEQ  rel  = rel
    thenCmpTy TEQX rel  = hasCast rel
    thenCmpTy rel  _    = rel

    hasCast :: TypeOrdering -> TypeOrdering
    hasCast TEQ = TEQX
    hasCast rel = rel

    -- Returns both the resulting ordering relation between the two types
    -- and whether either contains a cast.
    go :: RnEnv2 -> Type -> Type -> TypeOrdering
    -- See Note [Comparing nullary type synonyms].
    go _   (TyConApp tc1 []) (TyConApp tc2 [])
      | tc1 == tc2
      = TEQ
    go env t1 t2
      | Just t1' <- coreView t1 = go env t1' t2
      | Just t2' <- coreView t2 = go env t1 t2'

    go env (TyVarTy tv1)       (TyVarTy tv2)
      = liftOrdering $ rnOccL env tv1 `nonDetCmpVar` rnOccR env tv2
    go env (ForAllTy (Bndr tv1 _) t1) (ForAllTy (Bndr tv2 _) t2)
      = go env (varType tv1) (varType tv2)
        `thenCmpTy` go (rnBndr2 env tv1 tv2) t1 t2
        -- See Note [Equality on AppTys]
    go env (AppTy s1 t1) ty2
      | Just (s2, t2) <- repSplitAppTy_maybe ty2
      = go env s1 s2 `thenCmpTy` go env t1 t2
    go env ty1 (AppTy s2 t2)
      | Just (s1, t1) <- repSplitAppTy_maybe ty1
      = go env s1 s2 `thenCmpTy` go env t1 t2
    go env (FunTy _ w1 s1 t1) (FunTy _ w2 s2 t2)
        -- NB: nonDepCmpTypeX does the kind check requested by
        -- Note [Equality on FunTys] in GHC.Core.TyCo.Rep
      = liftOrdering (nonDetCmpTypeX env s1 s2 `thenCmp` nonDetCmpTypeX env t1 t2)
          `thenCmpTy` go env w1 w2
        -- Comparing multiplicities last because the test is usually true
    go env (TyConApp tc1 tys1) (TyConApp tc2 tys2)
      = liftOrdering (tc1 `nonDetCmpTc` tc2) `thenCmpTy` gos env tys1 tys2
    go _   (LitTy l1)          (LitTy l2)          = liftOrdering (nonDetCmpTyLit l1 l2)
    go env (CastTy t1 _)       t2                  = hasCast $ go env t1 t2
    go env t1                  (CastTy t2 _)       = hasCast $ go env t1 t2

    go _   (CoercionTy {})     (CoercionTy {})     = TEQ

        -- Deal with the rest: TyVarTy < CoercionTy < AppTy < LitTy < TyConApp < ForAllTy
    go _ ty1 ty2
      = liftOrdering $ (get_rank ty1) `compare` (get_rank ty2)
      where get_rank :: Type -> Int
            get_rank (CastTy {})
              = pprPanic "nonDetCmpTypeX.get_rank" (ppr [ty1,ty2])
            get_rank (TyVarTy {})    = 0
            get_rank (CoercionTy {}) = 1
            get_rank (AppTy {})      = 3
            get_rank (LitTy {})      = 4
            get_rank (TyConApp {})   = 5
            get_rank (FunTy {})      = 6
            get_rank (ForAllTy {})   = 7

    gos :: RnEnv2 -> [Type] -> [Type] -> TypeOrdering
    gos _   []         []         = TEQ
    gos _   []         _          = TLT
    gos _   _          []         = TGT
    gos env (ty1:tys1) (ty2:tys2) = go env ty1 ty2 `thenCmpTy` gos env tys1 tys2

-------------
nonDetCmpTypesX :: RnEnv2 -> [Type] -> [Type] -> Ordering
nonDetCmpTypesX _   []        []        = EQ
nonDetCmpTypesX env (t1:tys1) (t2:tys2) = nonDetCmpTypeX env t1 t2
                                          `thenCmp`
                                          nonDetCmpTypesX env tys1 tys2
nonDetCmpTypesX _   []        _         = LT
nonDetCmpTypesX _   _         []        = GT

-------------
-- | Compare two 'TyCon's. NB: This should /never/ see 'Constraint' (as
-- recognized by Kind.isConstraintKindCon) which is considered a synonym for
-- 'Type' in Core.
-- See Note [Kind Constraint and kind Type] in "GHC.Core.Type".
-- See Note [nonDetCmpType nondeterminism]
nonDetCmpTc :: TyCon -> TyCon -> Ordering
nonDetCmpTc tc1 tc2
  = assert (not (isConstraintKindCon tc1) && not (isConstraintKindCon tc2)) $
    u1 `nonDetCmpUnique` u2
  where
    u1  = tyConUnique tc1
    u2  = tyConUnique tc2

{-
************************************************************************
*                                                                      *
        The kind of a type
*                                                                      *
************************************************************************

Note [typeKind vs tcTypeKind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We have two functions to get the kind of a type

  * typeKind   ignores  the distinction between Constraint and *
  * tcTypeKind respects the distinction between Constraint and *

tcTypeKind is used by the type inference engine, for which Constraint
and * are different; after that we use typeKind.

See also Note [coreView vs tcView]

Note [Kinding rules for types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In typeKind we consider Constraint and (TYPE LiftedRep) to be identical.
We then have

         t1 : TYPE rep1
         t2 : TYPE rep2
   (FUN) ----------------
         t1 -> t2 : Type

         ty : TYPE rep
         `a` is not free in rep
(FORALL) -----------------------
         forall a. ty : TYPE rep

In tcTypeKind we consider Constraint and (TYPE LiftedRep) to be distinct:

          t1 : TYPE rep1
          t2 : TYPE rep2
    (FUN) ----------------
          t1 -> t2 : Type

          t1 : Constraint
          t2 : TYPE rep
  (PRED1) ----------------
          t1 => t2 : Type

          t1 : Constraint
          t2 : Constraint
  (PRED2) ---------------------
          t1 => t2 : Constraint

          ty : TYPE rep
          `a` is not free in rep
(FORALL1) -----------------------
          forall a. ty : TYPE rep

          ty : Constraint
(FORALL2) -------------------------
          forall a. ty : Constraint

Note that:
* The only way we distinguish '->' from '=>' is by the fact
  that the argument is a PredTy.  Both are FunTys

Note [Phantom type variables in kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

  type K (r :: RuntimeRep) = Type   -- Note 'r' is unused
  data T r :: K r                   -- T :: forall r -> K r
  foo :: forall r. T r

The body of the forall in foo's type has kind (K r), and
normally it would make no sense to have
   forall r. (ty :: K r)
because the kind of the forall would escape the binding
of 'r'.  But in this case it's fine because (K r) exapands
to Type, so we explicitly /permit/ the type
   forall r. T r

To accommodate such a type, in typeKind (forall a.ty) we use
occCheckExpand to expand any type synonyms in the kind of 'ty'
to eliminate 'a'.  See kinding rule (FORALL) in
Note [Kinding rules for types]

See also
 * GHC.Core.Type.occCheckExpand
 * GHC.Core.Utils.coreAltsType
 * GHC.Tc.Validity.checkEscapingKind
all of which grapple with the same problem.

See #14939.
-}

-----------------------------
typeKind :: HasDebugCallStack => Type -> Kind
-- No need to expand synonyms
typeKind (TyConApp tc tys) = piResultTys (tyConKind tc) tys
typeKind (LitTy l)         = typeLiteralKind l
typeKind (FunTy {})        = liftedTypeKind
typeKind (TyVarTy tyvar)   = tyVarKind tyvar
typeKind (CastTy _ty co)   = coercionRKind co
typeKind (CoercionTy co)   = coercionType co

typeKind (AppTy fun arg)
  = go fun [arg]
  where
    -- Accumulate the type arguments, so we can call piResultTys,
    -- rather than a succession of calls to piResultTy (which is
    -- asymptotically costly as the number of arguments increases)
    go (AppTy fun arg) args = go fun (arg:args)
    go fun             args = piResultTys (typeKind fun) args

typeKind ty@(ForAllTy {})
  = case occCheckExpand tvs body_kind of
      -- We must make sure tv does not occur in kind
      -- As it is already out of scope!
      -- See Note [Phantom type variables in kinds]
      Just k' -> k'
      Nothing -> pprPanic "typeKind"
                  (ppr ty $$ ppr tvs $$ ppr body <+> dcolon <+> ppr body_kind)
  where
    (tvs, body) = splitForAllTyVars ty
    body_kind   = typeKind body

---------------------------------------------
-- Utilities to be used in GHC.Core.Unify,
-- which uses "tc" functions
---------------------------------------------

tcTypeKind :: HasDebugCallStack => Type -> Kind
-- No need to expand synonyms
tcTypeKind (TyConApp tc tys) = piResultTys (tyConKind tc) tys
tcTypeKind (LitTy l)         = typeLiteralKind l
tcTypeKind (TyVarTy tyvar)   = tyVarKind tyvar
tcTypeKind (CastTy _ty co)   = coercionRKind co
tcTypeKind (CoercionTy co)   = coercionType co

tcTypeKind (FunTy { ft_af = af, ft_res = res })
  | InvisArg <- af
  , tcIsConstraintKind (tcTypeKind res)
  = constraintKind     -- Eq a => Ord a         :: Constraint
  | otherwise          -- Eq a => a -> a        :: TYPE LiftedRep
  = liftedTypeKind     -- Eq a => Array# Int    :: Type LiftedRep (not TYPE PtrRep)

tcTypeKind (AppTy fun arg)
  = go fun [arg]
  where
    -- Accumulate the type arguments, so we can call piResultTys,
    -- rather than a succession of calls to piResultTy (which is
    -- asymptotically costly as the number of arguments increases)
    go (AppTy fun arg) args = go fun (arg:args)
    go fun             args = piResultTys (tcTypeKind fun) args

tcTypeKind ty@(ForAllTy {})
  | tcIsConstraintKind body_kind
  = constraintKind

  | otherwise
  = case occCheckExpand tvs body_kind of
      -- We must make sure tv does not occur in kind
      -- As it is already out of scope!
      -- See Note [Phantom type variables in kinds]
      Just k' -> k'
      Nothing -> pprPanic "tcTypeKind"
                  (ppr ty $$ ppr tvs $$ ppr body <+> dcolon <+> ppr body_kind)
  where
    (tvs, body) = splitForAllTyVars ty
    body_kind = tcTypeKind body


isPredTy :: HasDebugCallStack => Type -> Bool
-- See Note [Types for coercions, predicates, and evidence] in GHC.Core.TyCo.Rep
isPredTy ty = tcIsConstraintKind (tcTypeKind ty)

-- tcIsConstraintKind stuff only makes sense in the typechecker
-- After that Constraint = Type
-- See Note [coreView vs tcView]
-- Defined here because it is used in isPredTy and tcRepSplitAppTy_maybe (sigh)
tcIsConstraintKind :: Kind -> Bool
tcIsConstraintKind ty
  | Just (tc, args) <- tcSplitTyConApp_maybe ty    -- Note: tcSplit here
  , isConstraintKindCon tc
  = assertPpr (null args) (ppr ty) True

  | otherwise
  = False

-- | Like 'kindRep_maybe', but considers 'Constraint' to be distinct
-- from 'Type'. For a version that treats them as the same type, see
-- 'kindRep_maybe'.
tcKindRep_maybe :: HasDebugCallStack => Kind -> Maybe Type
tcKindRep_maybe kind
  | Just (tc, [arg]) <- tcSplitTyConApp_maybe kind    -- Note: tcSplit here
  , tc `hasKey` tYPETyConKey    = Just arg
  | otherwise                   = Nothing

-- | Is this kind equivalent to 'Type'?
--
-- This considers 'Constraint' to be distinct from 'Type'. For a version that
-- treats them as the same type, see 'isLiftedTypeKind'.
tcIsLiftedTypeKind :: Kind -> Bool
tcIsLiftedTypeKind kind
  = case tcKindRep_maybe kind of
      Just rep -> isLiftedRuntimeRep rep
      Nothing  -> False

-- | Is this kind equivalent to @TYPE (BoxedRep l)@ for some @l :: Levity@?
--
-- This considers 'Constraint' to be distinct from 'Type'. For a version that
-- treats them as the same type, see 'isLiftedTypeKind'.
tcIsBoxedTypeKind :: Kind -> Bool
tcIsBoxedTypeKind kind
  = case tcKindRep_maybe kind of
      Just rep -> isBoxedRuntimeRep rep
      Nothing  -> False

-- | Is this kind equivalent to @TYPE r@ (for some unknown r)?
--
-- This considers 'Constraint' to be distinct from @*@.
tcIsRuntimeTypeKind :: Kind -> Bool
tcIsRuntimeTypeKind kind = isJust (tcKindRep_maybe kind)

tcReturnsConstraintKind :: Kind -> Bool
-- True <=> the Kind ultimately returns a Constraint
--   E.g.  * -> Constraint
--         forall k. k -> Constraint
tcReturnsConstraintKind kind
  | Just kind' <- tcView kind = tcReturnsConstraintKind kind'
tcReturnsConstraintKind (ForAllTy _ ty)         = tcReturnsConstraintKind ty
tcReturnsConstraintKind (FunTy { ft_res = ty }) = tcReturnsConstraintKind ty
tcReturnsConstraintKind (TyConApp tc _)         = isConstraintKindCon tc
tcReturnsConstraintKind _                       = False

--------------------------
typeLiteralKind :: TyLit -> Kind
typeLiteralKind (NumTyLit {}) = naturalTy
typeLiteralKind (StrTyLit {}) = typeSymbolKind
typeLiteralKind (CharTyLit {}) = charTy

-- | Returns True if a type has a fixed runtime rep,
-- as per Note [Fixed RuntimeRep] in GHC.Tc.Utils.Concrete.
--
-- This function is equivalent to @('isFixedRuntimeRepKind' . 'typeKind')@,
-- but much faster.
--
-- __Precondition:__ The type has kind @('TYPE' blah)@
typeHasFixedRuntimeRep :: Type -> Bool
typeHasFixedRuntimeRep = go
  where
    go (TyConApp tc _)
      | tcHasFixedRuntimeRep tc = True
    go (FunTy {})               = True
    go (LitTy {})               = True
    go (ForAllTy _ ty)          = go ty
    go ty                       = isFixedRuntimeRepKind (typeKind ty)

-- | Looking past all pi-types, does the end result have a
-- fixed runtime rep, as per Note [Fixed RuntimeRep] in GHC.Tc.Utils.Concrete?
--
-- Examples:
--
--   * False for @(forall r (a :: TYPE r). String -> a)@
--   * True for @(forall r1 r2 (a :: TYPE r1) (b :: TYPE r2). a -> b -> Type)@
resultHasFixedRuntimeRep :: Type -> Bool
resultHasFixedRuntimeRep = typeHasFixedRuntimeRep . snd . splitPiTys

{- **********************************************************************
*                                                                       *
           Occurs check expansion
%*                                                                      *
%********************************************************************* -}

{- Note [Occurs check expansion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(occurCheckExpand tv xi) expands synonyms in xi just enough to get rid
of occurrences of tv outside type function arguments, if that is
possible; otherwise, it returns Nothing.

For example, suppose we have
  type F a b = [a]
Then
  occCheckExpand b (F Int b) = Just [Int]
but
  occCheckExpand a (F a Int) = Nothing

We don't promise to do the absolute minimum amount of expanding
necessary, but we try not to do expansions we don't need to.  We
prefer doing inner expansions first.  For example,
  type F a b = (a, Int, a, [a])
  type G b   = Char
We have
  occCheckExpand b (F (G b)) = Just (F Char)
even though we could also expand F to get rid of b.

Note [Occurrence checking: look inside kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we are considering unifying
   (alpha :: *)  ~  Int -> (beta :: alpha -> alpha)
This may be an error (what is that alpha doing inside beta's kind?),
but we must not make the mistake of actually unifying or we'll
build an infinite data structure.  So when looking for occurrences
of alpha in the rhs, we must look in the kinds of type variables
that occur there.

occCheckExpand tries to expand type synonyms to remove
unnecessary occurrences of a variable, and thereby get past an
occurs-check failure.  This is good; but
     we can't do it in the /kind/ of a variable /occurrence/

For example #18451 built an infinite type:
    type Const a b = a
    data SameKind :: k -> k -> Type
    type T (k :: Const Type a) = forall (b :: k). SameKind a b

We have
  b :: k
  k :: Const Type a
  a :: k   (must be same as b)

So if we aren't careful, a's kind mentions a, which is bad.
And expanding an /occurrence/ of 'a' doesn't help, because the
/binding site/ is the master copy and all the occurrences should
match it.

Here's a related example:
   f :: forall a b (c :: Const Type b). Proxy '[a, c]

The list means that 'a' gets the same kind as 'c'; but that
kind mentions 'b', so the binders are out of order.

Bottom line: in occCheckExpand, do not expand inside the kinds
of occurrences.  See bad_var_occ in occCheckExpand.  And
see #18451 for more debate.
-}

occCheckExpand :: [Var] -> Type -> Maybe Type
-- See Note [Occurs check expansion]
-- We may have needed to do some type synonym unfolding in order to
-- get rid of the variable (or forall), so we also return the unfolded
-- version of the type, which is guaranteed to be syntactically free
-- of the given type variable.  If the type is already syntactically
-- free of the variable, then the same type is returned.
occCheckExpand vs_to_avoid ty
  | null vs_to_avoid  -- Efficient shortcut
  = Just ty           -- Can happen, eg. GHC.Core.Utils.mkSingleAltCase

  | otherwise
  = go (mkVarSet vs_to_avoid, emptyVarEnv) ty
  where
    go :: (VarSet, VarEnv TyCoVar) -> Type -> Maybe Type
          -- The VarSet is the set of variables we are trying to avoid
          -- The VarEnv carries mappings necessary
          -- because of kind expansion
    go (as, env) ty@(TyVarTy tv)
      | Just tv' <- lookupVarEnv env tv = return (mkTyVarTy tv')
      | bad_var_occ as tv               = Nothing
      | otherwise                       = return ty

    go _   ty@(LitTy {}) = return ty
    go cxt (AppTy ty1 ty2) = do { ty1' <- go cxt ty1
                                ; ty2' <- go cxt ty2
                                ; return (mkAppTy ty1' ty2') }
    go cxt ty@(FunTy _ w ty1 ty2)
       = do { w'   <- go cxt w
            ; ty1' <- go cxt ty1
            ; ty2' <- go cxt ty2
            ; return (ty { ft_mult = w', ft_arg = ty1', ft_res = ty2' }) }
    go cxt@(as, env) (ForAllTy (Bndr tv vis) body_ty)
       = do { ki' <- go cxt (varType tv)
            ; let tv'  = setVarType tv ki'
                  env' = extendVarEnv env tv tv'
                  as'  = as `delVarSet` tv
            ; body' <- go (as', env') body_ty
            ; return (ForAllTy (Bndr tv' vis) body') }

    -- For a type constructor application, first try expanding away the
    -- offending variable from the arguments.  If that doesn't work, next
    -- see if the type constructor is a type synonym, and if so, expand
    -- it and try again.
    go cxt ty@(TyConApp tc tys)
      = case mapM (go cxt) tys of
          Just tys' -> return (mkTyConApp tc tys')
          Nothing | Just ty' <- tcView ty -> go cxt ty'
                  | otherwise             -> Nothing
                      -- Failing that, try to expand a synonym

    go cxt (CastTy ty co) =  do { ty' <- go cxt ty
                                ; co' <- go_co cxt co
                                ; return (mkCastTy ty' co') }
    go cxt (CoercionTy co) = do { co' <- go_co cxt co
                                ; return (mkCoercionTy co') }

    ------------------
    bad_var_occ :: VarSet -> Var -> Bool
    -- Works for TyVar and CoVar
    -- See Note [Occurrence checking: look inside kinds]
    bad_var_occ vs_to_avoid v
       =  v                          `elemVarSet`       vs_to_avoid
       || tyCoVarsOfType (varType v) `intersectsVarSet` vs_to_avoid

    ------------------
    go_mco _   MRefl = return MRefl
    go_mco ctx (MCo co) = MCo <$> go_co ctx co

    ------------------
    go_co cxt (Refl ty)                 = do { ty' <- go cxt ty
                                             ; return (mkNomReflCo ty') }
    go_co cxt (GRefl r ty mco)          = do { mco' <- go_mco cxt mco
                                             ; ty' <- go cxt ty
                                             ; return (mkGReflCo r ty' mco') }
      -- Note: Coercions do not contain type synonyms
    go_co cxt (TyConAppCo r tc args)    = do { args' <- mapM (go_co cxt) args
                                             ; return (mkTyConAppCo r tc args') }
    go_co cxt (AppCo co arg)            = do { co' <- go_co cxt co
                                             ; arg' <- go_co cxt arg
                                             ; return (mkAppCo co' arg') }
    go_co cxt@(as, env) (ForAllCo tv kind_co body_co)
      = do { kind_co' <- go_co cxt kind_co
           ; let tv' = setVarType tv $
                       coercionLKind kind_co'
                 env' = extendVarEnv env tv tv'
                 as'  = as `delVarSet` tv
           ; body' <- go_co (as', env') body_co
           ; return (ForAllCo tv' kind_co' body') }
    go_co cxt (FunCo r w co1 co2)       = do { co1' <- go_co cxt co1
                                             ; co2' <- go_co cxt co2
                                             ; w' <- go_co cxt w
                                             ; return (mkFunCo r w' co1' co2') }
    go_co (as,env) co@(CoVarCo c)
      | Just c' <- lookupVarEnv env c   = return (mkCoVarCo c')
      | bad_var_occ as c                = Nothing
      | otherwise                       = return co

    go_co (as,_) co@(HoleCo h)
      | bad_var_occ as (ch_co_var h)    = Nothing
      | otherwise                       = return co

    go_co cxt (AxiomInstCo ax ind args) = do { args' <- mapM (go_co cxt) args
                                             ; return (mkAxiomInstCo ax ind args') }
    go_co cxt (UnivCo p r ty1 ty2)      = do { p' <- go_prov cxt p
                                             ; ty1' <- go cxt ty1
                                             ; ty2' <- go cxt ty2
                                             ; return (mkUnivCo p' r ty1' ty2') }
    go_co cxt (SymCo co)                = do { co' <- go_co cxt co
                                             ; return (mkSymCo co') }
    go_co cxt (TransCo co1 co2)         = do { co1' <- go_co cxt co1
                                             ; co2' <- go_co cxt co2
                                             ; return (mkTransCo co1' co2') }
    go_co cxt (NthCo r n co)            = do { co' <- go_co cxt co
                                             ; return (mkNthCo r n co') }
    go_co cxt (LRCo lr co)              = do { co' <- go_co cxt co
                                             ; return (mkLRCo lr co') }
    go_co cxt (InstCo co arg)           = do { co' <- go_co cxt co
                                             ; arg' <- go_co cxt arg
                                             ; return (mkInstCo co' arg') }
    go_co cxt (KindCo co)               = do { co' <- go_co cxt co
                                             ; return (mkKindCo co') }
    go_co cxt (SubCo co)                = do { co' <- go_co cxt co
                                             ; return (mkSubCo co') }
    go_co cxt (AxiomRuleCo ax cs)       = do { cs' <- mapM (go_co cxt) cs
                                             ; return (mkAxiomRuleCo ax cs') }

    ------------------
    go_prov cxt (PhantomProv co)    = PhantomProv <$> go_co cxt co
    go_prov cxt (ProofIrrelProv co) = ProofIrrelProv <$> go_co cxt co
    go_prov _   p@(PluginProv _)    = return p
    go_prov _   p@(CorePrepProv _)  = return p


{-
%************************************************************************
%*                                                                      *
        Miscellaneous functions
%*                                                                      *
%************************************************************************

-}
-- | All type constructors occurring in the type; looking through type
--   synonyms, but not newtypes.
--  When it finds a Class, it returns the class TyCon.
tyConsOfType :: Type -> UniqSet TyCon
tyConsOfType ty
  = go ty
  where
     go :: Type -> UniqSet TyCon  -- The UniqSet does duplicate elim
     go ty | Just ty' <- coreView ty = go ty'
     go (TyVarTy {})                = emptyUniqSet
     go (LitTy {})                  = emptyUniqSet
     go (TyConApp tc tys)           = go_tc tc `unionUniqSets` go_s tys
     go (AppTy a b)                 = go a `unionUniqSets` go b
     go (FunTy _ w a b)             = go w `unionUniqSets`
                                      go a `unionUniqSets` go b `unionUniqSets` go_tc funTyCon
     go (ForAllTy (Bndr tv _) ty)   = go ty `unionUniqSets` go (varType tv)
     go (CastTy ty co)              = go ty `unionUniqSets` go_co co
     go (CoercionTy co)             = go_co co

     go_co (Refl ty)               = go ty
     go_co (GRefl _ ty mco)        = go ty `unionUniqSets` go_mco mco
     go_co (TyConAppCo _ tc args)  = go_tc tc `unionUniqSets` go_cos args
     go_co (AppCo co arg)          = go_co co `unionUniqSets` go_co arg
     go_co (ForAllCo _ kind_co co) = go_co kind_co `unionUniqSets` go_co co
     go_co (FunCo _ co_mult co1 co2) = go_co co_mult `unionUniqSets` go_co co1 `unionUniqSets` go_co co2
     go_co (AxiomInstCo ax _ args) = go_ax ax `unionUniqSets` go_cos args
     go_co (UnivCo p _ t1 t2)      = go_prov p `unionUniqSets` go t1 `unionUniqSets` go t2
     go_co (CoVarCo {})            = emptyUniqSet
     go_co (HoleCo {})             = emptyUniqSet
     go_co (SymCo co)              = go_co co
     go_co (TransCo co1 co2)       = go_co co1 `unionUniqSets` go_co co2
     go_co (NthCo _ _ co)          = go_co co
     go_co (LRCo _ co)             = go_co co
     go_co (InstCo co arg)         = go_co co `unionUniqSets` go_co arg
     go_co (KindCo co)             = go_co co
     go_co (SubCo co)              = go_co co
     go_co (AxiomRuleCo _ cs)      = go_cos cs

     go_mco MRefl    = emptyUniqSet
     go_mco (MCo co) = go_co co

     go_prov (PhantomProv co)    = go_co co
     go_prov (ProofIrrelProv co) = go_co co
     go_prov (PluginProv _)      = emptyUniqSet
     go_prov (CorePrepProv _)    = emptyUniqSet
        -- this last case can happen from the tyConsOfType used from
        -- checkTauTvUpdate

     go_s tys     = foldr (unionUniqSets . go)     emptyUniqSet tys
     go_cos cos   = foldr (unionUniqSets . go_co)  emptyUniqSet cos

     go_tc tc = unitUniqSet tc
     go_ax ax = go_tc $ coAxiomTyCon ax

-- | Retrieve the free variables in this type, splitting them based
-- on whether they are used visibly or invisibly. Invisible ones come
-- first.
splitVisVarsOfType :: Type -> Pair TyCoVarSet
splitVisVarsOfType orig_ty = Pair invis_vars vis_vars
  where
    Pair invis_vars1 vis_vars = go orig_ty
    invis_vars = invis_vars1 `minusVarSet` vis_vars

    go (TyVarTy tv)      = Pair (tyCoVarsOfType $ tyVarKind tv) (unitVarSet tv)
    go (AppTy t1 t2)     = go t1 `mappend` go t2
    go (TyConApp tc tys) = go_tc tc tys
    go (FunTy _ w t1 t2) = go w `mappend` go t1 `mappend` go t2
    go (ForAllTy (Bndr tv _) ty)
      = ((`delVarSet` tv) <$> go ty) `mappend`
        (invisible (tyCoVarsOfType $ varType tv))
    go (LitTy {}) = mempty
    go (CastTy ty co) = go ty `mappend` invisible (tyCoVarsOfCo co)
    go (CoercionTy co) = invisible $ tyCoVarsOfCo co

    invisible vs = Pair vs emptyVarSet

    go_tc tc tys = let (invis, vis) = partitionInvisibleTypes tc tys in
                   invisible (tyCoVarsOfTypes invis) `mappend` foldMap go vis

splitVisVarsOfTypes :: [Type] -> Pair TyCoVarSet
splitVisVarsOfTypes = foldMap splitVisVarsOfType

{-
************************************************************************
*                                                                      *
        Functions over Kinds
*                                                                      *
************************************************************************

Note [Kind Constraint and kind Type]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The kind Constraint is the kind of classes and other type constraints.
The special thing about types of kind Constraint is that
 * They are displayed with double arrow:
     f :: Ord a => a -> a
 * They are implicitly instantiated at call sites; so the type inference
   engine inserts an extra argument of type (Ord a) at every call site
   to f.

However, once type inference is over, there is *no* distinction between
Constraint and Type. Indeed we can have coercions between the two. Consider
   class C a where
     op :: a -> a
For this single-method class we may generate a newtype, which in turn
generates an axiom witnessing
    C a ~ (a -> a)
so on the left we have Constraint, and on the right we have Type.
See #7451.

Because we treat Constraint/Type differently during and after type inference,
GHC has two notions of equality that differ in whether they equate
Constraint/Type or not:

* GHC.Tc.Utils.TcType.tcEqType implements typechecker equality (see
  Note [Typechecker equality vs definitional equality] in GHC.Tc.Utils.TcType),
  which treats Constraint and Type as distinct. This is used during type
  inference. See #11715 for issues that arise from this.
* GHC.Core.TyCo.Rep.eqType implements definitional equality (see
  Note [Non-trivial definitional equality] in GHC.Core.TyCo.Rep), which treats
  Constraint and Type as equal. This is used after type inference.

Bottom line: although 'Type' and 'Constraint' are distinct TyCons, with
distinct uniques, they are treated as equal at all times except
during type inference.
-}

-- | Tests whether the given kind is a constructor tree
-- (that is, constructors at every node).
--
-- E.g.  @False@ for @TYPE k@, @TYPE (F Int)@
--       @True@ for @TYPE 'LiftedRep@
--
-- __Precondition:__ The type has kind @('TYPE' blah)@.
isFixedRuntimeRepKind :: HasDebugCallStack => Kind -> Bool
isFixedRuntimeRepKind k
  = assertPpr (isLiftedTypeKind k || _is_type) (ppr k) $
    -- the isLiftedTypeKind check is necessary b/c of Constraint
    isConcrete k
  where
    _is_type = classifiesTypeWithValues k

-- | Tests whether the given type is a constructor tree,
-- consisting only of concrete type constructors and applications.
isConcrete :: Type -> Bool
isConcrete = go
  where
    go ty | Just ty' <- coreView ty = go ty'
    go TyVarTy{}           = False
    go AppTy{}             = False  -- it can't be a TyConApp
    go (TyConApp tc tys)
      | isConcreteTyCon tc = all go tys
      | otherwise          = False
    go ForAllTy{}          = False
    go (FunTy _ w t1 t2)   = go w && go t1 && go t2
    go LitTy{}             = True
    go CastTy{}            = False
    go CoercionTy{}        = False

-----------------------------------------
-- | Does this classify a type allowed to have values? Responds True to things
-- like *, TYPE Lifted, TYPE IntRep, TYPE v, Constraint.
classifiesTypeWithValues :: Kind -> Bool
-- ^ True of any sub-kind of OpenTypeKind
classifiesTypeWithValues k = isJust (kindRep_maybe k)

{-
%************************************************************************
%*                                                                      *
         Pretty-printing
%*                                                                      *
%************************************************************************

Most pretty-printing is either in GHC.Core.TyCo.Rep or GHC.Iface.Type.

-}

-- | Does a 'TyCon' (that is applied to some number of arguments) need to be
-- ascribed with an explicit kind signature to resolve ambiguity if rendered as
-- a source-syntax type?
-- (See @Note [When does a tycon application need an explicit kind signature?]@
-- for a full explanation of what this function checks for.)
tyConAppNeedsKindSig
  :: Bool  -- ^ Should specified binders count towards injective positions in
           --   the kind of the TyCon? (If you're using visible kind
           --   applications, then you want True here.
  -> TyCon
  -> Int   -- ^ The number of args the 'TyCon' is applied to.
  -> Bool  -- ^ Does @T t_1 ... t_n@ need a kind signature? (Where @n@ is the
           --   number of arguments)
tyConAppNeedsKindSig spec_inj_pos tc n_args
  | LT <- listLengthCmp tc_binders n_args
  = False
  | otherwise
  = let (dropped_binders, remaining_binders)
          = splitAt n_args tc_binders
        result_kind  = mkTyConKind remaining_binders tc_res_kind
        result_vars  = tyCoVarsOfType result_kind
        dropped_vars = fvVarSet $
                       mapUnionFV injective_vars_of_binder dropped_binders

    in not (subVarSet result_vars dropped_vars)
  where
    tc_binders  = tyConBinders tc
    tc_res_kind = tyConResKind tc

    -- Returns the variables that would be fixed by knowing a TyConBinder. See
    -- Note [When does a tycon application need an explicit kind signature?]
    -- for a more detailed explanation of what this function does.
    injective_vars_of_binder :: TyConBinder -> FV
    injective_vars_of_binder (Bndr tv vis) =
      case vis of
        AnonTCB VisArg -> injectiveVarsOfType False -- conservative choice
                                              (varType tv)
        NamedTCB argf  | source_of_injectivity argf
                       -> unitFV tv `unionFV`
                          injectiveVarsOfType False (varType tv)
        _              -> emptyFV

    source_of_injectivity Required  = True
    source_of_injectivity Specified = spec_inj_pos
    source_of_injectivity Inferred  = False

{-
Note [When does a tycon application need an explicit kind signature?]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are a couple of places in GHC where we convert Core Types into forms that
more closely resemble user-written syntax. These include:

1. Template Haskell Type reification (see, for instance, GHC.Tc.Gen.Splice.reify_tc_app)
2. Converting Types to LHsTypes (such as in Haddock.Convert in haddock)

This conversion presents a challenge: how do we ensure that the resulting type
has enough kind information so as not to be ambiguous? To better motivate this
question, consider the following Core type:

  -- Foo :: Type -> Type
  type Foo = Proxy Type

There is nothing ambiguous about the RHS of Foo in Core. But if we were to,
say, reify it into a TH Type, then it's tempting to just drop the invisible
Type argument and simply return `Proxy`. But now we've lost crucial kind
information: we don't know if we're dealing with `Proxy Type` or `Proxy Bool`
or `Proxy Int` or something else! We've inadvertently introduced ambiguity.

Unlike in other situations in GHC, we can't just turn on
-fprint-explicit-kinds, as we need to produce something which has the same
structure as a source-syntax type. Moreover, we can't rely on visible kind
application, since the first kind argument to Proxy is inferred, not specified.
Our solution is to annotate certain tycons with their kinds whenever they
appear in applied form in order to resolve the ambiguity. For instance, we
would reify the RHS of Foo like so:

  type Foo = (Proxy :: Type -> Type)

We need to devise an algorithm that determines precisely which tycons need
these explicit kind signatures. We certainly don't want to annotate _every_
tycon with a kind signature, or else we might end up with horribly bloated
types like the following:

  (Either :: Type -> Type -> Type) (Int :: Type) (Char :: Type)

We only want to annotate tycons that absolutely require kind signatures in
order to resolve some sort of ambiguity, and nothing more.

Suppose we have a tycon application (T ty_1 ... ty_n). Why might this type
require a kind signature? It might require it when we need to fill in any of
T's omitted arguments. By "omitted argument", we mean one that is dropped when
reifying ty_1 ... ty_n. Sometimes, the omitted arguments are inferred and
specified arguments (e.g., TH reification in GHC.Tc.Gen.Splice), and sometimes the
omitted arguments are only the inferred ones (e.g., in situations where
specified arguments are reified through visible kind application).
Regardless, the key idea is that _some_ arguments are going to be omitted after
reification, and the only mechanism we have at our disposal for filling them in
is through explicit kind signatures.

What do we mean by "fill in"? Let's consider this small example:

  T :: forall {k}. Type -> (k -> Type) -> k

Moreover, we have this application of T:

  T @{j} Int aty

When we reify this type, we omit the inferred argument @{j}. Is it fixed by the
other (non-inferred) arguments? Yes! If we know the kind of (aty :: blah), then
we'll generate an equality constraint (kappa -> Type) and, assuming we can
solve it, that will fix `kappa`. (Here, `kappa` is the unification variable
that we instantiate `k` with.)

Therefore, for any application of a tycon T to some arguments, the Question We
Must Answer is:

* Given the first n arguments of T, do the kinds of the non-omitted arguments
  fill in the omitted arguments?

(This is still a bit hand-wavey, but we'll refine this question incrementally
as we explain more of the machinery underlying this process.)

Answering this question is precisely the role that the `injectiveVarsOfType`
and `injective_vars_of_binder` functions exist to serve. If an omitted argument
`a` appears in the set returned by `injectiveVarsOfType ty`, then knowing
`ty` determines (i.e., fills in) `a`. (More on `injective_vars_of_binder` in a
bit.)

More formally, if
`a` is in `injectiveVarsOfType ty`
and  S1(ty) ~ S2(ty),
then S1(a)  ~ S2(a),
where S1 and S2 are arbitrary substitutions.

For example, is `F` is a non-injective type family, then

  injectiveVarsOfType(Either c (Maybe (a, F b c))) = {a, c}

Now that we know what this function does, here is a second attempt at the
Question We Must Answer:

* Given the first n arguments of T (ty_1 ... ty_n), consider the binders
  of T that are instantiated by non-omitted arguments. Do the injective
  variables of these binders fill in the remainder of T's kind?

Alright, we're getting closer. Next, we need to clarify what the injective
variables of a tycon binder are. This the role that the
`injective_vars_of_binder` function serves. Here is what this function does for
each form of tycon binder:

* Anonymous binders are injective positions. For example, in the promoted data
  constructor '(:):

    '(:) :: forall a. a -> [a] -> [a]

  The second and third tyvar binders (of kinds `a` and `[a]`) are both
  anonymous, so if we had '(:) 'True '[], then the kinds of 'True and
  '[] would contribute to the kind of '(:) 'True '[]. Therefore,
  injective_vars_of_binder(_ :: a) = injectiveVarsOfType(a) = {a}.
  (Similarly, injective_vars_of_binder(_ :: [a]) = {a}.)
* Named binders:
  - Inferred binders are never injective positions. For example, in this data
    type:

      data Proxy a
      Proxy :: forall {k}. k -> Type

    If we had Proxy 'True, then the kind of 'True would not contribute to the
    kind of Proxy 'True. Therefore,
    injective_vars_of_binder(forall {k}. ...) = {}.
  - Required binders are injective positions. For example, in this data type:

      data Wurble k (a :: k) :: k
      Wurble :: forall k -> k -> k

  The first tyvar binder (of kind `forall k`) has required visibility, so if
  we had Wurble (Maybe a) Nothing, then the kind of Maybe a would
  contribute to the kind of Wurble (Maybe a) Nothing. Hence,
  injective_vars_of_binder(forall a -> ...) = {a}.
  - Specified binders /might/ be injective positions, depending on how you
    approach things. Continuing the '(:) example:

      '(:) :: forall a. a -> [a] -> [a]

    Normally, the (forall a. ...) tyvar binder wouldn't contribute to the kind
    of '(:) 'True '[], since it's not explicitly instantiated by the user. But
    if visible kind application is enabled, then this is possible, since the
    user can write '(:) @Bool 'True '[]. (In that case,
    injective_vars_of_binder(forall a. ...) = {a}.)

    There are some situations where using visible kind application is appropriate
    and others where it is not (e.g., TH
    reification), so the `injective_vars_of_binder` function is parametrized by
    a Bool which decides if specified binders should be counted towards
    injective positions or not.

Now that we've defined injective_vars_of_binder, we can refine the Question We
Must Answer once more:

* Given the first n arguments of T (ty_1 ... ty_n), consider the binders
  of T that are instantiated by non-omitted arguments. For each such binder
  b_i, take the union of all injective_vars_of_binder(b_i). Is this set a
  superset of the free variables of the remainder of T's kind?

If the answer to this question is "no", then (T ty_1 ... ty_n) needs an
explicit kind signature, since T's kind has kind variables leftover that
aren't fixed by the non-omitted arguments.

One last sticking point: what does "the remainder of T's kind" mean? You might
be tempted to think that it corresponds to all of the arguments in the kind of
T that would normally be instantiated by omitted arguments. But this isn't
quite right, strictly speaking. Consider the following (silly) example:

  S :: forall {k}. Type -> Type

And suppose we have this application of S:

  S Int Bool

The Int argument would be omitted, and
injective_vars_of_binder(_ :: Type) = {}. This is not a superset of {k}, which
might suggest that (S Bool) needs an explicit kind signature. But
(S Bool :: Type) doesn't actually fix `k`! This is because the kind signature
only affects the /result/ of the application, not all of the individual
arguments. So adding a kind signature here won't make a difference. Therefore,
the fourth (and final) iteration of the Question We Must Answer is:

* Given the first n arguments of T (ty_1 ... ty_n), consider the binders
  of T that are instantiated by non-omitted arguments. For each such binder
  b_i, take the union of all injective_vars_of_binder(b_i). Is this set a
  superset of the free variables of the kind of (T ty_1 ... ty_n)?

Phew, that was a lot of work!

How can be sure that this is correct? That is, how can we be sure that in the
event that we leave off a kind annotation, that one could infer the kind of the
tycon application from its arguments? It's essentially a proof by induction: if
we can infer the kinds of every subtree of a type, then the whole tycon
application will have an inferrable kind--unless, of course, the remainder of
the tycon application's kind has uninstantiated kind variables.

What happens if T is oversaturated? That is, if T's kind has fewer than n
arguments, in the case that the concrete application instantiates a result
kind variable with an arrow kind? If we run out of arguments, we do not attach
a kind annotation. This should be a rare case, indeed. Here is an example:

   data T1 :: k1 -> k2 -> *
   data T2 :: k1 -> k2 -> *

   type family G (a :: k) :: k
   type instance G T1 = T2

   type instance F Char = (G T1 Bool :: (* -> *) -> *)   -- F from above

Here G's kind is (forall k. k -> k), and the desugared RHS of that last
instance of F is (G (* -> (* -> *) -> *) (T1 * (* -> *)) Bool). According to
the algorithm above, there are 3 arguments to G so we should peel off 3
arguments in G's kind. But G's kind has only two arguments. This is the
rare special case, and we choose not to annotate the application of G with
a kind signature. After all, we needn't do this, since that instance would
be reified as:

   type instance F Char = G (T1 :: * -> (* -> *) -> *) Bool

So the kind of G isn't ambiguous anymore due to the explicit kind annotation
on its argument. See #8953 and test th/T8953.
-}

{-
************************************************************************
*                                                                      *
        Multiplicities
*                                                                      *
************************************************************************

These functions would prefer to be in GHC.Core.Multiplicity, but
they some are used elsewhere in this module, and wanted to bring
their friends here with them.
-}

unrestricted, linear, tymult :: a -> Scaled a

-- | Scale a payload by Many
unrestricted = Scaled Many

-- | Scale a payload by One
linear = Scaled One

-- | Scale a payload by Many; used for type arguments in core
tymult = Scaled Many

irrelevantMult :: Scaled a -> a
irrelevantMult = scaledThing

mkScaled :: Mult -> a -> Scaled a
mkScaled = Scaled

scaledSet :: Scaled a -> b -> Scaled b
scaledSet (Scaled m _) b = Scaled m b

pattern One :: Mult
pattern One <- (isOneDataConTy -> True)
  where One = oneDataConTy

pattern Many :: Mult
pattern Many <- (isManyDataConTy -> True)
  where Many = manyDataConTy

isManyDataConTy :: Mult -> Bool
isManyDataConTy ty
  | Just tc <- tyConAppTyCon_maybe ty
  = tc `hasKey` manyDataConKey
isManyDataConTy _ = False

isOneDataConTy :: Mult -> Bool
isOneDataConTy ty
  | Just tc <- tyConAppTyCon_maybe ty
  = tc `hasKey` oneDataConKey
isOneDataConTy _ = False

isLinearType :: Type -> Bool
-- ^ @isLinear t@ returns @True@ of a if @t@ is a type of (curried) function
-- where at least one argument is linear (or otherwise non-unrestricted). We use
-- this function to check whether it is safe to eta reduce an Id in CorePrep. It
-- is always safe to return 'True', because 'True' deactivates the optimisation.
isLinearType ty = case ty of
                      FunTy _ Many _ res -> isLinearType res
                      FunTy _ _ _ _ -> True
                      ForAllTy _ res -> isLinearType res
                      _ -> False