| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Most of the other users of the fptools build system have migrated to
Cabal, and with the move to darcs we can now flatten the source tree
without losing history, so here goes.
The main change is that the ghc/ subdir is gone, and most of what it
contained is now at the top level. The build system now makes no
pretense at being multi-project, it is just the GHC build system.
No doubt this will break many things, and there will be a period of
instability while we fix the dependencies. A straightforward build
should work, but I haven't yet fixed binary/source distributions.
Changes to the Building Guide will follow, too.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Two significant changes to the representation of types
1. Change the representation of type synonyms
Up to now, type synonym applications have been held in
*both* expanded *and* un-expanded form. Unfortunately, this
has exponential (!) behaviour when type synonyms are deeply
nested. E.g.
type P a b = (a,b)
f :: P a (P b (P c (P d e)))
This showed up in a program of Joel Reymont, now immortalised
as typecheck/should_compile/syn-perf.hs
So now synonyms are held as ordinary TyConApps, and expanded
only on demand.
SynNote has disappeared altogether, so the only remaining TyNote
is a FTVNote. I'm not sure if it's even useful.
2. Eta-reduce newtypes
See the Note [Newtype eta] in TyCon.lhs
If we have
newtype T a b = MkT (S a b)
then, in Core land, we would like S = T, even though the application
of T is then not saturated. This commit eta-reduces T's RHS, and
keeps that inside the TyCon (in nt_etad_rhs). Result is that
coreEqType can be simpler, and has less need of expanding newtypes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Add support for the GHC_PACKAGE_PATH environment variable, which
specifies a :-separated (;-separated on Windows) list of package
database files. If the list ends in : (; on Windows), then the
normal user and global databases are added.
GHC_PACKAGE_PATH is searched left-to-right for packages, like
$PATH, but unlike -package-conf flags, which are searched
right-to-left. This isn't ideal, but it seemed the least worst to me
(command line flags always override right-to-left (except -i),
whereas the PATH environment variable overrides left-to-right, I chose
to follow the environment variable convention). I can always change
it if there's an outcry.
- Rationalise the interpretation of --user, --global, and -f on the
ghc-pkg command line. The story is now this: --user and --global
say which package database to *act upon*, they do not change the
shape of the database stack. -f pushes a database on the stack, and
also requests that the specified database be the one to act upon, for
commands that modify the database. If a database is already on the stack,
then -f just selects it as the one to act upon.
This means you can have a bunch of databases in GHC_PACKAGE_PATH, and
use -f to select the one to modify.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
WARNING: this is a big commit. You might want
to wait a few days before updating, in case I've
broken something.
However, if any of the changes are what you wanted,
please check it out and test!
This commit does three main things:
1. A re-organisation of the way that GHC handles bindings in HsSyn.
This has been a bit of a mess for quite a while. The key new
types are
-- Bindings for a let or where clause
data HsLocalBinds id
= HsValBinds (HsValBinds id)
| HsIPBinds (HsIPBinds id)
| EmptyLocalBinds
-- Value bindings (not implicit parameters)
data HsValBinds id
= ValBindsIn -- Before typechecking
(LHsBinds id) [LSig id] -- Not dependency analysed
-- Recursive by default
| ValBindsOut -- After typechecking
[(RecFlag, LHsBinds id)]-- Dependency analysed
2. Implement Mark Jones's idea of increasing polymoprhism
by using type signatures to cut the strongly-connected components
of a recursive group. As a consequence, GHC no longer insists
on the contexts of the type signatures of a recursive group
being identical.
This drove a significant change: the renamer no longer does dependency
analysis. Instead, it attaches a free-variable set to each binding,
so that the type checker can do the dep anal. Reason: the typechecker
needs to do *two* analyses:
one to find the true mutually-recursive groups
(which we need so we can build the right CoreSyn)
one to find the groups in which to typecheck, taking
account of type signatures
3. Implement non-ground SPECIALISE pragmas, as promised, and as
requested by Remi and Ross. Certainly, this should fix the
current problem with GHC, namely that if you have
g :: Eq a => a -> b -> b
then you can now specialise thus
SPECIALISE g :: Int -> b -> b
(This didn't use to work.)
However, it goes further than that. For example:
f :: (Eq a, Ix b) => a -> b -> b
then you can make a partial specialisation
SPECIALISE f :: (Eq a) => a -> Int -> Int
In principle, you can specialise f to *any* type that is
"less polymorphic" (in the sense of subsumption) than f's
actual type. Such as
SPECIALISE f :: Eq a => [a] -> Int -> Int
But I haven't tested that.
I implemented this by doing the specialisation in the typechecker
and desugarer, rather than leaving around the strange SpecPragmaIds,
for the specialiser to find. Indeed, SpecPragmaIds have vanished
altogether (hooray).
Pragmas in general are handled more tidily. There's a new
data type HsBinds.Prag, which lives in an AbsBinds, and carries
pragma info from the typechecker to the desugarer.
Smaller things
- The loop in the renamer goes via RnExpr, instead of RnSource.
(That makes it more like the type checker.)
- I fixed the thing that was causing 'check_tc' warnings to be
emitted.
|
|
|
|
| |
Clarify code for splitLongestPrefix; no effect on behaviour
|
|
|
|
| |
remove duplicate export
|
|
|
|
| |
Further tweaks to the filename handling.
|
|
|
|
|
|
| |
Rationalise the filename handling in a few places, taking some bits
from the defunct System.FilePath library. Also fixes a bug I recently
introduced in replaceFilenameDirectory.
|
|
|
|
| |
replaceFilenameSuffix: fix
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement -x <suffix> flag to override the suffix of a filename for
the purposes of determinig how it should be compiled. The usage is
similar to gcc, except that we just use a suffix rather than a name
for the language. eg.
ghc -c -x hs hello.blah
will pretend hello.blah is a .hs file. Another possible use is -x
hspp, which skips preprocessing.
This works for one-shot compilation, --make, GHCi, and ghc -e. The
original idea was to make it possible to use runghc on a file that
doesn't end in .hs, so changes to runghc will follow.
Also, I made it possible to specify .c files and other kinds of files
on the --make command line; these will be compiled to objects as
normal and linked into the final executable.
GHC API change: I had to extend the Target type to include an optional
start phase, and also GHC.guessTarget now takes a (Maybe Phase) argument.
I thought this would be half an hour, in fact it took half a day, and
I still haven't documented it. Sigh.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit combines three overlapping things:
1. Make rebindable syntax work for do-notation. The idea
here is that, in particular, (>>=) can have a type that
has class constraints on its argument types, e.g.
(>>=) :: (Foo m, Baz a) => m a -> (a -> m b) -> m b
The consequence is that a BindStmt and ExprStmt must have
individual evidence attached -- previously it was one
batch of evidence for the entire Do
Sadly, we can't do this for MDo, because we use bind at
a polymorphic type (to tie the knot), so we still use one
blob of evidence (now in the HsStmtContext) for MDo.
For arrow syntax, the evidence is in the HsCmd.
For list comprehensions, it's all built-in anyway.
So the evidence on a BindStmt is only used for ordinary
do-notation.
2. Tidy up HsSyn. In particular:
- Eliminate a few "Out" forms, which we can manage
without (e.g.
- It ought to be the case that the type checker only
decorates the syntax tree, but doesn't change one
construct into another. That wasn't true for NPat,
LitPat, NPlusKPat, so I've fixed that.
- Eliminate ResultStmts from Stmt. They always had
to be the last Stmt, which led to awkward pattern
matching in some places; and the benefits didn't seem
to outweigh the costs. Now each construct that uses
[Stmt] has a result expression too (e.g. GRHS).
3. Make 'deriving( Ix )' generate a binding for unsafeIndex,
rather than for index. This is loads more efficient.
(This item only affects TcGenDeriv, but some of point (2)
also affects TcGenDeriv, so it has to be in one commit.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Cleanup the upsweep strategy in GHC.load.
Now it's hopefully clearer how we decide what modules to recompile,
and which are "stable" (not even looked at) during a reload. See the
comments for details.
Also, I've taken some trouble to explicitly prune out things that
aren't required before a reload, which should reduce the memory
requirements for :reload in GHCi. Currently I believe it keeps most
of the old program until the reload is complete, now it shouldn't
require any extra memory.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Complete the transition of -split-objs into a dynamic flag (looks like I
half-finished it in the last commit).
Also: complete the transition of -tmpdir into a dynamic flag, which
involves some rearrangement of code from SysTools into DynFlags.
Someday, initSysTools should move wholesale into initDynFlags, because
most of the state that it initialises is now part of the DynFlags
structure, and the rest could be moved in easily.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Flags cleanup.
Basically the purpose of this commit is to move more of the compiler's
global state into DynFlags, which is moving in the direction we need
to go for the GHC API which can have multiple active sessions
supported by a single GHC instance.
Before:
$ grep 'global_var' */*hs | wc -l
78
After:
$ grep 'global_var' */*hs | wc -l
27
Well, it's an improvement. Most of what's left won't really affect
our ability to host multiple sessions.
Lots of static flags have become dynamic flags (yay!). Notably lots
of flags that we used to think of as "driver" flags, like -I and -L,
are now dynamic. The most notable static flags left behind are the
"way" flags, eg. -prof. It would be nice to fix this, but it isn't
urgent.
On the way, lots of cleanup has happened. Everything related to
static and dynamic flags lives in StaticFlags and DynFlags
respectively, and they share a common command-line parser library in
CmdLineParser. The flags related to modes (--makde, --interactive
etc.) are now private to the front end: in fact private to Main
itself, for now.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rationalise the BUILD,HOST,TARGET defines.
Recall that:
- build is the platform we're building on
- host is the platform we're running on
- target is the platform we're generating code for
The change is that now we take these definitions as applying from the
point of view of the particular source code being built, rather than
the point of view of the whole build tree.
For example, in RTS and library code, we were previously testing the
TARGET platform. But under the new rule, the platform on which this
code is going to run is the HOST platform. TARGET only makes sense in
the compiler sources.
In practical terms, this means that the values of BUILD, HOST & TARGET
may vary depending on which part of the build tree we are in.
Actual changes:
- new file: includes/ghcplatform.h contains platform defines for
the RTS and library code.
- new file: includes/ghcautoconf.h contains the autoconf settings
only (HAVE_BLAH). This is so that we can get hold of these
settings independently of the platform defines when necessary
(eg. in GHC).
- ghcconfig.h now #includes both ghcplatform.h and ghcautoconf.h.
- MachRegs.h, which is included into both the compiler and the RTS,
now has to cope with the fact that it might need to test either
_TARGET_ or _HOST_ depending on the context.
- the compiler's Makefile now generates
stage{1,2,3}/ghc_boot_platform.h
which contains platform defines for the compiler. These differ
depending on the stage, of course: in stage2, the HOST is the
TARGET of stage1. This was wrong before.
- The compiler doesn't get platform info from Config.hs any more.
Previously it did (sometimes), but unless we want to generate
a new Config.hs for each stage we can't do this.
- GHC now helpfully defines *_{BUILD,HOST}_{OS,ARCH} automatically
in CPP'd Haskell source.
- ghcplatform.h defines *_TARGET_* for backwards compatibility
(ghcplatform.h is included by ghcconfig.h, which is included by
config.h, so code which still #includes config.h will get the TARGET
settings as before).
- The Users's Guide is updated to mention *_HOST_* rather than
*_TARGET_*.
- coding-style.html in the commentary now contains a section on
platform defines. There are further doc updates to come.
Thanks to Wolfgang Thaller for pointing me in the right direction.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
----------------------------------------
New Core invariant: keep case alternatives in sorted order
----------------------------------------
We now keep the alternatives of a Case in the Core language in sorted
order. Sorted, that is,
by constructor tag for DataAlt
by literal for LitAlt
The main reason is that it makes matching and equality testing more robust.
But in fact some lines of code vanished from SimplUtils.mkAlts.
WARNING: no change to interface file formats, but you'll need to recompile
your libraries so that they generate interface files that respect the
invariant.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
--------------------------------
Deal properly with dual-renaming
--------------------------------
When comparing types and terms, and during matching, we are faced
with
\x.e1 ~ \y.e2
There are many pitfalls here, and GHC has never done the job properly.
Now, at last it does, using a new abstraction VarEnv.RnEnv2. See
comments there for how it works.
There are lots of consequential changes to use the new stuff, especially
in
types/Type (type comparison),
types/Unify (matching on types)
coreSyn/CoreUtils (equality on expressions),
specialise/Rules (matching).
I'm not 100% certain of that I've covered all the bases, so let me
know if something unexpected happens after you update. Maybe wait until
a nightly build has worked ok first!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
------------------------------------
Simplify the treatment of newtypes
Complete hi-boot file consistency checking
------------------------------------
In the representation of types, newtypes used to have a special constructor
all to themselves, very like TyConApp, called NewTcApp. The trouble is
that means we have to *know* when a newtype is a newtype, and in an hi-boot
context we may not -- the data type might be declared as
data T
in the hi-boot file, but as
newtype T = ...
in the source file. In GHCi, which accumulates stuff from multiple compiles,
this makes a difference.
So I've nuked NewTcApp. Newtypes are represented using TyConApps again. This
turned out to reduce the total amount of code, and simplify the Type data type,
which is all to the good.
This commit also fixes a few things in the hi-boot consistency checking
stuff.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
-------------------------------
Use merge-sort not quicksort
Nuke quicksort altogether
-------------------------------
Quicksort has O(n**2) behaviour worst case, and this occasionally bites.
In particular, when compiling large files consisting only of static data,
we get loads of top-level delarations -- and that led to more than half the
total compile time being spent in the strongly connected component analysis
for the occurrence analyser. Switching to merge sort completely solved the
problem.
I've nuked quicksort altogether to make sure this does not happen again.
|
|
|
|
| |
Merge backend-hacking-branch onto HEAD. Yay!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
-------------------------
GHC heart/lung transplant
-------------------------
This major commit changes the way that GHC deals with importing
types and functions defined in other modules, during renaming and
typechecking. On the way I've changed or cleaned up numerous other
things, including many that I probably fail to mention here.
Major benefit: GHC should suck in many fewer interface files when
compiling (esp with -O). (You can see this with -ddump-rn-stats.)
It's also some 1500 lines of code shorter than before.
** So expect bugs! I can do a 3-stage bootstrap, and run
** the test suite, but you may be doing stuff I havn't tested.
** Don't update if you are relying on a working HEAD.
In particular, (a) External Core and (b) GHCi are very little tested.
But please, please DO test this version!
------------------------
Big things
------------------------
Interface files, version control, and importing declarations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* There is a totally new data type for stuff that lives in interface files:
Original names IfaceType.IfaceExtName
Types IfaceType.IfaceType
Declarations (type,class,id) IfaceSyn.IfaceDecl
Unfoldings IfaceSyn.IfaceExpr
(Previously we used HsSyn for type/class decls, and UfExpr for unfoldings.)
The new data types are in iface/IfaceType and iface/IfaceSyn. They are
all instances of Binary, so they can be written into interface files.
Previous engronkulation concering the binary instance of RdrName has
gone away -- RdrName is not an instance of Binary any more. Nor does
Binary.lhs need to know about the ``current module'' which it used to,
which made it specialised to GHC.
A good feature of this is that the type checker for source code doesn't
need to worry about the possibility that we might be typechecking interface
file stuff. Nor does it need to do renaming; we can typecheck direct from
IfaceSyn, saving a whole pass (module TcIface)
* Stuff from interface files is sucked in *lazily*, rather than being eagerly
sucked in by the renamer. Instead, we use unsafeInterleaveIO to capture
a thunk for the unfolding of an imported function (say). If that unfolding
is every pulled on, TcIface will scramble over the unfolding, which may
in turn pull in the interface files of things mentioned in the unfolding.
The External Package State is held in a mutable variable so that it
can be side-effected by this lazy-sucking-in process (which may happen
way later, e.g. when the simplifier runs). In effect, the EPS is a kind
of lazy memo table, filled in as we suck things in. Or you could think
of it as a global symbol table, populated on demand.
* This lazy sucking is very cool, but it can lead to truly awful bugs. The
intent is that updates to the symbol table happen atomically, but very bad
things happen if you read the variable for the table, and then force a
thunk which updates the table. Updates can get lost that way. I regret
this subtlety.
One example of the way it showed up is that the top level of TidyPgm
(which updates the global name cache) to be much more disciplined about
those updates, since TidyPgm may itself force thunks which allocate new
names.
* Version numbering in interface files has changed completely, fixing
one major bug with ghc --make. Previously, the version of A.f changed
only if A.f's type and unfolding was textually different. That missed
changes to things that A.f's unfolding mentions; which was fixed by
eagerly sucking in all of those things, and listing them in the module's
usage list. But that didn't work with --make, because they might have
been already sucked in.
Now, A.f's version changes if anything reachable from A.f (via interface
files) changes. A module with unchanged source code needs recompiling
only if the versions of any of its free variables changes. [This isn't
quite right for dictionary functions and rules, which aren't mentioned
explicitly in the source. There are extensive comments in module MkIface,
where all version-handling stuff is done.]
* We don't need equality on HsDecls any more (because they aren't used in
interface files). Instead we have a specialised equality for IfaceSyn
(eqIfDecl etc), which uses IfaceEq instead of Bool as its result type.
See notes in IfaceSyn.
* The horrid bit of the renamer that tried to predict what instance decls
would be needed has gone entirely. Instead, the type checker simply
sucks in whatever instance decls it needs, when it needs them. Easy!
Similarly, no need for 'implicitModuleFVs' and 'implicitTemplateHaskellFVs'
etc. Hooray!
Types and type checking
~~~~~~~~~~~~~~~~~~~~~~~
* Kind-checking of types is far far tidier (new module TcHsTypes replaces
the badly-named TcMonoType). Strangely, this was one of my
original goals, because the kind check for types is the Right Place to
do type splicing, but it just didn't fit there before.
* There's a new representation for newtypes in TypeRep.lhs. Previously
they were represented using "SourceTypes" which was a funny compromise.
Now they have their own constructor in the Type datatype. SourceType
has turned back into PredType, which is what it used to be.
* Instance decl overlap checking done lazily. Consider
instance C Int b
instance C a Int
These were rejected before as overlapping, because when seeking
(C Int Int) one couldn't tell which to use. But there's no problem when
seeking (C Bool Int); it can only be the second.
So instead of checking for overlap when adding a new instance declaration,
we check for overlap when looking up an Inst. If we find more than one
matching instance, we see if any of the candidates dominates the others
(in the sense of being a substitution instance of all the others);
and only if not do we report an error.
------------------------
Medium things
------------------------
* The TcRn monad is generalised a bit further. It's now based on utils/IOEnv.lhs,
the IO monad with an environment. The desugarer uses the monad too,
so that anything it needs can get faulted in nicely.
* Reduce the number of wired-in things; in particular Word and Integer
are no longer wired in. The latter required HsLit.HsInteger to get a
Type argument. The 'derivable type classes' data types (:+:, :*: etc)
are not wired in any more either (see stuff about derivable type classes
below).
* The PersistentComilerState is now held in a mutable variable
in the HscEnv. Previously (a) it was passed to and then returned by
many top-level functions, which was painful; (b) it was invariably
accompanied by the HscEnv. This change tidies up top-level plumbing
without changing anything important.
* Derivable type classes are treated much more like 'deriving' clauses.
Previously, the Ids for the to/from functions lived inside the TyCon,
but now the TyCon simply records their existence (with a simple boolean).
Anyone who wants to use them must look them up in the environment.
This in turn makes it easy to generate the to/from functions (done
in types/Generics) using HsSyn (like TcGenDeriv for ordinary derivings)
instead of CoreSyn, which in turn means that (a) we don't have to figure
out all the type arguments etc; and (b) it'll be type-checked for us.
Generally, the task of generating the code has become easier, which is
good for Manuel, who wants to make it more sophisticated.
* A Name now says what its "parent" is. For example, the parent of a data
constructor is its type constructor; the parent of a class op is its
class. This relationship corresponds exactly to the Avail data type;
there may be other places we can exploit it. (I made the change so that
version comparison in interface files would be a bit easier; but in
fact it tided up other things here and there (see calls to
Name.nameParent). For example, the declaration pool, of declararations
read from interface files, but not yet used, is now keyed only by the 'main'
name of the declaration, not the subordinate names.
* New types OccEnv and OccSet, with the usual operations.
OccNames can be efficiently compared, because they have uniques, thanks
to the hashing implementation of FastStrings.
* The GlobalRdrEnv is now keyed by OccName rather than RdrName. Not only
does this halve the size of the env (because we don't need both qualified
and unqualified versions in the env), but it's also more efficient because
we can use a UniqFM instead of a FiniteMap.
Consequential changes to Provenance, which has moved to RdrName.
* External Core remains a bit of a hack, as it was before, done with a mixture
of HsDecls (so that recursiveness and argument variance is still inferred),
and IfaceExprs (for value declarations). It's not thoroughly tested.
------------------------
Minor things
------------------------
* DataCon fields dcWorkId, dcWrapId combined into a single field
dcIds, that is explicit about whether the data con is a newtype or not.
MkId.mkDataConWorkId and mkDataConWrapId are similarly combined into
MkId.mkDataConIds
* Choosing the boxing strategy is done for *source* type decls only, and
hence is now in TcTyDecls, not DataCon.
* WiredIn names are distinguished by their n_sort field, not by their location,
which was rather strange
* Define Maybes.mapCatMaybes :: (a -> Maybe b) -> [a] -> [b]
and use it here and there
* Much better pretty-printing of interface files (--show-iface)
Many, many other small things.
------------------------
File changes
------------------------
* New iface/ subdirectory
* Much of RnEnv has moved to iface/IfaceEnv
* MkIface and BinIface have moved from main/ to iface/
* types/Variance has been absorbed into typecheck/TcTyDecls
* RnHiFiles and RnIfaces have vanished entirely. Their
work is done by iface/LoadIface
* hsSyn/HsCore has gone, replaced by iface/IfaceSyn
* typecheck/TcIfaceSig has gone, replaced by iface/TcIface
* typecheck/TcMonoType has been renamed to typecheck/TcHsType
* basicTypes/Var.hi-boot and basicTypes/Generics.hi-boot have gone altogether
|
|
|
|
|
| |
Define maybePrefixMatch, which is like prefixMatch but returns the
rest of the String after the match.
|
|
|
|
| |
fix more gcc 3.3 preprocessor warnings
|
|
|
|
|
|
|
|
| |
Be sensitive to filenames containing spaces when processing
:load & :add commands. Ditto when interpreting filenames given
on GHCi's cmd-line.
Merge to STABLE.
|
|
|
|
|
|
|
|
| |
Further refine the criteria for deciding whether command line
arguments should be passed to the compilation manager or the linker.
See comments in the file.
MERGE TO STABLE
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
------------------
Fix a newtype-deriving bug
------------------
The new newtype-deriving mechanism was erroneously using the
*representation type* of the newtype. The rep type looks through all
ihtermediate newtypes, so that is wrong. See Note [newtype
representation] in TcDeriv.lhs
deriving/should_run/drvrun013 now tests for this.
|
|
|
|
| |
Move looksLikeModuleName here from InterativeUI, so we can use it elsewhere.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix up exception handling when reading an interface file, and make it
compile with 4.08.x again.
GhcExceptions weren't being caught by readIface, so an error when
reading an interface could be unintentionally fatal (errors should be
soft when reading the old interface file for the current module).
Also, the Interrupted exception should not be caught by readIface,
because we want ^C to behave as normal when reading interface files
(currently it causes an interface-file read error rather than
interrupting the whole compiler).
Some exception-related compatibility functions have been moved from
Util to Panic.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Housekeeping:
- The main goal is to remove dependencies on hslibs for a
bootstrapped compiler, leaving only a requirement that the
packages base, haskell98 and readline are built in stage 1 in
order to bootstrap. We're almost there: Posix is still required
for signal handling, but all other dependencies on hslibs are now
gone.
Uses of Addr and ByteArray/MutableByteArray array are all gone
from the compiler. PrimPacked defines the Ptr type for GHC 4.08
(which didn't have it), and it defines simple BA and MBA types to
replace uses of ByteArray and MutableByteArray respectively.
- Clean up import lists. HsVersions.h now defines macros for some
modules which have moved between GHC versions. eg. one now
imports 'GLAEXTS' to get at unboxed types and primops in the
compiler.
Many import lists have been sorted as per the recommendations in
the new style guidelines in the commentary.
I've built the compiler with GHC 4.08.2, 5.00.2, 5.02.3, 5.04 and
itself, and everything still works here. Doubtless I've got something
wrong, though.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- When converting ModuleNames to Modules for use in the the module
initialisation code, look them up in the IfaceTable(s) instead of
calling findModule again. They are guaranteed to be in either
the HomeIfaceTable or the PackageIfaceTable after the renamer,
so this saves some trips to the filesystem. Also, move this
code earlier in the compilation cycle to avoid holding on to the
renamed syntax for too long (not sure if this makes a difference or
not, but it definitely looked space-leakish before).
- remove Util.unJust, it is a duplicate of Maybes.expectJust
|
|
|
|
| |
Friday afternoon pet peeve removal: define (Util.notNull :: [a] -> Bool) and use it
|
|
|
|
| |
Comments
|
|
|
|
| |
Warn, dont crash, when isIn gets a big list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Pet peeve removal / code tidyup, replaced various sub-optimal
uses of 'length' with something a bit better, i.e., replaced
the following patterns
* length as `cmpOp` length bs
* length as `cmpOp` val -- incl. uses where val == 1 and val == 0
* {take,drop,splitAt} (length as) bs
* length [ () | pat <- as ]
with uses of misc Util functions.
I'd be surprised if there's a noticeable reduction in running
times as a result of these changes, but every little bit helps.
[ The changes have been tested wrt testsuite/ - I'm seeing a couple
of unexpected breakages coming from CorePrep, but I'm currently
assuming that these are due to other recent changes. ]
- compMan/CompManager.lhs: restored 4.08 compilability + some code
cleanup.
None of these changes are HEADworthy.
|
|
|
|
| |
Move eqListBy to Util, and use it
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Misc minor changes to integrate GHC a little bit better on Win32 platforms.
Specifically, the commit does the following (assuming you've configured
fptools/ with the option --enable-minimal-unix-deps on a mingw platform):
* when GHC uses System.system, it expects an MSDOS command processor to
interpret the command. This implies that 'normal' UNIX shell utils will
no longer be used, but substituted with MSDOS equivalents.
* the GHC backend relies on gcc and perl to handle .s/.hc/.o/.a files. GHC
will now assume that these all live in one 'tool directory', making it
easier to bundle these backend tools with GHC.
The upshot of these changes is that it is now possible for the user not to
have to install cygwin prior to installing GHC (as the upcoming ghc-win32
binary release will prove).
|
|
|
|
| |
add foldl', a strict foldl
|
|
|
|
| |
Add #include of ghc/includes/config.h so tests of TARGET_OS_mingw32 work.
|
|
|
|
| |
Partially fix driver breakage.
|
|
|
|
|
|
| |
* (CompManager) recompile if in interactive mode and no old linkable exists
* (HscMain) don't write interface files in interactive mode
* (everywhere) switch arg order to unJust for PAP purposes
|
|
|
|
|
| |
Move readIface from RnM to IO, and commensurate changes. Also, add a
field to ModuleLocation to hold preprocessed source locations.
|
|
|
|
| |
don't fake the processID
|
|
|
|
|
| |
Final mods to make it compile with 4.08.1. You don't get an interpreter
like that, tho.
|
|
|
|
| |
typo
|
|
|
|
| |
Half-way through versioning so it will compile, sans interpreter, with 4.08.1
|
|
|
|
|
|
|
|
|
| |
Move FAST_INT and FAST_BOOL into their own module FastTypes, replacing
the macro definitions in HsVersions.h with real definitions. Change
most of the names in the process.
Now we don't get bogus imports of GlaExts all over the place, and
-fwarn-unused-imports is less noisy.
|
|
|
|
|
|
|
| |
- add prefixMatch & postfixMatch list comparison operators
- add 'global' for global vars
- remove unused cmpString
- remove unused imports
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
--------------------------------------
Adding generics SLPJ Oct 2000
--------------------------------------
This big commit adds Hinze/PJ-style generic class definitions, based
on work by Andrei Serjantov. For example:
class Bin a where
toBin :: a -> [Int]
fromBin :: [Int] -> (a, [Int])
toBin {| Unit |} Unit = []
toBin {| a :+: b |} (Inl x) = 0 : toBin x
toBin {| a :+: b |} (Inr y) = 1 : toBin y
toBin {| a :*: b |} (x :*: y) = toBin x ++ toBin y
fromBin {| Unit |} bs = (Unit, bs)
fromBin {| a :+: b |} (0:bs) = (Inl x, bs') where (x,bs') = fromBin bs
fromBin {| a :+: b |} (1:bs) = (Inr y, bs') where (y,bs') = fromBin bs
fromBin {| a :*: b |} bs = (x :*: y, bs'') where (x,bs' ) = fromBin bs
(y,bs'') = fromBin bs'
Now we can say simply
instance Bin a => Bin [a]
and the compiler will derive the appropriate code automatically.
(About 9k lines of diffs. Ha!)
Generic related things
~~~~~~~~~~~~~~~~~~~~~~
* basicTypes/BasicTypes: The EP type (embedding-projection pairs)
* types/TyCon:
An extra field in an algebraic tycon (genInfo)
* types/Class, and hsSyn/HsBinds:
Each class op (or ClassOpSig) carries information about whether
it a) has no default method
b) has a polymorphic default method
c) has a generic default method
There's a new data type for this: Class.DefMeth
* types/Generics:
A new module containing good chunk of the generic-related code
It has a .hi-boot file (alas).
* typecheck/TcInstDcls, typecheck/TcClassDcl:
Most of the rest of the generics-related code
* hsSyn/HsTypes:
New infix type form to allow types of the form
data a :+: b = Inl a | Inr b
* parser/Parser.y, Lex.lhs, rename/ParseIface.y:
Deal with the new syntax
* prelude/TysPrim, TysWiredIn:
Need to generate generic stuff for the wired-in TyCons
* rename/RnSource RnBinds:
A rather gruesome hack to deal with scoping of type variables
from a generic patterns. Details commented in the ClassDecl
case of RnSource.rnDecl.
Of course, there are many minor renamer consequences of the
other changes above.
* lib/std/PrelBase.lhs
Data type declarations for Unit, :+:, :*:
Slightly unrelated housekeeping
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* hsSyn/HsDecls:
ClassDecls now carry the Names for their implied declarations
(superclass selectors, tycon, etc) in a list, rather than
laid out one by one. This simplifies code between the parser
and the type checker.
* prelude/PrelNames, TysWiredIn:
All the RdrNames are now together in PrelNames.
* utils/ListSetOps:
Add finite mappings based on equality and association lists (Assoc a b)
Move stuff from List.lhs that is related
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
~~~~~~~~~~~~
Apr/May 2000
~~~~~~~~~~~~
This is a pretty big commit! It adds stuff I've been working on
over the last month or so. DO NOT MERGE IT WITH 4.07!
Interface file formats have changed a little; you'll need
to make clean before remaking.
Simon PJ
Recompilation checking
~~~~~~~~~~~~~~~~~~~~~~
Substantial improvement in recompilation checking. The version management
is now entirely internal to GHC. ghc-iface.lprl is dead!
The trick is to generate the new interface file in two steps:
- first convert Types etc to HsTypes etc, and thereby
build a new ParsedIface
- then compare against the parsed (but not renamed) version of the old
interface file
Doing this meant adding code to convert *to* HsSyn things, and to
compare HsSyn things for equality. That is the main tedious bit.
Another improvement is that we now track version info for
fixities and rules, which was missing before.
Interface file reading
~~~~~~~~~~~~~~~~~~~~~~
Make interface files reading more robust.
* If the old interface file is unreadable, don't fail. [bug fix]
* If the old interface file mentions interfaces
that are unreadable, don't fail. [bug fix]
* When we can't find the interface file,
print the directories we are looking in. [feature]
Type signatures
~~~~~~~~~~~~~~~
* New flag -ddump-types to print type signatures
Type pruning
~~~~~~~~~~~~
When importing
data T = T1 A | T2 B | T3 C
it seems excessive to import the types A, B, C as well, unless
the constructors T1, T2 etc are used. A,B,C might be more types,
and importing them may mean reading more interfaces, and so on.
So the idea is that the renamer will just import the decl
data T
unless one of the constructors is used. This turns out to be quite
easy to implement. The downside is that we must make sure the
constructors are always available if they are really needed, so
I regard this as an experimental feature.
Elimininate ThinAir names
~~~~~~~~~~~~~~~~~~~~~~~~~
Eliminate ThinAir.lhs and all its works. It was always a hack, and now
the desugarer carries around an environment I think we can nuke ThinAir
altogether.
As part of this, I had to move all the Prelude RdrName defns from PrelInfo
to PrelMods --- so I renamed PrelMods as PrelNames.
I also had to move the builtinRules so that they are injected by the renamer
(rather than appearing out of the blue in SimplCore). This is if anything simpler.
Miscellaneous
~~~~~~~~~~~~~
* Tidy up the data types involved in Rules
* Eliminate RnEnv.better_provenance; use Name.hasBetterProv instead
* Add Unique.hasKey :: Uniquable a => a -> Unique -> Bool
It's useful in a lot of places
* Fix a bug in interface file parsing for __U[!]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This utterly gigantic commit is what I've been up to in background
mode in the last couple of months. Originally the main goal
was to get rid of Con (staturated constant applications)
in the CoreExpr type, but one thing led to another, and I kept
postponing actually committing. Sorry.
Simon, 23 March 2000
I've tested it pretty thoroughly, but doubtless things will break.
Here are the highlights
* Con is gone; the CoreExpr type is simpler
* NoRepLits have gone
* Better usage info in interface files => less recompilation
* Result type signatures work
* CCall primop is tidied up
* Constant folding now done by Rules
* Lots of hackery in the simplifier
* Improvements in CPR and strictness analysis
Many bug fixes including
* Sergey's DoCon compiles OK; no loop in the strictness analyser
* Volker Wysk's programs don't crash the CPR analyser
I have not done much on measuring compilation times and binary sizes;
they could have got worse. I think performance has got significantly
better, though, in most cases.
Removing the Con form of Core expressions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The big thing is that
For every constructor C there are now *two* Ids:
C is the constructor's *wrapper*. It evaluates and unboxes arguments
before calling $wC. It has a perfectly ordinary top-level defn
in the module defining the data type.
$wC is the constructor's *worker*. It is like a primop that simply
allocates and builds the constructor value. Its arguments are the
actual representation arguments of the constructor.
Its type may be different to C, because:
- useless dict args are dropped
- strict args may be flattened
For every primop P there is *one* Id, its (curried) Id
Neither contructor worker Id nor the primop Id have a defminition anywhere.
Instead they are saturated during the core-to-STG pass, and the code generator
generates code for them directly. The STG language still has saturated
primops and constructor applications.
* The Const type disappears, along with Const.lhs. The literal part
of Const.lhs reappears as Literal.lhs. Much tidying up in here,
to bring all the range checking into this one module.
* I got rid of NoRep literals entirely. They just seem to be too much trouble.
* Because Con's don't exist any more, the funny C { args } syntax
disappears from inteface files.
Parsing
~~~~~~~
* Result type signatures now work
f :: Int -> Int = \x -> x
-- The Int->Int is the type of f
g x y :: Int = x+y
-- The Int is the type of the result of (g x y)
Recompilation checking and make
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* The .hi file for a modules is not touched if it doesn't change. (It used to
be touched regardless, forcing a chain of recompilations.) The penalty for this
is that we record exported things just as if they were mentioned in the body of
the module. And the penalty for that is that we may recompile a module when
the only things that have changed are the things it is passing on without using.
But it seems like a good trade.
* -recomp is on by default
Foreign declarations
~~~~~~~~~~~~~~~~~~~~
* If you say
foreign export zoo :: Int -> IO Int
then you get a C produre called 'zoo', not 'zzoo' as before.
I've also added a check that complains if you export (or import) a C
procedure whose name isn't legal C.
Code generation and labels
~~~~~~~~~~~~~~~~~~~~~~~~~~
* Now that constructor workers and wrappers have distinct names, there's
no need to have a Foo_static_closure and a Foo_closure for constructor Foo.
I nuked the entire StaticClosure story. This has effects in some of
the RTS headers (i.e. s/static_closure/closure/g)
Rules, constant folding
~~~~~~~~~~~~~~~~~~~~~~~
* Constant folding becomes just another rewrite rule, attached to the Id for the
PrimOp. To achieve this, there's a new form of Rule, a BuiltinRule (see CoreSyn.lhs).
The prelude rules are in prelude/PrelRules.lhs, while simplCore/ConFold.lhs has gone.
* Appending of constant strings now works, using fold/build fusion, plus
the rewrite rule
unpack "foo" c (unpack "baz" c n) = unpack "foobaz" c n
Implemented in PrelRules.lhs
* The CCall primop is tidied up quite a bit. There is now a data type CCall,
defined in PrimOp, that packages up the info needed for a particular CCall.
There is a new Id for each new ccall, with an big "occurrence name"
{__ccall "foo" gc Int# -> Int#}
In interface files, this is parsed as a single Id, which is what it is, really.
Miscellaneous
~~~~~~~~~~~~~
* There were numerous places where the host compiler's
minInt/maxInt was being used as the target machine's minInt/maxInt.
I nuked all of these; everything is localised to inIntRange and inWordRange,
in Literal.lhs
* Desugaring record updates was broken: it didn't generate correct matches when
used withe records with fancy unboxing etc. It now uses matchWrapper.
* Significant tidying up in codeGen/SMRep.lhs
* Add __word, __word64, __int64 terminals to signal the obvious types
in interface files. Add the ability to print word values in hex into
C code.
* PrimOp.lhs is no longer part of a loop. Remove PrimOp.hi-boot*
Types
~~~~~
* isProductTyCon no longer returns False for recursive products, nor
for unboxed products; you have to test for these separately.
There's no reason not to do CPR for recursive product types, for example.
Ditto splitProductType_maybe.
Simplification
~~~~~~~~~~~~~~~
* New -fno-case-of-case flag for the simplifier. We use this in the first run
of the simplifier, where it helps to stop messing up expressions that
the (subsequent) full laziness pass would otherwise find float out.
It's much more effective than previous half-baked hacks in inlining.
Actually, it turned out that there were three places in Simplify.lhs that
needed to know use this flag.
* Make the float-in pass push duplicatable bindings into the branches of
a case expression, in the hope that we never have to allocate them.
(see FloatIn.sepBindsByDropPoint)
* Arrange that top-level bottoming Ids get a NOINLINE pragma
This reduced gratuitous inlining of error messages.
But arrange that such things still get w/w'd.
* Arrange that a strict argument position is regarded as an 'interesting'
context, so that if we see
foldr k z (g x)
then we'll be inclined to inline g; this can expose a build.
* There was a missing case in CoreUtils.exprEtaExpandArity that meant
we were missing some obvious cases for eta expansion
Also improve the code when handling applications.
* Make record selectors (identifiable by their IdFlavour) into "cheap" operations.
[The change is a 2-liner in CoreUtils.exprIsCheap]
This means that record selection may be inlined into function bodies, which
greatly improves the arities of overloaded functions.
* Make a cleaner job of inlining "lone variables". There was some distributed
cunning, but I've centralised it all now in SimplUtils.analyseCont, which
analyses the context of a call to decide whether it is "interesting".
* Don't specialise very small functions in Specialise.specDefn
It's better to inline it. Rather like the worker/wrapper case.
* Be just a little more aggressive when floating out of let rhss.
See comments with Simplify.wantToExpose
A small change with an occasional big effect.
* Make the inline-size computation think that
case x of I# x -> ...
is *free*.
CPR analysis
~~~~~~~~~~~~
* Fix what was essentially a bug in CPR analysis. Consider
letrec f x = let g y = let ... in f e1
in
if ... then (a,b) else g x
g has the CPR property if f does; so when generating the final annotated
RHS for f, we must use an envt in which f is bound to its final abstract
value. This wasn't happening. Instead, f was given the CPR tag but g
wasn't; but of course the w/w pass gives rotten results in that case!!
(Because f's CPR-ness relied on g's.)
On they way I tidied up the code in CprAnalyse. It's quite a bit shorter.
The fact that some data constructors return a constructed product shows
up in their CPR info (MkId.mkDataConId) not in CprAnalyse.lhs
Strictness analysis and worker/wrapper
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BIG THING: pass in the demand to StrictAnal.saExpr. This affects situations
like
f (let x = e1 in (x,x))
where f turns out to have strictness u(SS), say. In this case we can
mark x as demanded, and use a case expression for it.
The situation before is that we didn't "know" that there is the u(SS)
demand on the argument, so we simply computed that the body of the let
expression is lazy in x, and marked x as lazily-demanded. Then even after
f was w/w'd we got
let x = e1 in case (x,x) of (a,b) -> $wf a b
and hence
let x = e1 in $wf a b
I found a much more complicated situation in spectral/sphere/Main.shade,
which improved quite a bit with this change.
* Moved the StrictnessInfo type from IdInfo to Demand. It's the logical
place for it, and helps avoid module loops
* Do worker/wrapper for coerces even if the arity is zero. Thus:
stdout = coerce Handle (..blurg..)
==>
wibble = (...blurg...)
stdout = coerce Handle wibble
This is good because I found places where we were saying
case coerce t stdout of { MVar a ->
...
case coerce t stdout of { MVar b ->
...
and the redundant case wasn't getting eliminated because of the coerce.
|