| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adding filepath as a dependency of template-haskell means that it can't
be reinstalled if any build-plan depends on template-haskell.
This is a temporary solution for the 9.4 release.
A longer term solution is to split-up the template-haskell package into
the wired-in part and a non-wired-in part which can be reinstalled. This
was deemed quite risky on the 9.4 release timescale.
Fixes #21738
|
|
|
|
| |
Bumps text and exceptions submodules due to bounds.
|
|
|
|
|
|
|
|
|
| |
To 0.9.0 and 4.17.0 respectively.
Bumps array, deepseq, directory, filepath, haskeline, hpc, parsec, stm,
terminfo, text, unix, haddock, and hsc2hs submodules.
(cherry picked from commit ba47b95122b7b336ce1cc00896a47b584ad24095)
|
|
|
|
| |
Closes #21724
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit fixes #20312
It deprecates "TypeInType" extension
according to the following proposal:
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0083-no-type-in-type.rst
It has been already implemented.
The migration strategy:
1. Disable TypeInType
2. Enable both DataKinds and PolyKinds extensions
Metric Decrease:
T16875
|
|
|
|
| |
Fixes ghc/ghc#21675.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In principle, the *visible* instances are
* all instances defined in a prior top-level declaration group
(see docs on `newDeclarationGroup`), or
* all instances defined in any module transitively imported by the
module being compiled
However, actually searching all modules transitively below the one being
compiled is unreasonably expensive, so `reifyInstances` will report only the
instance for modules that GHC has had some cause to visit during this
compilation. This is a shortcoming: `reifyInstances` might fail to report
instances for a type that is otherwise unusued, or instances defined in a
different component. You can work around this shortcoming by explicitly importing the modules
whose instances you want to be visible. GHC issue #20529
has some discussion around this.
Fixes #20529
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit implements proposal 302: \cases - Multi-way lambda
expressions.
This adds a new expression heralded by \cases, which works exactly like
\case, but can match multiple apats instead of a single pat.
Updates submodule haddock to support the ITlcases token.
Closes #20768
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
A new pragma, `OPAQUE`, that ensures that every call of a named
function annotated with an `OPAQUE` pragma remains a call of that
named function, not some name-mangled variant.
Implements GHC proposal 0415:
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0415-opaque-pragma.rst
This commit also updates the haddock submodule to handle the newly
introduced lexer tokens corresponding to the OPAQUE pragma.
|
|
|
|
|
|
|
|
| |
The pretty printer for regular data types already accounted for these,
and had some duplication with the newtype pretty printer.
Factoring the logic out into a common function and using it for both
newtypes and data declarations is enough to fix the bug.
|
|
|
|
|
|
|
|
|
|
| |
* Users can define their own (~) type operator
* Haddock can display documentation for the built-in (~)
* New transitional warnings implemented:
-Wtype-equality-out-of-scope
-Wtype-equality-requires-operators
Updates the haddock submodule.
|
|
|
|
|
| |
It seems like a commented out section of code was accidentally included
in the docstring for a field.
|
| |
|
|
|
|
|
|
| |
Fix two issues regarding printing numeric literals.
Fixing #20454.
|
| |
|
|
|
|
| |
Close #21056
|
| |
|
|
|
|
|
|
| |
This patch ensures that the pretty printer formats LambdaCase and where
clauses using braces (instead of layout) to remain consistent with the
formatting of other statements (like `do` and `case`)
|
|
|
|
|
|
| |
This patch ensures that the pretty printer formats `case` statements
using braces (instead of layout) to remain consistent with the
formatting of other statements (like `do`)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Multiple home units allows you to load different packages which may depend on
each other into one GHC session. This will allow both GHCi and HLS to support
multi component projects more naturally.
Public Interface
~~~~~~~~~~~~~~~~
In order to specify multiple units, the -unit @⟨filename⟩ flag
is given multiple times with a response file containing the arguments for each unit.
The response file contains a newline separated list of arguments.
```
ghc -unit @unitLibCore -unit @unitLib
```
where the `unitLibCore` response file contains the normal arguments that cabal would pass to `--make` mode.
```
-this-unit-id lib-core-0.1.0.0
-i
-isrc
LibCore.Utils
LibCore.Types
```
The response file for lib, can specify a dependency on lib-core, so then modules in lib can use modules from lib-core.
```
-this-unit-id lib-0.1.0.0
-package-id lib-core-0.1.0.0
-i
-isrc
Lib.Parse
Lib.Render
```
Then when the compiler starts in --make mode it will compile both units lib and lib-core.
There is also very basic support for multiple home units in GHCi, at the
moment you can start a GHCi session with multiple units but only the
:reload is supported. Most commands in GHCi assume a single home unit,
and so it is additional work to work out how to modify the interface to
support multiple loaded home units.
Options used when working with Multiple Home Units
There are a few extra flags which have been introduced specifically for
working with multiple home units. The flags allow a home unit to pretend
it’s more like an installed package, for example, specifying the package
name, module visibility and reexported modules.
-working-dir ⟨dir⟩
It is common to assume that a package is compiled in the directory
where its cabal file resides. Thus, all paths used in the compiler
are assumed to be relative to this directory. When there are
multiple home units the compiler is often not operating in the
standard directory and instead where the cabal.project file is
located. In this case the -working-dir option can be passed which
specifies the path from the current directory to the directory the
unit assumes to be it’s root, normally the directory which contains
the cabal file.
When the flag is passed, any relative paths used by the compiler are
offset by the working directory. Notably this includes -i and
-I⟨dir⟩ flags.
-this-package-name ⟨name⟩
This flag papers over the awkward interaction of the PackageImports
and multiple home units. When using PackageImports you can specify
the name of the package in an import to disambiguate between modules
which appear in multiple packages with the same name.
This flag allows a home unit to be given a package name so that you
can also disambiguate between multiple home units which provide
modules with the same name.
-hidden-module ⟨module name⟩
This flag can be supplied multiple times in order to specify which
modules in a home unit should not be visible outside of the unit it
belongs to.
The main use of this flag is to be able to recreate the difference
between an exposed and hidden module for installed packages.
-reexported-module ⟨module name⟩
This flag can be supplied multiple times in order to specify which
modules are not defined in a unit but should be reexported. The
effect is that other units will see this module as if it was defined
in this unit.
The use of this flag is to be able to replicate the reexported
modules feature of packages with multiple home units.
Offsetting Paths in Template Haskell splices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When using Template Haskell to embed files into your program,
traditionally the paths have been interpreted relative to the directory
where the .cabal file resides. This causes problems for multiple home
units as we are compiling many different libraries at once which have
.cabal files in different directories.
For this purpose we have introduced a way to query the value of the
-working-dir flag to the Template Haskell API. By using this function we
can implement a makeRelativeToProject function which offsets a path
which is relative to the original project root by the value of
-working-dir.
```
import Language.Haskell.TH.Syntax ( makeRelativeToProject )
foo = $(makeRelativeToProject "./relative/path" >>= embedFile)
```
> If you write a relative path in a Template Haskell splice you should use the makeRelativeToProject function so that your library works correctly with multiple home units.
A similar function already exists in the file-embed library. The
function in template-haskell implements this function in a more robust
manner by honouring the -working-dir flag rather than searching the file
system.
Closure Property for Home Units
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For tools or libraries using the API there is one very important closure
property which must be adhered to:
> Any dependency which is not a home unit must not (transitively) depend
on a home unit.
For example, if you have three packages p, q and r, then if p depends on
q which depends on r then it is illegal to load both p and r as home
units but not q, because q is a dependency of the home unit p which
depends on another home unit r.
If you are using GHC by the command line then this property is checked,
but if you are using the API then you need to check this property
yourself. If you get it wrong you will probably get some very confusing
errors about overlapping instances.
Limitations of Multiple Home Units
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are a few limitations of the initial implementation which will be smoothed out on user demand.
* Package thinning/renaming syntax is not supported
* More complicated reexports/renaming are not yet supported.
* It’s more common to run into existing linker bugs when loading a
large number of packages in a session (for example #20674, #20689)
* Backpack is not yet supported when using multiple home units.
* Dependency chasing can be quite slow with a large number of
modules and packages.
* Loading wired-in packages as home units is currently not supported
(this only really affects GHC developers attempting to load
template-haskell).
* Barely any normal GHCi features are supported, it would be good to
support enough for ghcid to work correctly.
Despite these limitations, the implementation works already for nearly
all packages. It has been testing on large dependency closures,
including the whole of head.hackage which is a total of 4784 modules
from 452 packages.
Internal Changes
~~~~~~~~~~~~~~~~
* The biggest change is that the HomePackageTable is replaced with the
HomeUnitGraph. The HomeUnitGraph is a map from UnitId to HomeUnitEnv,
which contains information specific to each home unit.
* The HomeUnitEnv contains:
- A unit state, each home unit can have different package db flags
- A set of dynflags, each home unit can have different flags
- A HomePackageTable
* LinkNode: A new node type is added to the ModuleGraph, this is used to
place the linking step into the build plan so linking can proceed in
parralel with other packages being built.
* New invariant: Dependencies of a ModuleGraphNode can be completely
determined by looking at the value of the node. In order to achieve
this, downsweep now performs a more complete job of downsweeping and
then the dependenices are recorded forever in the node rather than
being computed again from the ModSummary.
* Some transitive module calculations are rewritten to use the
ModuleGraph which is more efficient.
* There is always an active home unit, which simplifies modifying a lot
of the existing API code which is unit agnostic (for example, in the
driver).
The road may be bumpy for a little while after this change but the
basics are well-tested.
One small metric increase, which we accept and also submodule update to
haddock which removes ExtendedModSummary.
Closes #10827
-------------------------
Metric Increase:
MultiLayerModules
-------------------------
Co-authored-by: Fendor <power.walross@gmail.com>
|
|
|
|
| |
Fixes #20812
|
|
|
|
| |
Fixes #20543
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, it was not possible to refer to a data constructor using
InfixT with a dynamically bound name (i.e. a name with NameFlavour
`NameS` or `NameQ`) if a type constructor of the same
name exists.
This commit adds promoted counterparts to InfixT and UInfixT,
analogously to how PromotedT is the promoted counterpart to ConT.
Closes #20773
|
|
|
|
|
|
|
|
|
|
|
|
| |
T12545 is very inconsistently affected by this change for some reason.
There is a decrease in allocations on most configurations, but
an increase on validate-x86_64-linux-deb9-unreg-hadrian. Accepting it
as it seems unrelated to this patch.
Metric Decrease:
T12545
Metric Increase:
T12545
|
|
|
|
|
|
|
|
|
|
| |
In accordance with GHC Proposal #281 "Visible forall in types of terms":
For three releases before this change takes place, include a new
warning -Wforall-identifier in -Wdefault. This warning will be triggered
at definition sites (but not use sites) of forall as an identifier.
Updates the haddock submodule.
|
| |
|
| |
|
|
|
|
| |
Fixes #19373
|
|
|
|
| |
fixes #19756, updates haddock submodule
|
| |
|
| |
|
| |
|
|
|
|
| |
isInstance
|
|
|
|
|
|
|
| |
This requires bumping the `exceptions` and `text` submodules to bring in
commits that bump their respective upper version bounds on `template-haskell`.
Fixes #19083.
|
| |
|
|
|
|
| |
(cherry picked from commit 4f334120c8e9cc4aefcbf11d99f169f648af9fde)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds two new methods to the Quasi class, putDoc and getDoc. They
allow Haddock documentation to be added to declarations, module headers,
function arguments and class/type family instances, as well as looked
up.
It works by building up a map of names to attach pieces of
documentation to, which are then added in the extractDocs function in
GHC.HsToCore.Docs. However because these template haskell names need to
be resolved to GHC names at the time they are added, putDoc cannot
directly add documentation to declarations that are currently being
spliced. To remedy this, withDecDoc/withDecsDoc wraps the operation with
addModFinalizer, and provides a more ergonomic interface for doing so.
Similarly, the funD_doc, dataD_doc etc. combinators provide a more
ergonomic interface for documenting functions and their arguments
simultaneously.
This also changes ArgDocMap to use an IntMap rather than an Map Int, for
efficiency.
Part of the work towards #5467
|
|
|
|
|
|
|
| |
Now that GHC 9.0.1 is released, it is time to drop support for bootstrapping
with GHC 8.8, as we only support building with the previous two major GHC
releases. As an added bonus, this allows us to remove several bits of CPP that
are either always true or no longer reachable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the BoxedRep proposal, refactoring the `RuntimeRep`
hierarchy from:
```haskell
data RuntimeRep = LiftedPtrRep | UnliftedPtrRep | ...
```
to
```haskell
data RuntimeRep = BoxedRep Levity | ...
data Levity = Lifted | Unlifted
```
Updates binary, haddock submodules.
Closes #17526.
Metric Increase:
T12545
|
|
|
|
|
|
|
|
|
|
|
|
| |
It was revealed in #19363 that the Template Haskell pretty-printer implemented
in `Language.Haskell.TH.Ppr` did not pretty-print infix names or symbolic names
correctly in certain situations, such as in data constructor declarations or
fixity declarations. Easily fixed by using `pprName' Applied` (which always
parenthesizes symbolic names in prefix position) or `pprName' Infix` (which
always surrounds alphanumeric names with backticks in infix position) in the
right spots.
Fixes #19363.
|
| |
|
|
|
|
| |
The COMPLETE pragma was not properly terminated with a '#-}'.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Co-authored-by: Rinat Stryungis <rinat.stryungis@serokell.io>
Implement GHC Proposal #387
* Parse char literals 'x' at the type level
* New built-in type families CmpChar, ConsSymbol, UnconsSymbol
* New KnownChar class (cf. KnownSymbol and KnownNat)
* New SomeChar type (cf. SomeSymbol and SomeNat)
* CharTyLit support in template-haskell
Updated submodules: binary, haddock.
Metric Decrease:
T5205
haddock.base
Metric Increase:
Naperian
T13035
|
|
|
|
|
|
| |
This was inadvertently merged.
This reverts commit 6c2eb2232b39ff4720fda0a4a009fb6afbc9dcea.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the BoxedRep proposal, refacoring the `RuntimeRep`
hierarchy from:
```haskell
data RuntimeRep = LiftedPtrRep | UnliftedPtrRep | ...
```
to
```haskell
data RuntimeRep = BoxedRep Levity | ...
data Levity = Lifted | Unlifted
```
Closes #17526.
|
|
|
|
|
| |
The haddock submodule is also updated so that it understands the changes
to patterns.
|
|
|
|
| |
Also bumps upper bounds on base in boot libraries (incl. submodules).
|
|
|
|
|
|
| |
Implements GHC Proposal #356
Updates the haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch is quite straightforward. The only tricky part is that
`Language.Haskell.TH.Lib.Internal` now must be `Trustworthy` instead
of `Safe` due to the `GHC.Exts` import (in order to import `TYPE`).
Since `CodeQ` has yet to appear in any released version of
`template-haskell`, I didn't bother mentioning the change to `CodeQ`
in the `template-haskell` release notes.
Fixes #18521.
|