| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
This helps identify threads in gdb particularly in processes with a
lot of threads.
|
|
|
|
| |
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On most platforms the userspace thread type (e.g. pthread_t) and kernel
thread id are different. Normally we don't care about kernel thread Ids,
but some system tools for tracing/profiling etc report kernel ids.
For example Solaris and OSX's DTrace and Linux's perf tool report kernel
thread ids. To be able to match these up with RTS's OSThread we need a
way to get at the kernel thread, so we add a new function for to do just
that (the implementation is system-dependent).
Additionally, strictly speaking the OSThreadId type, used as task ids,
is not a serialisable representation. On unix OSThreadId is a typedef for
pthread_t, but pthread_t is not guaranteed to be a numeric type.
Indeed on some systems pthread_t is a pointer and in principle it
could be a structure type. So we add another new function to get a
serialisable representation of an OSThreadId. This is only for use
in log files. We use the function to serialise an id of a task,
with the extra feature that it works in non-threaded builds
by always returning 1.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is patch that adds support for interruptible FFI calls in the form
of a new foreign import keyword 'interruptible', which can be used
instead of 'safe' or 'unsafe'. Interruptible FFI calls act like safe
FFI calls, except that the worker thread they run on may be interrupted.
Internally, it replaces BlockedOnCCall_NoUnblockEx with
BlockedOnCCall_Interruptible, and changes the behavior of the RTS
to not modify the TSO_ flags on the event of an FFI call from
a thread that was interruptible. It also modifies the bytecode
format for foreign call, adding an extra Word16 to indicate
interruptibility.
The semantics of interruption vary from platform to platform, but the
intent is that any blocking system calls are aborted with an error code.
This is most useful for making function calls to system library
functions that support interrupting. There is no support for pre-Vista
Windows.
There is a partner testsuite patch which adds several tests for this
functionality.
|
|
|
|
|
|
|
| |
I've updated the wiki page about the RTS headers
http://hackage.haskell.org/trac/ghc/wiki/Commentary/SourceTree/Includes
to reflect the new layout and explain some of the rationale. All the
header files now point to this page.
|
|
The first phase of this tidyup is focussed on the header files, and in
particular making sure we are exposinng publicly exactly what we need
to, and no more.
- Rts.h now includes everything that the RTS exposes publicly,
rather than a random subset of it.
- Most of the public header files have moved into subdirectories, and
many of them have been renamed. But clients should not need to
include any of the other headers directly, just #include the main
public headers: Rts.h, HsFFI.h, RtsAPI.h.
- All the headers needed for via-C compilation have moved into the
stg subdirectory, which is self-contained. Most of the headers for
the rest of the RTS APIs have moved into the rts subdirectory.
- I left MachDeps.h where it is, because it is so widely used in
Haskell code.
- I left a deprecated stub for RtsFlags.h in place. The flag
structures are now exposed by Rts.h.
- Various internal APIs are no longer exposed by public header files.
- Various bits of dead code and declarations have been removed
- More gcc warnings are turned on, and the RTS code is more
warning-clean.
- More source files #include "PosixSource.h", and hence only use
standard POSIX (1003.1c-1995) interfaces.
There is a lot more tidying up still to do, this is just the first
pass. I also intend to standardise the names for external RTS APIs
(e.g use the rts_ prefix consistently), and declare the internal APIs
as hidden for shared libraries.
|