| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Switch over to the new hierarchical libraries
---------------------------------------------
This commit reorganises our libraries to use the new hierarchical
module namespace extension.
The basic story is this:
- fptools/libraries contains the new hierarchical libraries.
Everything in here is "clean", i.e. most deprecated stuff has
been removed.
- fptools/libraries/base is the new base package
(replacing "std") and contains roughly what was previously
in std, lang, and concurrent, minus deprecated stuff.
Things that are *not allowed* in libraries/base include:
Addr, ForeignObj, ByteArray, MutableByteArray,
_casm_, _ccall_, ``'', PrimIO
For ByteArrays and MutableByteArrays we use UArray and
STUArray/IOUArray respectively now.
Modules previously called PrelFoo are now under
fptools/libraries/GHC. eg. PrelBase is now GHC.Base.
- fptools/libraries/haskell98 provides the Haskell 98 std.
libraries (Char, IO, Numeric etc.) as a package. This
package is enabled by default.
- fptools/libraries/network is a rearranged version of
the existing net package (the old package net is still
available; see below).
- Other packages will migrate to fptools/libraries in
due course.
NB. you need to checkout fptools/libraries as well as
fptools/hslibs now. The nightly build scripts will need to be
tweaked.
- fptools/hslibs still contains (almost) the same stuff as before.
Where libraries have moved into the new hierarchy, the hslibs
version contains a "stub" that just re-exports the new version.
The idea is that code will gradually migrate from fptools/hslibs
into fptools/libraries as it gets cleaned up, and in a version or
two we can remove the old packages altogether.
- I've taken the opportunity to make some changes to the build
system, ripping out the old hslibs Makefile stuff from
mk/target.mk; the new package building Makefile code is in
mk/package.mk (auto-included from mk/target.mk).
The main improvement is that packages now register themselves at
make boot time using ghc-pkg, and the monolithic package.conf
in ghc/driver is gone.
I've updated the standard packages but haven't tested win32,
graphics, xlib, object-io, or OpenGL yet. The Makefiles in
these packages may need some further tweaks, and they'll need
pkg.conf.in files added.
- Unfortunately all this rearrangement meant I had to bump the
interface-file version and create a bunch of .hi-boot-6 files :-(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
------------
Rule phasing
------------
This commit adds a little more control to when rules are enabled.
{-# RULES
"foo" [2] forall ...
"baz" [~2] forall ...
#-}
Rule "foo" is active in phase 2 and later. The new thing is that the
"~2" means that Rule "baz" is active in phase 3 and earlier.
(Remember tha phases decrease towards zero.)
All the machinery was there to implement this, it just needed the syntax.
Why do this? Peter Gammie (at UNSW) found that rules weren't firing
because of bindings of the form
M.f = f
f = ....
where the rules where on the M.f binding. It turned out that an old
hack (which have for some time elicited the harmless "shortMeOut" debug
warnings) prevented this trivial construction from being correctly
simplified. The hack in turn derived from a trick in the way the
foldr/build rule was implemented....and that hack is no longer necessary
now we can switch rules *off* as well as *on*.
There are consequential changes in the Prelude foldr/build RULE stuff.
It's a clean-up.... Instead of strange definitions like
map = mapList
which we had before, we have an ordinary recursive defn of map, together
with rules to convert first to foldr/build form, and then (if nothing
happens) back again.
There's a fairly long comment about the general plan of attack in
PrelBase, near the defn of map.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
------------------
Simon's big commit
------------------
This commit, which I don't think I can sensibly do piecemeal, consists
of the things I've been doing recently, mainly directed at making
Manuel, George, and Marcin happier with RULES.
Reogranise the simplifier
~~~~~~~~~~~~~~~~~~~~~~~~~
1. The simplifier's environment is now an explicit parameter. This
makes it a bit easier to figure out where it is going.
2. Constructor arguments can now be arbitrary expressions, except
when the application is the RHS of a let(rec). This makes it much
easier to match rules like
RULES
"foo" f (h x, g y) = f' x y
In the simplifier, it's Simplify.mkAtomicArgs that ANF-ises a
constructor application where necessary. In the occurrence analyser,
there's a new piece of context info (OccEncl) to say whether a
constructor app is in a place where it should be in ANF. (Unless
it knows this it'll give occurrence info which will inline the
argument back into the constructor app.)
3. I'm experimenting with doing the "float-past big lambda" transformation
in the full laziness pass, rather than mixed in with the simplifier (was
tryRhsTyLam).
4. Arrange that
case (coerce (S,T) (x,y)) of ...
will simplify. Previous it didn't.
A local change to CoreUtils.exprIsConApp_maybe.
5. Do a better job in CoreUtils.exprEtaExpandArity when there's an
error function in one branch.
Phase numbers, RULES, and INLINE pragmas
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1. Phase numbers decrease from N towards zero (instead of increasing).
This makes it easier to add new earlier phases, which is what users want
to do.
2. RULES get their own phase number, N, and are disabled in phases before N.
e.g. {-# RULES "foo" [2] forall x y. f (x,y) = f' x y #-}
Note the [2], which says "only active in phase 2 and later".
3. INLINE and NOINLINE pragmas have a phase number to. This is now treated
in just the same way as the phase number on RULE; that is, the Id is not inlined
in phases earlier than N. In phase N and later the Id *may* be inlined, and
here is where INLINE and NOINLINE differ: INLNE makes the RHS look small, so
as soon as it *may* be inlined it probably *will* be inlined.
The syntax of the phase number on an INLINE/NOINLINE pragma has changed to be
like the RULES case (i.e. in square brackets). This should also make sure
you examine all such phase numbers; many will need to change now the numbering
is reversed.
Inlining Ids is no longer affected at all by whether the Id appears on the
LHS of a rule. Now it's up to the programmer to put a suitable INLINE/NOINLINE
pragma to stop it being inlined too early.
Implementation notes:
* A new data type, BasicTypes.Activation says when a rule or inline pragma
is active. Functions isAlwaysActive, isNeverActive, isActive, do the
obvious thing (all in BasicTypes).
* Slight change in the SimplifierSwitch data type, which led to a lot of
simplifier-specific code moving from CmdLineOpts to SimplMonad; a Good Thing.
* The InlinePragma in the IdInfo of an Id is now simply an Activation saying
when the Id can be inlined. (It used to be a rather bizarre pair of a
Bool and a (Maybe Phase), so this is much much easier to understand.)
* The simplifier has a "mode" environment switch, replacing the old
black list. Unfortunately the data type decl has to be in
CmdLineOpts, because it's an argument to the CoreDoSimplify switch
data SimplifierMode = SimplGently | SimplPhase Int
Here "gently" means "no rules, no inlining". All the crucial
inlining decisions are now collected together in SimplMonad
(preInlineUnconditionally, postInlineUnconditionally, activeInline,
activeRule).
Specialisation
~~~~~~~~~~~~~~
1. Only dictionary *functions* are made INLINE, not dictionaries that
have no parameters. (This inline-dictionary-function thing is Marcin's
idea and I'm still not sure whether it's a good idea. But it's definitely
a Bad Idea when there are no arguments.)
2. Be prepared to specialise an INLINE function: an easy fix in
Specialise.lhs
But there is still a problem, which is that the INLINE wins
at the call site, so we don't use the specialised version anyway.
I'm still unsure whether it makes sense to SPECIALISE something
you want to INLINE.
Random smaller things
~~~~~~~~~~~~~~~~~~~~~~
* builtinRules (there was only one, but may be more) in PrelRules are now
incorporated. They were being ignored before...
* OrdList.foldOL --> OrdList.foldrOL, OrdList.foldlOL
* Some tidying up of the tidyOpenTyVar, tidyTyVar functions. I've
forgotten exactly what!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Changes to the Ix class from the revised Haskell 98 report:
- Ord is no longer a superclass of Ix.
- rangeSize is now a class member, as there are cases when
it is useful to be able to override it. As a result, GHC's
performance-improving "unsafeRangeSize" function also has to be
a class method just in case the programmer has overriden
rangeSize. Of course, unsafeRangeSize isn't visible when just
importing Ix.
- Added unsafeRangeSize bindings to all our standard Ix instances.
- Improved the Ix instances for Int{8,16,32,64} and
Word{8,16,32,64} by defining unsafeIndex instead of index, and
providing a definition of unsafeRangeSize.
I hope I haven't mucked anything up :) The array tests all pass
successfully, except for arr016 which depended on Ord being a
superclass of Ix. I'll commit changes to this test shortly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
How I spent my summer vacation.
Primops
-------
The format of the primops.txt.pp file has been enhanced to allow
(latex-style) primop descriptions to be included. There is a new flag
to genprimopcode that generates documentation including these
descriptions. A first cut at descriptions of the more interesting
primops has been made, and the file has been reordered a bit.
31-bit words
------------
The front end now can cope with the possibility of 31-bit (or even 30-bit)
Int# and Word# types. The only current use of this is to generate
external .core files that can be translated into OCAML source files
(OCAML uses a one-bit tag to distinguish integers from pointers).
The only way to get this right now is by hand-defining the preprocessor
symbol WORD_SIZE_IN_BITS, which is normally set automatically from
the familiar WORD_SIZE_IN_BYTES.
Just in case 31-bit words are used, we now have Int32# and Word32# primitive types
and an associated family of operators, paralleling the existing 64-bit
stuff. Of course, none of the operators actually need to be implemented
in the absence of a 31-bit backend.
There has also been some minor re-jigging of the 32 vs. 64 bit stuff.
See the description at the top of primops.txt.pp file for more details.
Note that, for the first time, the *type* of a primop can now depend
on the target word size.
Also, the family of primops intToInt8#, intToInt16#, etc.
have been renamed narrow8Int#, narrow16Int#, etc., to emphasize
that they work on Int#'s and don't actually convert between types.
Addresses
---------
As another part of coping with the possibility of 31-bit ints,
the addr2Int# and int2Addr# primops are now thoroughly deprecated
(and not even defined in the 31-bit case) and all uses
of them have been removed except from the (deprecated) module
hslibs/lang/Addr
Addr# should now be treated as a proper abstract type, and has these suitable operators:
nullAddr# : Int# -> Addr# (ignores its argument; nullary primops cause problems at various places)
plusAddr# : Addr# -> Int# -> Addr#
minusAddr : Addr# -> Addr# -> Int#
remAddr# : Addr# -> Int# -> Int#
Obviously, these don't allow completely arbitrary offsets if 31-bit ints are
in use, but they should do for all practical purposes.
It is also still possible to generate an address constant, and there is a built-in rule
that makes use of this to remove the nullAddr# calls.
Misc
----
There is a new compile flag -fno-code that causes GHC to quit after generating .hi files
and .core files (if requested) but before generating STG.
Z-encoded names for tuples have been rationalized; e.g.,
Z3H now means an unboxed 3-tuple, rather than an unboxed
tuple with 3 commas (i.e., a 4-tuple)!
Removed misc. litlits in hslibs/lang
Misc. small changes to external core format. The external core description
has also been substantially updated, and incorporates the automatically-generated
primop documentation; its in the repository at /papers/ext-core/core.tex.
A little make-system addition to allow passing CPP options to compiler and
library builds.
|
|
|
|
| |
Innocent changes to resurrect/add 64-bit support.
|
|
|
|
|
|
| |
Recent Unicode and future ISO-10646 finally decided that the character
code space ends at U+10FFFF. Let ghc follow the rules: maxBound::Char
is now '\x10FFFF', etc.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now Char, Char#, StgChar have 31 bits (physically 32).
"foo"# is still an array of bytes.
CharRep represents 32 bits (on a 64-bit arch too). There is also
Int8Rep, used in those places where bytes were originally meant.
readCharArray, indexCharOffAddr etc. still use bytes. Storable and
{I,M}Array use wide Chars.
In future perhaps all sized integers should be primitive types. Then
some usages of indexing primops scattered through the code could
be changed to then-available Int8 ones, and then Char variants of
primops could be made wide (other usages that handle text should use
conversion that will be provided later).
I/O and _ccall_ arguments assume ISO-8859-1. UTF-8 is internally used
for string literals (only).
Z-encoding is ready for Unicode identifiers.
Ranges of intlike and charlike closures are more easily configurable.
I've probably broken nativeGen/MachCode.lhs:chrCode for Alpha but I
don't know the Alpha assembler to fix it (what is zapnot?). Generally
I'm not sure if I've done the NCG changes right.
This commit breaks the binary compatibility (of course).
TODO:
* is* and to{Lower,Upper} in Char (in progress).
* Libraries for text conversion (in design / experiments),
to be plugged to I/O and a higher level foreign library.
* PackedString.
* StringBuffer and accepting source in encodings other than ISO-8859-1.
|
|
|
|
|
|
| |
- fix copyrights
- remove some unused imports
- comment formatting fixes
|
|
|
|
|
| |
Rename From*Bounded functions to boundedFrom* for consistency with
numericFrom*
|
|
|
|
| |
Removed -fcompiling-prelude flag (now removed from compiler)
|
|
|
|
|
|
|
|
|
|
| |
Make it so that -fcompiling-prelude applies only
for Prelude modules (i.e. ones called Prelxxx).
I've done this with an {-# OPTIONS #-} line in each
such module (they all has -fno-implicit-prelude anyway)
but a less repetitive approach in the Makefile would
be welcome.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This utterly gigantic commit is what I've been up to in background
mode in the last couple of months. Originally the main goal
was to get rid of Con (staturated constant applications)
in the CoreExpr type, but one thing led to another, and I kept
postponing actually committing. Sorry.
Simon, 23 March 2000
I've tested it pretty thoroughly, but doubtless things will break.
Here are the highlights
* Con is gone; the CoreExpr type is simpler
* NoRepLits have gone
* Better usage info in interface files => less recompilation
* Result type signatures work
* CCall primop is tidied up
* Constant folding now done by Rules
* Lots of hackery in the simplifier
* Improvements in CPR and strictness analysis
Many bug fixes including
* Sergey's DoCon compiles OK; no loop in the strictness analyser
* Volker Wysk's programs don't crash the CPR analyser
I have not done much on measuring compilation times and binary sizes;
they could have got worse. I think performance has got significantly
better, though, in most cases.
Removing the Con form of Core expressions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The big thing is that
For every constructor C there are now *two* Ids:
C is the constructor's *wrapper*. It evaluates and unboxes arguments
before calling $wC. It has a perfectly ordinary top-level defn
in the module defining the data type.
$wC is the constructor's *worker*. It is like a primop that simply
allocates and builds the constructor value. Its arguments are the
actual representation arguments of the constructor.
Its type may be different to C, because:
- useless dict args are dropped
- strict args may be flattened
For every primop P there is *one* Id, its (curried) Id
Neither contructor worker Id nor the primop Id have a defminition anywhere.
Instead they are saturated during the core-to-STG pass, and the code generator
generates code for them directly. The STG language still has saturated
primops and constructor applications.
* The Const type disappears, along with Const.lhs. The literal part
of Const.lhs reappears as Literal.lhs. Much tidying up in here,
to bring all the range checking into this one module.
* I got rid of NoRep literals entirely. They just seem to be too much trouble.
* Because Con's don't exist any more, the funny C { args } syntax
disappears from inteface files.
Parsing
~~~~~~~
* Result type signatures now work
f :: Int -> Int = \x -> x
-- The Int->Int is the type of f
g x y :: Int = x+y
-- The Int is the type of the result of (g x y)
Recompilation checking and make
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* The .hi file for a modules is not touched if it doesn't change. (It used to
be touched regardless, forcing a chain of recompilations.) The penalty for this
is that we record exported things just as if they were mentioned in the body of
the module. And the penalty for that is that we may recompile a module when
the only things that have changed are the things it is passing on without using.
But it seems like a good trade.
* -recomp is on by default
Foreign declarations
~~~~~~~~~~~~~~~~~~~~
* If you say
foreign export zoo :: Int -> IO Int
then you get a C produre called 'zoo', not 'zzoo' as before.
I've also added a check that complains if you export (or import) a C
procedure whose name isn't legal C.
Code generation and labels
~~~~~~~~~~~~~~~~~~~~~~~~~~
* Now that constructor workers and wrappers have distinct names, there's
no need to have a Foo_static_closure and a Foo_closure for constructor Foo.
I nuked the entire StaticClosure story. This has effects in some of
the RTS headers (i.e. s/static_closure/closure/g)
Rules, constant folding
~~~~~~~~~~~~~~~~~~~~~~~
* Constant folding becomes just another rewrite rule, attached to the Id for the
PrimOp. To achieve this, there's a new form of Rule, a BuiltinRule (see CoreSyn.lhs).
The prelude rules are in prelude/PrelRules.lhs, while simplCore/ConFold.lhs has gone.
* Appending of constant strings now works, using fold/build fusion, plus
the rewrite rule
unpack "foo" c (unpack "baz" c n) = unpack "foobaz" c n
Implemented in PrelRules.lhs
* The CCall primop is tidied up quite a bit. There is now a data type CCall,
defined in PrimOp, that packages up the info needed for a particular CCall.
There is a new Id for each new ccall, with an big "occurrence name"
{__ccall "foo" gc Int# -> Int#}
In interface files, this is parsed as a single Id, which is what it is, really.
Miscellaneous
~~~~~~~~~~~~~
* There were numerous places where the host compiler's
minInt/maxInt was being used as the target machine's minInt/maxInt.
I nuked all of these; everything is localised to inIntRange and inWordRange,
in Literal.lhs
* Desugaring record updates was broken: it didn't generate correct matches when
used withe records with fancy unboxing etc. It now uses matchWrapper.
* Significant tidying up in codeGen/SMRep.lhs
* Add __word, __word64, __int64 terminals to signal the obvious types
in interface files. Add the ability to print word values in hex into
C code.
* PrimOp.lhs is no longer part of a loop. Remove PrimOp.hi-boot*
Types
~~~~~
* isProductTyCon no longer returns False for recursive products, nor
for unboxed products; you have to test for these separately.
There's no reason not to do CPR for recursive product types, for example.
Ditto splitProductType_maybe.
Simplification
~~~~~~~~~~~~~~~
* New -fno-case-of-case flag for the simplifier. We use this in the first run
of the simplifier, where it helps to stop messing up expressions that
the (subsequent) full laziness pass would otherwise find float out.
It's much more effective than previous half-baked hacks in inlining.
Actually, it turned out that there were three places in Simplify.lhs that
needed to know use this flag.
* Make the float-in pass push duplicatable bindings into the branches of
a case expression, in the hope that we never have to allocate them.
(see FloatIn.sepBindsByDropPoint)
* Arrange that top-level bottoming Ids get a NOINLINE pragma
This reduced gratuitous inlining of error messages.
But arrange that such things still get w/w'd.
* Arrange that a strict argument position is regarded as an 'interesting'
context, so that if we see
foldr k z (g x)
then we'll be inclined to inline g; this can expose a build.
* There was a missing case in CoreUtils.exprEtaExpandArity that meant
we were missing some obvious cases for eta expansion
Also improve the code when handling applications.
* Make record selectors (identifiable by their IdFlavour) into "cheap" operations.
[The change is a 2-liner in CoreUtils.exprIsCheap]
This means that record selection may be inlined into function bodies, which
greatly improves the arities of overloaded functions.
* Make a cleaner job of inlining "lone variables". There was some distributed
cunning, but I've centralised it all now in SimplUtils.analyseCont, which
analyses the context of a call to decide whether it is "interesting".
* Don't specialise very small functions in Specialise.specDefn
It's better to inline it. Rather like the worker/wrapper case.
* Be just a little more aggressive when floating out of let rhss.
See comments with Simplify.wantToExpose
A small change with an occasional big effect.
* Make the inline-size computation think that
case x of I# x -> ...
is *free*.
CPR analysis
~~~~~~~~~~~~
* Fix what was essentially a bug in CPR analysis. Consider
letrec f x = let g y = let ... in f e1
in
if ... then (a,b) else g x
g has the CPR property if f does; so when generating the final annotated
RHS for f, we must use an envt in which f is bound to its final abstract
value. This wasn't happening. Instead, f was given the CPR tag but g
wasn't; but of course the w/w pass gives rotten results in that case!!
(Because f's CPR-ness relied on g's.)
On they way I tidied up the code in CprAnalyse. It's quite a bit shorter.
The fact that some data constructors return a constructed product shows
up in their CPR info (MkId.mkDataConId) not in CprAnalyse.lhs
Strictness analysis and worker/wrapper
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BIG THING: pass in the demand to StrictAnal.saExpr. This affects situations
like
f (let x = e1 in (x,x))
where f turns out to have strictness u(SS), say. In this case we can
mark x as demanded, and use a case expression for it.
The situation before is that we didn't "know" that there is the u(SS)
demand on the argument, so we simply computed that the body of the let
expression is lazy in x, and marked x as lazily-demanded. Then even after
f was w/w'd we got
let x = e1 in case (x,x) of (a,b) -> $wf a b
and hence
let x = e1 in $wf a b
I found a much more complicated situation in spectral/sphere/Main.shade,
which improved quite a bit with this change.
* Moved the StrictnessInfo type from IdInfo to Demand. It's the logical
place for it, and helps avoid module loops
* Do worker/wrapper for coerces even if the arity is zero. Thus:
stdout = coerce Handle (..blurg..)
==>
wibble = (...blurg...)
stdout = coerce Handle wibble
This is good because I found places where we were saying
case coerce t stdout of { MVar a ->
...
case coerce t stdout of { MVar b ->
...
and the redundant case wasn't getting eliminated because of the coerce.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit implements a substantial re-organisation of the Prelude
It also fixes a couple of small renamer bugs that were reported recently
(notably, Sven pointed out that we weren't reporting
unused imports properly)
My original goal was to get rid of all "orphan" modules (i.e. ones
with instance decls that don't belong either to a tycon or a class
defined in the same module). This should reduce the number of
interface files that have to be read when compiling small Haskell
modules.
But like most expeditions into the Prelude Swamp, it spiraled out
of control. The result is quite satisfactory, though.
GONE AWAY: PrelCCall, PrelNumExtra
NEW: PrelReal, PrelFloat, PrelByteArr, PrelNum.hi-boot
(The extra PrelNum.hi-boot is because of a tiresome thin-air Id, addr2Integer,
which used to be in PrelBase.)
Quite a lot of types have moved from one module to another,
which entails some changes to part of the compiler (PrelInfo, PrelMods) etc,
and there are a few places in the RTS includes and even in the driver
that know about these home modules (alas).
So the rough structure is as follows, in (linearised) dependency order
[this list now appears in PrelBase.lhs]
PrelGHC Has no implementation. It defines built-in things, and
by importing it you bring them into scope.
The source file is PrelGHC.hi-boot, which is just
copied to make PrelGHC.hi
Classes: CCallable, CReturnable
PrelBase Classes: Eq, Ord, Functor, Monad
Types: list, (), Int, Bool, Ordering, Char, String
PrelTup Types: tuples, plus instances for PrelBase classes
PrelShow Class: Show, plus instances for PrelBase/PrelTup types
PrelEnum Class: Enum, plus instances for PrelBase/PrelTup types
PrelMaybe Type: Maybe, plus instances for PrelBase classes
PrelNum Class: Num, plus instances for Int
Type: Integer, plus instances for all classes so far (Eq, Ord, Num, Show)
Integer is needed here because it is mentioned in the signature
of 'fromInteger' in class Num
PrelReal Classes: Real, Integral, Fractional, RealFrac
plus instances for Int, Integer
Types: Ratio, Rational
plus intances for classes so far
Rational is needed here because it is mentioned in the signature
of 'toRational' in class Real
Ix Classes: Ix, plus instances for Int, Bool, Char, Integer, Ordering, tuples
PrelArr Types: Array, MutableArray, MutableVar
Does *not* contain any ByteArray stuff (see PrelByteArr)
Arrays are used by a function in PrelFloat
PrelFloat Classes: Floating, RealFloat
Types: Float, Double, plus instances of all classes so far
This module contains everything to do with floating point.
It is a big module (900 lines)
With a bit of luck, many modules can be compiled without ever reading PrelFloat.hi
PrelByteArr Types: ByteArray, MutableByteArray
We want this one to be after PrelFloat, because it defines arrays
of unboxed floats.
Other Prelude modules are much easier with fewer complex dependencies.
|
|
|
|
| |
Fix default Enum methods
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All Simon's recent tuning changes. Rough summary follows:
* Fix Kevin Atkinson's cant-find-instance bug. Turns out that Rename.slurpSourceRefs
needs to repeatedly call getImportedInstDecls, and then go back to slurping
source-refs. Comments with Rename.slurpSourceRefs.
* Add a case to Simplify.mkDupableAlt for the quite-common case where there's
a very simple alternative, in which case there's no point in creating a
join-point binding.
* Fix CoreUtils.exprOkForSpeculation so that it returns True of (==# a# b#).
This lack meant that
case ==# a# b# of { True -> x; False -> x }
was not simplifying
* Make float-out dump bindings at the top of a function argument, as
at the top of a let(rec) rhs. See notes with FloatOut.floatRhs
* Make the ArgOf case of mkDupableAlt generate a OneShot lambda.
This gave a noticeable boost to spectral/boyer2
* Reduce the number of coerces, using worker/wrapper stuff.
The main idea is in WwLib.mkWWcoerce. The gloss is that we must do
the w/w split even for small non-recursive things. See notes with
WorkWrap.tryWw.
* This further complicated getWorkerId, so I finally bit the bullet and
make the workerInfo field of the IdInfo work properly, including
under substitutions. Death to getWorkerId. Kevin Glynn will be happy.
* Make all lambdas over realWorldStatePrimTy
into one-shot lambdas. This is a GROSS HACK.
* Also make the occurrence analyser aware of one-shot lambdas.
* Make various Prelude things into INLINE, so that foldr doesn't
get inlined in their body, so that the caller gets the benefit
of fusion. Notably in PrelArr.lhs.
|
|
|
|
| |
Yet more fixes to the dreaded Enum instances
|
|
|
|
| |
Misc patches from SLPJ.
|
|
../compiler/msg_prel
|