| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The first phase of this tidyup is focussed on the header files, and in
particular making sure we are exposinng publicly exactly what we need
to, and no more.
- Rts.h now includes everything that the RTS exposes publicly,
rather than a random subset of it.
- Most of the public header files have moved into subdirectories, and
many of them have been renamed. But clients should not need to
include any of the other headers directly, just #include the main
public headers: Rts.h, HsFFI.h, RtsAPI.h.
- All the headers needed for via-C compilation have moved into the
stg subdirectory, which is self-contained. Most of the headers for
the rest of the RTS APIs have moved into the rts subdirectory.
- I left MachDeps.h where it is, because it is so widely used in
Haskell code.
- I left a deprecated stub for RtsFlags.h in place. The flag
structures are now exposed by Rts.h.
- Various internal APIs are no longer exposed by public header files.
- Various bits of dead code and declarations have been removed
- More gcc warnings are turned on, and the RTS code is more
warning-clean.
- More source files #include "PosixSource.h", and hence only use
standard POSIX (1003.1c-1995) interfaces.
There is a lot more tidying up still to do, this is just the first
pass. I also intend to standardise the names for external RTS APIs
(e.g use the rts_ prefix consistently), and declare the internal APIs
as hidden for shared libraries.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
New flag: "+RTS -qb" disables load-balancing in the parallel GC
(though this is subject to change, I think we will probably want to do
something more automatic before releasing this).
To get the "PARGC3" configuration described in the "Runtime support
for Multicore Haskell" paper, use "+RTS -qg0 -qb -RTS".
The main advantage of this is that it allows us to easily disable
load-balancing altogether, which turns out to be important in parallel
programs. Maintaining locality is sometimes more important that
spreading the work out in parallel GC. There is a side benefit in
that the parallel GC should have improved locality even when
load-balancing, because each processor prefers to take work from its
own queue before stealing from others.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This turns out to be quite vital for parallel programs:
- The way we discover which threads to traverse is by finding
dirty threads via the remembered sets (aka mutable lists).
- A dirty thread will be on the remembered set of the capability
that was running it, and we really want to traverse that thread's
stack using the GC thread for the capability, because it is in
that CPU's cache. If we get this wrong, we get penalised badly by
the memory system.
Previously we had per-capability mutable lists but they were
aggregated before GC and traversed by just one of the GC threads.
This resulted in very poor performance particularly for parallel
programs with deep stacks.
Now we keep per-capability remembered sets throughout GC, which also
removes a lock (recordMutableGen_sync).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, the GC had its own pool of threads to use as workers when
doing parallel GC. There was a "leader", which was the mutator thread
that initiated the GC, and the other threads were taken from the pool.
This was simple and worked fine for sequential programs, where we did
most of the benchmarking for the parallel GC, but falls down for
parallel programs. When we have N mutator threads and N cores, at GC
time we would have to stop N-1 mutator threads and start up N-1 GC
threads, and hope that the OS schedules them all onto separate cores.
It practice it doesn't, as you might expect.
Now we use the mutator threads to do GC. This works quite nicely,
particularly for parallel programs, where each mutator thread scans
its own spark pool, which is probably in its cache anyway.
There are some flag changes:
-g<n> is removed (-g1 is still accepted for backwards compat).
There's no way to have a different number of GC threads than mutator
threads now.
-q1 Use one OS thread for GC (turns off parallel GC)
-qg<n> Use parallel GC for generations >= <n> (default: 1)
Using parallel GC only for generations >=1 works well for sequential
programs. Compiling an ordinary sequential program with -threaded and
running it with -N2 or more should help if you do a lot of GC. I've
found that adding -qg0 (do parallel GC for generation 0 too) speeds up
some parallel programs, but slows down some sequential programs.
Being conservative, I left the threshold at 1.
ToDo: document the new options.
|
| |
|
|
|
|
|
|
| |
The macros were duplicating their arguments, which was normally
harmless, but in the parallel GC was actually wrong and caused
spurious assertion failures.
|
| |
|
|
|
|
| |
Sometimes better than the default copying, enabled by +RTS -w
|
| |
|
|
|
|
|
|
| |
Instead of keeping a single list of all threads, keep one per step
and only look at the threads belonging to steps that we are
collecting.
|
|
|
|
|
|
|
|
|
| |
- GCAux.c contains code not compiled with the gct register enabled,
it is callable from outside the GC
- marking functions are moved to their relevant subsystems, outside
the GC
- mark_root needs to save the gct register, as it is called from
outside the GC
|
|
|
|
|
|
|
| |
- count and report number of parallel collections
- calculate bytes scanned in addition to bytes copied per thread
- calculate "work balance factor"
- tidy up the formatting a bit
|
|
|
|
|
| |
This means we can calculate slop easily, and also improve
predictability of GC.
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
When a stack is occupying less than 1/4 of the memory it owns, and is
larger than a megablock, we release half of it. Shrinking is O(1), it
doesn't need to copy the stack.
|
|
|
|
| |
in addition to checking for leaks
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch localises the state of the GC into a gc_thread structure,
and reorganises the inner loop of the GC to scavenge one block at a
time from global work lists in each "step". The gc_thread structure
has a "workspace" for each step, in which it collects evacuated
objects until it has a full block to push out to the step's global
list. Details of the algorithm will be on the wiki in due course.
At the moment, THREADED_RTS does not compile, but the single-threaded
GC works (and is 10-20% slower than before).
|
| |
|
|
|
|
| |
For some reason this causes build failures for me in my 32-bit chroot,
|
|
|
|
|
|
|
|
| |
Now allocate() is a synonym for allocateInGen().
I also made various cleanups: there is now less special-case code for
supporting -G1 (two-space collection), and -G1 now works with
-threaded.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements pointer tagging as per our ICFP'07 paper "Faster
laziness using dynamic pointer tagging". It improves performance by
10-15% for most workloads, including GHC itself.
The original patches were by Alexey Rodriguez Yakushev
<mrchebas@gmail.com>, with additions and improvements by me. I've
re-recorded the development as a single patch.
The basic idea is this: we use the low 2 bits of a pointer to a heap
object (3 bits on a 64-bit architecture) to encode some information
about the object pointed to. For a constructor, we encode the "tag"
of the constructor (e.g. True vs. False), for a function closure its
arity. This enables some decisions to be made without dereferencing
the pointer, which speeds up some common operations. In particular it
enables us to avoid costly indirect jumps in many cases.
More information in the commentary:
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/PointerTagging
|
|
|
|
|
| |
We recently discovered that they aren't a win any more, and just cost
code size.
|
|
|
|
|
|
|
|
|
|
| |
Since thunks grew an extra padding word in GHC 6.6, closure_sizeW()
has been wrong for AP closures because it assumed compatible layout
between PAPs and APs. One symptom is that the compacting GC would
crash if it encountered an AP. APs conly crop up in GHCi or
when using asynchronous exceptions.
Fixes #1010
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for parallel GC, split up the monolithic GC.c file into
smaller parts. Also in this patch (and difficult to separate,
unfortunatley):
- Don't include Stable.h in Rts.h, instead just include it where
necessary.
- consistently use STATIC_INLINE in source files, and INLINE_HEADER
in header files. STATIC_INLINE is now turned off when DEBUG is on,
to make debugging easier.
- The GC no longer takes the get_roots function as an argument.
We weren't making use of this generalisation.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
See bug #738
Allocating executable memory is getting more difficult these days. In
particular, the default SELinux policy on Fedora Core 5 disallows
making the heap (i.e. malloc()'d memory) executable, although it does
apparently allow mmap()'ing anonymous executable memory by default.
Previously, stgMallocBytesRWX() used malloc() underneath, and then
tried to make the page holding the memory executable. This was rather
hacky and fails with Fedora Core 5.
This patch adds a mini-allocator for executable memory, based on the
block allocator. We grab page-sized blocks and make them executable,
then allocate small objects from the page. There's a simple free
function, that will free whole pages back to the system when they are
empty.
|
|
Most of the other users of the fptools build system have migrated to
Cabal, and with the move to darcs we can now flatten the source tree
without losing history, so here goes.
The main change is that the ghc/ subdir is gone, and most of what it
contained is now at the top level. The build system now makes no
pretense at being multi-project, it is just the GHC build system.
No doubt this will break many things, and there will be a period of
instability while we fix the dependencies. A straightforward build
should work, but I haven't yet fixed binary/source distributions.
Changes to the Building Guide will follow, too.
|