| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to make the packages in this repo "reinstallable", we need to
associate source code with a specific packages. Having a top level
`/includes` dir that mixes concerns (which packages' includes?) gets in
the way of this.
To start, I have moved everything to `rts/`, which is mostly correct.
There are a few things however that really don't belong in the rts (like
the generated constants haskell type, `CodeGen.Platform.h`). Those
needed to be manually adjusted.
Things of note:
- No symlinking for sake of windows, so we hard-link at configure time.
- `CodeGen.Platform.h` no longer as `.hs` extension (in addition to
being moved to `compiler/`) so as not to confuse anyone, since it is
next to Haskell files.
- Blanket `-Iincludes` is gone in both build systems, include paths now
more strictly respect per-package dependencies.
- `deriveConstants` has been taught to not require a `--target-os` flag
when generating the platform-agnostic Haskell type. Make takes
advantage of this, but Hadrian has yet to.
|
|
|
|
| |
All uses of these now use ExecPage.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In which we add a new code generator to the Glasgow Haskell
Compiler. This codegen supports ELF and Mach-O targets, thus covering
Linux, macOS, and BSDs in principle. It was tested only on macOS and
Linux. The NCG follows a similar structure as the other native code
generators we already have, and should therfore be realtively easy to
follow.
It supports most of the features required for a proper native code
generator, but does not claim to be perfect or fully optimised. There
are still opportunities for optimisations.
Metric Decrease:
ManyAlternatives
ManyConstructors
MultiLayerModules
PmSeriesG
PmSeriesS
PmSeriesT
PmSeriesV
T10421
T10421a
T10858
T11195
T11276
T11303b
T11374
T11822
T12227
T12545
T12707
T13035
T13253
T13253-spj
T13379
T13701
T13719
T14683
T14697
T15164
T15630
T16577
T17096
T17516
T17836
T17836b
T17977
T17977b
T18140
T18282
T18304
T18478
T18698a
T18698b
T18923
T1969
T3064
T5030
T5321FD
T5321Fun
T5631
T5642
T5837
T783
T9198
T9233
T9630
T9872d
T9961
WWRec
Metric Increase:
T4801
|
|
|
|
|
|
|
|
|
| |
This drops allocateExec for darwin, and replaces it with
a alloc, write, mark executable strategy instead. This prevents
us from trying to allocate an executable range and then write to
it, which X^W will prohibit on darwin.
This will *only* work if we can use mmap.
|
|
|
|
|
|
|
|
|
| |
This function is exposed in the RtsAPI.h so that external users have a
blessed way to traverse all the different `bdescr`s which are known by
the RTS.
The main motivation is to use this function in ghc-debug but avoid
having to expose the internal structure of a Capability in the API.
|
|
|
|
|
|
|
|
| |
This addes the necessary logic to support aarch64 on elf, as well
as aarch64 on mach-o, which Apple calls arm64.
We change architecture name to AArch64, which is the official arm
naming scheme.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The heap profiler currently cannot traverse pinned blocks because of
alignment slop. This used to just be a minor annoyance as the whole block
is accounted into a special cost center rather than the respective object's
CCS, cf. #7275. However for the new root profiler we would like to be able
to visit _every_ closure on the heap. We need to do this so we can get rid
of the current 'flip' bit hack in the heap traversal code.
Since info pointers are always non-zero we can in principle skip all the
slop in the profiler if we can rely on it being zeroed. This assumption
caused problems in the past though, commit a586b33f8e ("rts: Correct
handling of LARGE ARR_WORDS in LDV profiler"), part of !1118, tried to use
the same trick for BF_LARGE objects but neglected to take into account that
shrink*Array# functions don't ensure that slop is zeroed when not
compiling with profiling.
Later, commit 0c114c6599 ("Handle large ARR_WORDS in heap census (fix
as we will only be assuming slop is zeroed when profiling is on.
This commit also reduces the ammount of slop we introduce in the first
place by calculating the needed alignment before doing the allocation for
small objects where we know the next available address. For large objects
we don't know how much alignment we'll have to do yet since those details
are hidden behind the allocateMightFail function so there we continue to
allocate the maximum additional words we'll need to do the alignment.
So we don't have to duplicate all this logic in the cmm code we pull it
into the RTS allocatePinned function instead.
Metric Decrease:
T7257
haddock.Cabal
haddock.base
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This extends the non-moving collector to allow concurrent collection.
The full design of the collector implemented here is described in detail
in a technical note
B. Gamari. "A Concurrent Garbage Collector For the Glasgow Haskell
Compiler" (2018)
This extension involves the introduction of a capability-local
remembered set, known as the /update remembered set/, which tracks
objects which may no longer be visible to the collector due to mutation.
To maintain this remembered set we introduce a write barrier on
mutations which is enabled while a concurrent mark is underway.
The update remembered set representation is similar to that of the
nonmoving mark queue, being a chunked array of `MarkEntry`s. Each
`Capability` maintains a single accumulator chunk, which it flushed
when it (a) is filled, or (b) when the nonmoving collector enters its
post-mark synchronization phase.
While the write barrier touches a significant amount of code it is
conceptually straightforward: the mutator must ensure that the referee
of any pointer it overwrites is added to the update remembered set.
However, there are a few details:
* In the case of objects with a dirty flag (e.g. `MVar`s) we can
exploit the fact that only the *first* mutation requires a write
barrier.
* Weak references, as usual, complicate things. In particular, we must
ensure that the referee of a weak object is marked if dereferenced by
the mutator. For this we (unfortunately) must introduce a read
barrier, as described in Note [Concurrent read barrier on deRefWeak#]
(in `NonMovingMark.c`).
* Stable names are also a bit tricky as described in Note [Sweeping
stable names in the concurrent collector] (`NonMovingSweep.c`).
We take quite some pains to ensure that the high thread count often seen
in parallel Haskell applications doesn't affect pause times. To this end
we allow thread stacks to be marked either by the thread itself (when it
is executed or stack-underflows) or the concurrent mark thread (if the
thread owning the stack is never scheduled). There is a non-trivial
handshake to ensure that this happens without racing which is described
in Note [StgStack dirtiness flags and concurrent marking].
Co-Authored-by: Ömer Sinan Ağacan <omer@well-typed.com>
|
|
|
|
|
|
|
| |
Namely ensure that block descriptors are initialized with valid
generation numbers.
Co-Authored-By: Ben Gamari <ben@well-typed.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The existing internal counters:
* gc_alloc_block_sync
* whitehole_spin
* gen[g].sync
* gen[1].sync
are now not shown in the -s report unless --internal-counters is also passed.
If --internal-counters is passed we now show the counters above, reformatted, as
well as several other counters. In particular, we now count the yieldThread()
calls that SpinLocks do as well as their spins.
The added counters are:
* gc_spin (spin and yield)
* mut_spin (spin and yield)
* whitehole_threadPaused (spin only)
* whitehole_executeMessage (spin only)
* whitehole_lockClosure (spin only)
* waitForGcThreadsd (spin and yield)
As well as the following, which are not SpinLock-like things:
* any_work
* do_work
* scav_find_work
See the Note for descriptions of what these counters are.
We add busy_wait_nops in these loops along with the counter increment where it
was absent.
Old internal counters output:
```
gc_alloc_block_sync: 0
whitehole_gc_spin: 0
gen[0].sync: 0
gen[1].sync: 0
```
New internal counters output:
```
Internal Counters:
Spins Yields
gc_alloc_block_sync 323 0
gc_spin 9016713 752
mut_spin 57360944 47716
whitehole_gc 0 n/a
whitehole_threadPaused 0 n/a
whitehole_executeMessage 0 n/a
whitehole_lockClosure 0 0
waitForGcThreads 2 415
gen[0].sync 6 0
gen[1].sync 1 0
any_work 2017
no_work 2014
scav_find_work 1004
```
Test Plan:
./validate
Check it builds with #define PROF_SPIN removed from includes/rts/Config.h
Reviewers: bgamari, erikd, simonmar, hvr
Reviewed By: simonmar
Subscribers: rwbarton, thomie, carter
GHC Trac Issues: #3553, #9221
Differential Revision: https://phabricator.haskell.org/D4302
|
|
|
|
|
|
|
|
|
|
|
|
| |
Test Plan: Validate, add tests
Reviewers: simonmar, austin, erikd
Reviewed By: simonmar
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D4021
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This both says what we mean and silences a bunch of spurious CPP linting
warnings. This pragma is supported by all CPP implementations which we
support.
Reviewers: austin, erikd, simonmar, hvr
Reviewed By: simonmar
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D3482
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Visible API changes:
* The C struct `GCDetails` gives the stats about a single GC. This is
passed to the `gcDone()` callback if one is set via the
RtsConfig. (previously we just passed a collection of values, so this
is more extensible, at the expense of breaking the existing API)
* `RTSStats` gives cumulative stats since the start of the program,
and includes the `GCDetails` for the most recent GC. This struct
can be obtained via `getRTSStats()` (the old `getGCStats()` has been
removed, and `getGCStatsEnabled()` has been renamed to
`getRTSStatsEnabled()`)
Improvements:
* The per-GC stats and cumulative stats are now cleanly separated.
* Inside the RTS we have a top-level `RTSStats` struct to keep all our
stats in, previously this was just a collection of strangely-named
variables. This struct is mostly just copied in `getRTSStats()`, so
the implementation of that function is a lot shorter.
* Types are more consistent. We use a uint64_t byte count for all
memory values, and Time for all time values.
* Names are more consistent. We use a suffix `_bytes` for all byte
counts and `_ns` for all time values.
* We now collect information about the amount of memory in large
objects and compact objects in `GCDetails`. (the latter was the reason
I started doing this patch but it seems to have ballooned a bit!)
* I fixed a bug in the calculation of the elapsed MUT time, and added
an ASSERT to stop the calculations going wrong in the future.
For now I kept the Haskell API in `GHC.Stats` the same, by
impedence-matching with the new API. We could either break that API
and make it match the C API more closely, or we could add a new API
and deprecate the old one. Opinions welcome.
This stuff is very easy to get wrong, and it's hard to test. Reviews
welcome!
Test Plan:
manual testing
validate
Reviewers: bgamari, niteria, austin, ezyang, hvr, erikd, rwbarton, Phyx
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2756
|
|
|
|
|
|
|
|
|
|
|
|
| |
Test Plan: Validate on lots of platforms
Reviewers: erikd, simonmar, austin
Reviewed By: erikd, simonmar
Subscribers: michalt, thomie
Differential Revision: https://phabricator.haskell.org/D2699
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This exposes mblocks_allocated in the GCStats struct.
Test Plan: it builds
Reviewers: bgamari, simonmar, austin, hvr, erikd
Reviewed By: erikd
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2429
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This brings in initial support for compact regions, as described in the
ICFP 2015 paper "Efficient Communication and Collection with Compact
Normal Forms" (Edward Z. Yang et.al.) and implemented by Giovanni
Campagna.
Some things may change before the 8.2 release, but I (Simon M.) wanted
to get the main patch committed so that we can iterate.
What documentation there is is in the Data.Compact module in the new
compact package. We'll need to extend and polish the documentation
before the release.
Test Plan:
validate
(new test cases included)
Reviewers: ezyang, simonmar, hvr, bgamari, austin
Subscribers: vikraman, Yuras, RyanGlScott, qnikst, mboes, facundominguez, rrnewton, thomie, erikd
Differential Revision: https://phabricator.haskell.org/D1264
GHC Trac Issues: #11493
|
|
|
|
|
|
|
|
| |
* Remove unused/old flags from the structs
* Update old comments
* Add missing flags to GHC.RTS
* Simplify GHC.RTS, remove C code and use hsc2hs instead
* Make ParFlags unconditional, and add support to GHC.RTS
|
|
|
|
|
|
|
|
|
|
|
|
| |
The `nat` type was an alias for `unsigned int` with a comment saying
it was at least 32 bits. We keep the typedef in case client code is
using it but mark it as deprecated.
Test Plan: Validated on Linux, OS X and Windows
Reviewers: simonmar, austin, thomie, hvr, bgamari, hsyl20
Differential Revision: https://phabricator.haskell.org/D2166
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In a situaion where we have some statically-linked code and we want to
load and unload a series of objects, we need the CAFs in the
statically-linked code to be retained indefinitely, while the CAFs in
the dynamically-linked code should be GC'd as normal, so that we can
detect when the code is unloadable. This was wrong before - we GC'd
CAFs in the static code, leading to a crash in the rare case where we
use a CAF, GC it, and then load a new object that uses it again.
I also did some tidy up: RtsConfig now has a field keep_cafs to
indicate whether we want CAFs to be retained in static code.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
clearNursery resets all the bd->free pointers of nursery blocks to
make the blocks empty. In profiles we've seen clearNursery taking
significant amounts of time particularly with large -N and -A values.
This patch moves the work of clearNursery to the point at which we
actually need the new block, thereby introducing an invariant that
blocks to the right of the CurrentNursery pointer still need their
bd->free pointer reset. This should make things faster overall,
because we don't need to clear blocks that we don't use.
Test Plan: validate
Reviewers: AndreasVoellmy, ezyang, austin
Subscribers: thomie, carter, ezyang, simonmar
Differential Revision: https://phabricator.haskell.org/D318
|
|
|
|
| |
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
|
|
|
|
|
|
| |
We now do the allocation of the blackhole indirection closure inside the
RTS procedure 'newCAF' instead of generating the allocation code inline
in the closure body of each CAF. This slightly decreases code size in
modules with a lot of CAFs.
As a result of this change, for example, the size of DynFlags.o drops by
~60KB and HsExpr.o by ~100KB.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds code for jumping to given addresses for ARM, written by Ben
Gamari.
However, when allocating new infotables for bytecode (which is where
this jump code occurs), we need to be sure to flush the cache on the
execute pointer returned from allocateExec() - on systems like ARM, the
processor won't reliably read back code or automatically cache flush,
where x86 will.
So we add a new flushExec primitive to call out to GCC's
__builtin___clear_cache primitive, which will properly generate the
correct code (nothing on x86, and a call to libgcc's __clear_cache on
ARM) and make sure we use it after writing the code out.
Authored-by: Ben Gamari <bgamari.foss@gmail.com>
Authored-by: Austin Seipp <austin@well-typed.com>
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This resurrects some old code and makes it work again. The idea is
that we want to get an error message if we ever enter a CAF that has
been GC'd, rather than following its indirection which will likely
cause a segfault. Without this patch, these bugs are hard to track
down in gdb, because the IND_STATIC code overwrites R1 (the pointer to
the CAF) with its indirectee before jumping into bad memory, so we've
lost the address of the CAF that got GC'd.
Some associated refactoring while I was here.
|
|
|
|
|
| |
Authored-by: Stephen Blackheath <...@blacksapphire.com>
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
| |
This reverts commit d85044f6b201eae0a9e453b89c0433608e0778f0.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When servicing a stack overflows, only throw an exception to the given
thread if the user explicitly set a max stack size, using +RTS -K.
Otherwise just service it normally and grow the stack.
In case we actually run out of *heap* (stack chuncks are allocated on
the heap), then we need to bail by calling the stackOverflow() hook and
exit immediately.
Authored-by: Ben Gamari <bgamari.foss@gmail.com>
Signed-off-by: Austin Seipp <aseipp@pobox.com>
|
| |
|
|
|
|
| |
Based on a patch from Stephen Blackheath.
|
|
|
|
|
|
|
|
|
|
|
| |
We were doing it in two different ways and asserting that the results
were the same. In most cases they were, but I found one case where
they weren't: the GC itself allocates some memory for running
finalizers, and this memory was accounted for one way but not the
other.
It was simpler to remove the old way of counting allocation that to
try to fix it up, so I did that.
|
|
|
|
|
|
|
|
|
| |
(#7257)
The program in #7257 was spending 90% of its time counting the live
data in gen->large_objects. We already avoid doing this for small
objects, but in this example the old generation was full of large
objects (actually pinned ByteStrings).
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
lnat was originally "long unsigned int" but we were using it when we
wanted a 64-bit type on a 64-bit machine. This broke on Windows x64,
where long == int == 32 bits. Using types of unspecified size is bad,
but what we really wanted was a type with N bits on an N-bit machine.
StgWord is exactly that.
lnat was mentioned in some APIs that clients might be using
(e.g. StackOverflowHook()), so we leave it defined but with a comment
to say that it's deprecated.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Also rename internal variables to make the names match what they hold.
The parallel GC work balance is calculated using the total amount of
memory copied by all GC threads, and the maximum copied by any
individual thread. You have serial GC when the max is the same as
copied, and perfectly balanced GC when total/max == n_caps.
Previously we presented this as the ratio total/max and told users
that the serial value was 1 and the ideal value N, for N caps, e.g.
Parallel GC work balance: 1.05 (4045071 / 3846774, ideal 2)
The downside of this is that the user always has to keep in mind the
number of cores being used. Our new presentation uses a normalised
scale 0--1 as a percentage. The 0% means completely serial and 100%
is perfect balance, e.g.
Parallel GC work balance: 4.56% (serial 0%, perfect 100%)
|
| |
|
|
|
|
| |
See Note [atomic CAFs] in rts/sm/Storage.c
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
| |
We add a new RTS flag -T for collecting statistics but not giving any
new inputs. There is one new struct in rts/storage/GC.h: GCStats. We
add two new global counters current_residency and current_slop, which
are useful for in-program GC statistics.
See GHC.Stats in base for a Haskell interface to this functionality.
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
|
|
|
| |
in the future.
|
|
|
|
|
|
|
|
|
| |
Now we keep any partially-full blocks in the gc_thread[] structs after
each GC, rather than moving them to the generation. This should give
us slightly better locality (though I wasn't able to measure any
difference).
Also in this patch: better sanity checking with THREADED.
|
|
|
|
|
|
| |
Store the *number* of the destination generation in the Bdescr struct,
so that in evacuate() we don't have to deref gen to get it.
This is another improvement ported over from my GC branch.
|
|
|
|
| |
Now that we use the per-capability mutable lists exclusively.
|
|
|
|
|
|
|
|
|
|
|
| |
The allocation stats (+RTS -s etc.) used to count the slop at the end
of each nursery block (except the last) as allocated space, now we
count the allocated words accurately. This should make allocation
figures more predictable, too.
This has the side effect of reducing the apparent allocations by a
small amount (~1%), so remember to take this into account when looking
at nofib results.
|
| |
|