| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Most of the other users of the fptools build system have migrated to
Cabal, and with the move to darcs we can now flatten the source tree
without losing history, so here goes.
The main change is that the ghc/ subdir is gone, and most of what it
contained is now at the top level. The build system now makes no
pretense at being multi-project, it is just the GHC build system.
No doubt this will break many things, and there will be a period of
instability while we fix the dependencies. A straightforward build
should work, but I haven't yet fixed binary/source distributions.
Changes to the Building Guide will follow, too.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We had to bite the bullet here and add an extra word to every thunk,
to enable running ordinary libraries on SMP. Otherwise, we would have
needed to ship an extra set of libraries with GHC 6.6 in addition to
the two sets we already ship (normal + profiled), and all Cabal
packages would have to be compiled for SMP too. We decided it best
just to take the hit now, making SMP easily accessible to everyone in
GHC 6.6.
Incedentally, although this increases allocation by around 12% on
average, the performance hit is around 5%, and much less if your inner
loop doesn't use any laziness.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Relax the restrictions on conflicting packages. This should address
many of the traps that people have been falling into with the current
package story.
Now, a local module can shadow a module in an exposed package, as long
as the package is not otherwise required by the program. GHC checks
for conflicts when it knows the dependencies of the module being
compiled.
Also, we now check for module conflicts in exposed packages only when
importing a module: if an import can be satisfied from multiple
packages, that's an error. It's not possible to prevent GHC from
starting by installing packages now (unless you install another base
package).
It seems to be possible to confuse GHCi by having a local module
shadowing a package module that goes away and comes back again. I
think it's nearly right, but strange happenings have been observed.
I'll try to merge this into the STABLE branch.
|
|
|
|
|
|
| |
SMP: thunks get an extra header word so that the payload doesn't
occupy the same space as the updated value. This is the sum total of
the changes to compiler/, which are pleasingly few.
|
|
|
|
|
|
|
| |
Tweaks to get the GHC sources through Haddock. Doesn't quite work
yet, because Haddock complains about the recursive modules. Haddock
needs to understand SOURCE imports (it can probably just ignore them
as a first attempt).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Flags cleanup.
Basically the purpose of this commit is to move more of the compiler's
global state into DynFlags, which is moving in the direction we need
to go for the GHC API which can have multiple active sessions
supported by a single GHC instance.
Before:
$ grep 'global_var' */*hs | wc -l
78
After:
$ grep 'global_var' */*hs | wc -l
27
Well, it's an improvement. Most of what's left won't really affect
our ability to host multiple sessions.
Lots of static flags have become dynamic flags (yay!). Notably lots
of flags that we used to think of as "driver" flags, like -I and -L,
are now dynamic. The most notable static flags left behind are the
"way" flags, eg. -prof. It would be nice to fix this, but it isn't
urgent.
On the way, lots of cleanup has happened. Everything related to
static and dynamic flags lives in StaticFlags and DynFlags
respectively, and they share a common command-line parser library in
CmdLineParser. The flags related to modes (--makde, --interactive
etc.) are now private to the front end: in fact private to Main
itself, for now.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GC changes: instead of threading old-generation mutable lists
through objects in the heap, keep it in a separate flat array.
This has some advantages:
- the IND_OLDGEN object is now only 2 words, so the minimum
size of a THUNK is now 2 words instead of 3. This saves
some amount of allocation (about 2% on average according to
my measurements), and is more friendly to the cache by
squashing objects together more.
- keeping the mutable list separate from the IND object
will be necessary for our multiprocessor implementation.
- removing the mut_link field makes the layout of some objects
more uniform, leading to less complexity and special cases.
- I also unified the two mutable lists (mut_once_list and mut_list)
into a single mutable list, which lead to more simplifications
in the GC.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Further integration with the new package story. GHC now supports
pretty much everything in the package proposal.
- GHC now works in terms of PackageIds (<pkg>-<version>) rather than
just package names. You can still specify package names without
versions on the command line, as long as the name is unambiguous.
- GHC understands hidden/exposed modules in a package, and will refuse
to import a hidden module. Also, the hidden/eposed status of packages
is taken into account.
- I had to remove the old package syntax from ghc-pkg, backwards
compatibility isn't really practical.
- All the package.conf.in files have been rewritten in the new syntax,
and contain a complete list of modules in the package. I've set all
the versions to 1.0 for now - please check your package(s) and fix the
version number & other info appropriately.
- New options:
-hide-package P sets the expose flag on package P to False
-ignore-package P unregisters P for this compilation
For comparison, -package P sets the expose flag on package P
to True, and also causes P to be linked in eagerly.
-package-name is no longer officially supported. Unofficially, it's
a synonym for -ignore-package, which has more or less the same effect
as -package-name used to.
Note that a package may be hidden and yet still be linked into
the program, by virtue of being a dependency of some other package.
To completely remove a package from the compiler's internal database,
use -ignore-package.
The compiler will complain if any two packages in the
transitive closure of exposed packages contain the same
module.
You *must* use -ignore-package P when compiling modules for
package P, if package P (or an older version of P) is already
registered. The compiler will helpfully complain if you don't.
The fptools build system does this.
- Note: the Cabal library won't work yet. It still thinks GHC uses
the old package config syntax.
Internal changes/cleanups:
- The ModuleName type has gone away. Modules are now just (a
newtype of) FastStrings, and don't contain any package information.
All the package-related knowledge is in DynFlags, which is passed
down to where it is needed.
- DynFlags manipulation has been cleaned up somewhat: there are no
global variables holding DynFlags any more, instead the DynFlags
are passed around properly.
- There are a few less global variables in GHC. Lots more are
scheduled for removal.
- -i is now a dynamic flag, as are all the package-related flags (but
using them in {-# OPTIONS #-} is Officially Not Recommended).
- make -j now appears to work under fptools/libraries/. Probably
wouldn't take much to get it working for a whole build.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
------------------------------------
Add Generalised Algebraic Data Types
------------------------------------
This rather big commit adds support for GADTs. For example,
data Term a where
Lit :: Int -> Term Int
App :: Term (a->b) -> Term a -> Term b
If :: Term Bool -> Term a -> Term a
..etc..
eval :: Term a -> a
eval (Lit i) = i
eval (App a b) = eval a (eval b)
eval (If p q r) | eval p = eval q
| otherwise = eval r
Lots and lots of of related changes throughout the compiler to make
this fit nicely.
One important change, only loosely related to GADTs, is that skolem
constants in the typechecker are genuinely immutable and constant, so
we often get better error messages from the type checker. See
TcType.TcTyVarDetails.
There's a new module types/Unify.lhs, which has purely-functional
unification and matching for Type. This is used both in the typechecker
(for type refinement of GADTs) and in Core Lint (also for type refinement).
|
|
|
|
| |
Merge backend-hacking-branch onto HEAD. Yay!
|
|
|
|
|
|
|
|
|
|
|
| |
Disable update-in-place. In its current form, it has a serious bug:
if the thunk being updated happens to have turned into a BLACKHOLE_BQ,
then the mutable list will be corrupted by the update.
Disabling update-in-place has some performance implications: many
programs are not affected, but one program in nofib (nucleic2) goes
about 20% slower. However, I can get it to go 300% faster by adding a
few strictness annotations and compiling with -funbox-strict-fields.
|
|
|
|
|
|
|
|
|
|
|
| |
When doing update-in-place, there is a (small) chance that the thunk
may have been blackholed and another thread might be waiting on it.
We can't therefore just splat it with the value; we have to check
whether it is a blocking queue and awaken any threads that might be
waiting on it if so.
Should fix the scavenge_mutable_list crash reported recently. If it
does, it will be merged to STABLE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
------------------------
Tidy up the code generator
------------------------
The code generation for 'case' expressions had grown
huge and gnarly. This commit removes about 120 lines of
code, and makes it a lot easier to read too. I think the code
generated is identical.
Part of this was to simplify the StgCase data type, so
that it is more like the Core case: there is a simple list
of alternatives, and the DEFAULT (if present) must be the
first. This tidies and simplifies other Stg passes.
|
|
|
|
| |
Comment fix.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Merge the eval-apply-branch on to the HEAD
------------------------------------------
This is a change to GHC's evaluation model in order to ultimately make
GHC more portable and to reduce complexity in some areas.
At some point we'll update the commentary to describe the new state of
the RTS. Pending that, the highlights of this change are:
- No more Su. The Su register is gone, update frames are one
word smaller.
- Slow-entry points and arg checks are gone. Unknown function calls
are handled by automatically-generated RTS entry points (AutoApply.hc,
generated by the program in utils/genapply).
- The stack layout is stricter: there are no "pending arguments" on
the stack any more, the stack is always strictly a sequence of
stack frames.
This means that there's no need for LOOKS_LIKE_GHC_INFO() or
LOOKS_LIKE_STATIC_CLOSURE() any more, and GHC doesn't need to know
how to find the boundary between the text and data segments (BIG WIN!).
- A couple of nasty hacks in the mangler caused by the neet to
identify closure ptrs vs. info tables have gone away.
- Info tables are a bit more complicated. See InfoTables.h for the
details.
- As a side effect, GHCi can now deal with polymorphic seq. Some bugs
in GHCi which affected primitives and unboxed tuples are now
fixed.
- Binary sizes are reduced by about 7% on x86. Performance is roughly
similar, some programs get faster while some get slower. I've seen
GHCi perform worse on some examples, but haven't investigated
further yet (GHCi performance *should* be about the same or better
in theory).
- Internally the code generator is rather better organised. I've moved
info-table generation from the NCG into the main codeGen where it is
shared with the C back-end; info tables are now emitted as arrays
of words in both back-ends. The NCG is one step closer to being able
to support profiling.
This has all been fairly thoroughly tested, but no doubt I've messed
up the commit in some way.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
--------------------------------------
Make Template Haskell into the HEAD
--------------------------------------
This massive commit transfers to the HEAD all the stuff that
Simon and Tim have been doing on Template Haskell. The
meta-haskell-branch is no more!
WARNING: make sure that you
* Update your links if you are using link trees.
Some modules have been added, some have gone away.
* Do 'make clean' in all library trees.
The interface file format has changed, and you can
get strange panics (sadly) if GHC tries to read old interface files:
e.g. ghc-5.05: panic! (the `impossible' happened, GHC version 5.05):
Binary.get(TyClDecl): ForeignType
* You need to recompile the rts too; Linker.c has changed
However the libraries are almost unaltered; just a tiny change in
Base, and to the exports in Prelude.
NOTE: so far as TH itself is concerned, expression splices work
fine, but declaration splices are not complete.
---------------
The main change
---------------
The main structural change: renaming and typechecking have to be
interleaved, because we can't rename stuff after a declaration splice
until after we've typechecked the stuff before (and the splice
itself).
* Combine the renamer and typecheker monads into one
(TcRnMonad, TcRnTypes)
These two replace TcMonad and RnMonad
* Give them a single 'driver' (TcRnDriver). This driver
replaces TcModule.lhs and Rename.lhs
* The haskell-src library package has a module
Language/Haskell/THSyntax
which defines the Haskell data type seen by the TH programmer.
* New modules:
hsSyn/Convert.hs converts THSyntax -> HsSyn
deSugar/DsMeta.hs converts HsSyn -> THSyntax
* New module typecheck/TcSplice type-checks Template Haskell splices.
-------------
Linking stuff
-------------
* ByteCodeLink has been split into
ByteCodeLink (which links)
ByteCodeAsm (which assembles)
* New module ghci/ObjLink is the object-code linker.
* compMan/CmLink is removed entirely (was out of place)
Ditto CmTypes (which was tiny)
* Linker.c initialises the linker when it is first used (no need to call
initLinker any more). Template Haskell makes it harder to know when
and whether to initialise the linker.
-------------------------------------
Gathering the LIE in the type checker
-------------------------------------
* Instead of explicitly gathering constraints in the LIE
tcExpr :: RenamedExpr -> TcM (TypecheckedExpr, LIE)
we now dump the constraints into a mutable varabiable carried
by the monad, so we get
tcExpr :: RenamedExpr -> TcM TypecheckedExpr
Much less clutter in the code, and more efficient too.
(Originally suggested by Mark Shields.)
-----------------
Remove "SysNames"
-----------------
Because the renamer and the type checker were entirely separate,
we had to carry some rather tiresome implicit binders (or "SysNames")
along inside some of the HsDecl data structures. They were both
tiresome and fragile.
Now that the typechecker and renamer are more intimately coupled,
we can eliminate SysNames (well, mostly... default methods still
carry something similar).
-------------
Clean up HsPat
-------------
One big clean up is this: instead of having two HsPat types (InPat and
OutPat), they are now combined into one. This is more consistent with
the way that HsExpr etc is handled; there are some 'Out' constructors
for the type checker output.
So:
HsPat.InPat --> HsPat.Pat
HsPat.OutPat --> HsPat.Pat
No 'pat' type parameter in HsExpr, HsBinds, etc
Constructor patterns are nicer now: they use
HsPat.HsConDetails
for the three cases of constructor patterns:
prefix, infix, and record-bindings
The *same* data type HsConDetails is used in the type
declaration of the data type (HsDecls.TyData)
Lots of associated clean-up operations here and there. Less code.
Everything is wonderful.
|
|
|
|
|
|
|
|
|
|
| |
Recent changes to simplify PrimRep had introduced a bug: the heap
check code was assuming that anything with PtrRep representation was
enterable. This isn't the case for the unpointed primitive types
(eg. ByteArray#), resulting in the ARR_WORDS crash in last night's
build.
This bug isn't in STABLE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Housekeeping:
- The main goal is to remove dependencies on hslibs for a
bootstrapped compiler, leaving only a requirement that the
packages base, haskell98 and readline are built in stage 1 in
order to bootstrap. We're almost there: Posix is still required
for signal handling, but all other dependencies on hslibs are now
gone.
Uses of Addr and ByteArray/MutableByteArray array are all gone
from the compiler. PrimPacked defines the Ptr type for GHC 4.08
(which didn't have it), and it defines simple BA and MBA types to
replace uses of ByteArray and MutableByteArray respectively.
- Clean up import lists. HsVersions.h now defines macros for some
modules which have moved between GHC versions. eg. one now
imports 'GLAEXTS' to get at unboxed types and primops in the
compiler.
Many import lists have been sorted as per the recommendations in
the new style guidelines in the commentary.
I've built the compiler with GHC 4.08.2, 5.00.2, 5.02.3, 5.04 and
itself, and everything still works here. Doubtless I've got something
wrong, though.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FastString cleanup, stage 1.
The FastString type is no longer a mixture of hashed strings and
literal strings, it contains hashed strings only with O(1) comparison
(except for UnicodeStr, but that will also go away in due course). To
create a literal instance of FastString, use FSLIT("..").
By far the most common use of the old literal version of FastString
was in the pattern
ptext SLIT("...")
this combination still works, although it doesn't go via FastString
any more. The next stage will be to remove the need to use this
special combination at all, using a RULE.
To convert a FastString into an SDoc, now use 'ftext' instead of
'ptext'.
I've also removed all the FAST_STRING related macros from HsVersions.h
except for SLIT and FSLIT, just use the relevant functions from
FastString instead.
|
|
|
|
| |
Imports only
|
|
|
|
| |
shiftery #ifdefs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix a long-standing bug in the cost attribution of cost-center stacks.
The problem case is this:
let z = _scc_ "z" f x
in ... z ...
previously we were attributing the cost of allocating the closure 'z'
to the enclosing cost center stack (CCCS), when it should really be
attributed to "z":CCCS. The effects are particularly visible with
retainer profiling, because the closure retaining 'f' and 'x' would
show up with the wrong CCS attached.
To fix this, we need a new form of CCS representation internally:
'PushCC CostCentre CostCentreStack' which subsumes (and therefore
replaces) SingletonCCS. SingletonCCS is now represented by 'PushCC cc
NoCCS'.
The CCS argument to SET_HDR may now be an arbitrary expression, such
as PushCostCentre(CCCS,foo_cc), as may be the argument to CCS_ALLOC().
So we combine SET_HDR and CCS_ALLOC into a single macro, SET_HDR_, to
avoid repeated calls to PushCostCentre().
|
|
|
|
| |
Tidy up imports
|
|
|
|
| |
Remove the heap-check-size panic, following the RTS fixes for this problem.
|
|
|
|
| |
Dealing with instance-decl imports; and removing unnecessary imports
|
|
|
|
| |
Small wibbles
|
|
|
|
|
|
| |
Panic if we try to allocate more than a block's worth of memory in one
go. No fix yet, but at least this is better than going into an
infinite loop at runtime.
|
|
|
|
| |
Remove dead code
|
|
|
|
| |
remove unused imports; misc cleanup
|
|
|
|
|
| |
Merged GUM-4-04 branch into the main trunk. In particular merged GUM and
SMP code. Most of the GranSim code in GUM-4-04 still has to be carried over.
|
|
|
|
|
|
|
| |
Crude allocation-counting extension to ticky-ticky profiling.
Allocations are counted against the closest lexically enclosing
function closure, so you need to map the output back to the STG code.
|
|
|
|
|
|
| |
- Implement update-in-place in certain very specialised circumstances
- Clean up abstract C a bit
- Speed up pretty-printing absC a bit.
|
|
|
|
| |
Several bugfixes (from SLPJ's tree).
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Support for "unregisterised" builds. An unregisterised build doesn't
use the assembly mangler, doesn't do tail jumping (uses the
mini-interpreter), and doesn't use global register variables.
Plenty of cleanups and bugfixes in the process.
Add way 'u' to GhcLibWays to get unregisterised libs & RTS.
[ note: not *quite* working fully yet... there's still a bug or two
lurking ]
|
|
|
|
| |
Fix bug in mkRegLiveness causing bogus heap checks to be generated on the Sparc.
|
|
|
|
| |
Add missing default case to mkRegLiveness.
|
|
|
|
|
| |
- Add specialised closure types (CONSTR_p_n, THUNK_p_n, FUN_p_n)
- Add -T<n> RTS flag to specify the number of steps in younger generations.
|
|
|
|
|
| |
Resurrect ticky-ticky profiling. Not quite polished yet, but it
compiles and produces some reasonable-looking stats.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Another big commit from Simon. Actually, the last one
didn't all go into the main trunk; because of a CVS glitch it
ended up in the wrong branch.
So this commit includes:
* Scoped type variables
* Warnings for unused variables should work now (they didn't before)
* Simplifier improvements:
- Much better treatment of strict arguments
- Better treatment of bottoming Ids
- No need for w/w split for fns that are merely strict
- Fewer iterations needed, I hope
* Less gratuitous renaming in interface files and abs C
* OccName is a separate module, and is an abstract data type
I think the whole Prelude and Exts libraries compile correctly.
Something isn't quite right about typechecking existentials though.
|
|
|
|
| |
Move 4.01 onto the main trunk.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Great Multi-Parameter Type Classes Merge.
Notes from Simon (abridged):
* Multi-parameter type classes are fully implemented.
* Error messages from the type checker should be noticeably improved
* Warnings for unused bindings (-fwarn-unused-names)
* many other minor bug fixes.
Internally there are the following changes
* Removal of Haskell 1.2 compatibility.
* Dramatic clean-up of the PprStyle stuff.
* The type Type has been substantially changed.
* The dictionary for each class is represented by a new
data type for that purpose, rather than by a tuple.
|
|
|
|
| |
2.04 changes
|
|
|
|
| |
partain 1.3 changes through 960629
|
|
|
|
| |
SLPJ 1.3 changes through 96/06/25
|
|
|
|
| |
SLPJ changes through 960604
|
|
|
|
| |
Sansom 1.3 changes through 960507
|
|
|
|
| |
Add SLPJ/WDP 1.3 changes through 960404
|
|
|
|
| |
simonpj/sansom/partain/dnt 1.3 compiler stuff through 96/03/18
|
|
Initial revision
|