| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The first phase of this tidyup is focussed on the header files, and in
particular making sure we are exposinng publicly exactly what we need
to, and no more.
- Rts.h now includes everything that the RTS exposes publicly,
rather than a random subset of it.
- Most of the public header files have moved into subdirectories, and
many of them have been renamed. But clients should not need to
include any of the other headers directly, just #include the main
public headers: Rts.h, HsFFI.h, RtsAPI.h.
- All the headers needed for via-C compilation have moved into the
stg subdirectory, which is self-contained. Most of the headers for
the rest of the RTS APIs have moved into the rts subdirectory.
- I left MachDeps.h where it is, because it is so widely used in
Haskell code.
- I left a deprecated stub for RtsFlags.h in place. The flag
structures are now exposed by Rts.h.
- Various internal APIs are no longer exposed by public header files.
- Various bits of dead code and declarations have been removed
- More gcc warnings are turned on, and the RTS code is more
warning-clean.
- More source files #include "PosixSource.h", and hence only use
standard POSIX (1003.1c-1995) interfaces.
There is a lot more tidying up still to do, this is just the first
pass. I also intend to standardise the names for external RTS APIs
(e.g use the rts_ prefix consistently), and declare the internal APIs
as hidden for shared libraries.
|
| |
|
| |
|
|
|
|
| |
Sometimes better than the default copying, enabled by +RTS -w
|
| |
|
|
|
|
|
|
| |
When a stack is occupying less than 1/4 of the memory it owns, and is
larger than a megablock, we release half of it. Shrinking is O(1), it
doesn't need to copy the stack.
|
| |
|
|
|
|
|
|
|
|
| |
The main goal here is to reduce fragmentation, which turns out to be
the case of #743. While I was here I found some opportunities to
improve performance too. The code is rather more complex, but it also
contains a long comment describing the strategy, so please take a look
at that for the details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
See bug #738
Allocating executable memory is getting more difficult these days. In
particular, the default SELinux policy on Fedora Core 5 disallows
making the heap (i.e. malloc()'d memory) executable, although it does
apparently allow mmap()'ing anonymous executable memory by default.
Previously, stgMallocBytesRWX() used malloc() underneath, and then
tried to make the page holding the memory executable. This was rather
hacky and fails with Fedora Core 5.
This patch adds a mini-allocator for executable memory, based on the
block allocator. We grab page-sized blocks and make them executable,
then allocate small objects from the page. There's a simple free
function, that will free whole pages back to the system when they are
empty.
|
|
Most of the other users of the fptools build system have migrated to
Cabal, and with the move to darcs we can now flatten the source tree
without losing history, so here goes.
The main change is that the ghc/ subdir is gone, and most of what it
contained is now at the top level. The build system now makes no
pretense at being multi-project, it is just the GHC build system.
No doubt this will break many things, and there will be a period of
instability while we fix the dependencies. A straightforward build
should work, but I haven't yet fixed binary/source distributions.
Changes to the Building Guide will follow, too.
|