| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| |
|
| |
|
| |
|
|
|
|
|
| |
Previously one could not easily link to the :reverse: flag of a
ghc-flag.
|
|
|
|
| |
Previously several were referred to via :ghc-flag:`-X...`.
|
|
|
|
| |
This fixes #17060.
|
|
|
|
| |
These are needed by the user guide documentation. Fixes #17260.
|
|
|
|
|
|
| |
not used.
This fixes #10913.
|
|
|
|
| |
Zeros heap memory after gc freed it.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unicode renders funny on my terminal and I like to avoid it where
possible. Most applications which print out non-ascii characters allow
users to disable such prints with an environment variable (e.g.
Homebrew).
This diff disables Unicode usage when the environment variable
`GHC_NO_UNICODE` is set. To test, set the env var and compile a bad
program. Note that GHC does not print Unicode bullets but instead prints
out asterisks:
```
$ GHC_NO_UNICODE= _build/stage1/bin/ghc ../Temp.hs
[1 of 1] Compiling Temp ( ../Temp.hs, ../Temp.o )
../Temp.hs:4:23: error:
* Couldn't match type `Bool' with `a -> Bool'
Expected type: Bool -> a -> Bool
Actual type: Bool -> Bool
* In the first argument of `foldl', namely `(&& (flip $ elem u))'
In the expression: foldl (&& (flip $ elem u)) True v
In an equation for `isPermut':
isPermut u v = foldl (&& (flip $ elem u)) True v
* Relevant bindings include
v :: [a] (bound at ../Temp.hs:4:12)
u :: [a] (bound at ../Temp.hs:4:10)
isPermut :: [a] -> [a] -> Bool (bound at ../Temp.hs:4:1)
|
4 | isPermut u v = foldl (&& (flip $ elem u)) True v
| ^^^^^^^^^^^^^^^^^^
```
(Broken code taken from Stack Overflow)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This resolves #16876 by making the explicit use of `-fbyte-code`
prevent code that enables `UnboxedTuples` or `UnboxedSums` from
automatically compiling to object code. This allows for a nice
middle ground where most code that enables `UnboxedTuples`/-`Sums`
will still benefit from automatically enabling `-fobject-code`, but
allows power users who wish to avoid this behavior in certain corner
cases (such as `lens`, whose use case is documented in #16876) to do
so.
Along the way, I did a little cleanup of the relevant code and
documentation:
* `enableCodeGenForUnboxedTuples` was only checking for the presence
of `UnboxedTuples`, but `UnboxedSums` has the same complications.
I fixed this and renamed the function to
`enableCodeGenForUnboxedTuplesOrSums`.
* I amended the users' guide with a discussion of these issues.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implements GHC Proposal #54: .../ghc-proposals/blob/master/proposals/0054-kind-signatures.rst
With this patch, a type constructor can now be given an explicit
standalone kind signature:
{-# LANGUAGE StandaloneKindSignatures #-}
type Functor :: (Type -> Type) -> Constraint
class Functor f where
fmap :: (a -> b) -> f a -> f b
This is a replacement for CUSKs (complete user-specified
kind signatures), which are now scheduled for deprecation.
User-facing changes
-------------------
* A new extension flag has been added, -XStandaloneKindSignatures, which
implies -XNoCUSKs.
* There is a new syntactic construct, a standalone kind signature:
type <name> :: <kind>
Declarations of data types, classes, data families, type families, and
type synonyms may be accompanied by a standalone kind signature.
* A standalone kind signature enables polymorphic recursion in types,
just like a function type signature enables polymorphic recursion in
terms. This obviates the need for CUSKs.
* TemplateHaskell AST has been extended with 'KiSigD' to represent
standalone kind signatures.
* GHCi :info command now prints the kind signature of type constructors:
ghci> :info Functor
type Functor :: (Type -> Type) -> Constraint
...
Limitations
-----------
* 'forall'-bound type variables of a standalone kind signature do not
scope over the declaration body, even if the -XScopedTypeVariables is
enabled. See #16635 and #16734.
* Wildcards are not allowed in standalone kind signatures, as partial
signatures do not allow for polymorphic recursion.
* Associated types may not be given an explicit standalone kind
signature. Instead, they are assumed to have a CUSK if the parent class
has a standalone kind signature and regardless of the -XCUSKs flag.
* Standalone kind signatures do not support multiple names at the moment:
type T1, T2 :: Type -> Type -- rejected
type T1 = Maybe
type T2 = Either String
See #16754.
* Creative use of equality constraints in standalone kind signatures may
lead to GHC panics:
type C :: forall (a :: Type) -> a ~ Int => Constraint
class C a where
f :: C a => a -> Int
See #16758.
Implementation notes
--------------------
* The heart of this patch is the 'kcDeclHeader' function, which is used to
kind-check a declaration header against its standalone kind signature.
It does so in two rounds:
1. check user-written binders
2. instantiate invisible binders a la 'checkExpectedKind'
* 'kcTyClGroup' now partitions declarations into declarations with a
standalone kind signature or a CUSK (kinded_decls) and declarations
without either (kindless_decls):
* 'kinded_decls' are kind-checked with 'checkInitialKinds'
* 'kindless_decls' are kind-checked with 'getInitialKinds'
* DerivInfo has been extended with a new field:
di_scoped_tvs :: ![(Name,TyVar)]
These variables must be added to the context in case the deriving clause
references tcTyConScopedTyVars. See #16731.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduces a new flag `-fmax-pmcheck-deltas` to achieve that. Deprecates
the old `-fmax-pmcheck-iter` mechanism in favor of this new flag.
From the user's guide:
Pattern match checking can be exponential in some cases. This limit makes sure
we scale polynomially in the number of patterns, by forgetting refined
information gained from a partially successful match. For example, when
matching `x` against `Just 4`, we split each incoming matching model into two
sub-models: One where `x` is not `Nothing` and one where `x` is `Just y` but
`y` is not `4`. When the number of incoming models exceeds the limit, we
continue checking the next clause with the original, unrefined model.
This also retires the incredibly hard to understand "maximum number of
refinements" mechanism, because the current mechanism is more general
and should catch the same exponential cases like PrelRules at the same
time.
-------------------------
Metric Decrease:
T11822
-------------------------
|
|
|
|
|
|
| |
Enabling both DeriveAnyClass and GeneralizedNewtypeDeriving can cause
a warning when no explicit deriving strategy is in use. This change adds
an enable/suppress flag for it.
|
|
|
|
|
| |
Add a new optional failure handling for upsweep which continues
the compilation on other modules if any of them has errors.
|
|
|
|
|
|
| |
This commit only fixes links and markdown syntax.
[skip ci]
|
|
|
|
|
|
|
| |
Add GHC.Hs module hierarchy replacing hsSyn.
Metric Increase:
haddock.compiler
|
|
|
|
| |
Fixes #17200.
|
|
|
|
|
|
|
|
|
|
| |
This patch adds a new eventlog event which indicates the start of
a biographical profiler sample. These are different to normal events as
they also include the timestamp of when the census took place. This is
because the LDV profiler only emits samples at the end of the run.
Now all the different profiling modes emit consumable events to the
eventlog.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, we had an elaborate mechanism for selecting the warnings to
generate in the presence of different `COMPLETE` matching groups that,
albeit finely-tuned, produced wrong results from an end user's
perspective in some cases (#13363).
The underlying issue is that at the point where the `ConVar` case has to
commit to a particular `COMPLETE` group, there's not enough information
to do so and the status quo was to just enumerate all possible complete
sets nondeterministically. The `getResult` function would then pick the
outcome according to metrics defined in accordance to the user's guide.
But crucially, it lacked knowledge about the order in which affected
clauses appear, leading to the surprising behavior in #13363.
In !1010 we taught the term oracle to reason about literal values a
variable can certainly not take on. This MR extends that idea to
`ConLike`s and thereby fixes #13363: Instead of committing to a
particular `COMPLETE` group in the `ConVar` case, we now split off the
matching constructor incrementally and record the newly covered case as
a refutable shape in the oracle. Whenever the set of refutable shapes
covers any `COMPLETE` set, the oracle recognises vacuosity of the
uncovered set.
This patch goes a step further: Since at this point the information
in value abstractions is merely a cut down representation of what the
oracle knows, value abstractions degenerate to a single `Id`, the
semantics of which is determined by the oracle state `Delta`.
Value vectors become lists of `[Id]` given meaning to by a single
`Delta`, value set abstractions (of which the uncovered set is an
instance) correspond to a union of `Delta`s which instantiate the
same `[Id]` (akin to models of formula).
Fixes #11528 #13021, #13363, #13965, #14059, #14253, #14851, #15753, #17096, #17149
-------------------------
Metric Decrease:
ManyAlternatives
T11195
-------------------------
|
| |
|
|
|
|
|
| |
If I understand correctly, `deriving instance _ => Eq (Foo a)`
is equivalent to `data Foo a deriving Eq`, rather than
`data Foo a deriving Foo`.
|
|
|
|
|
|
| |
Add StgToCmm module hierarchy. Platform modules that are used in several
other places (NCG, LLVM codegen, Cmm transformations) are put into
GHC.Platform.
|
|
|
|
|
| |
See the user manual entry -- this helps when debugging as generated Core
gets smaller without these bindings.
|
|
|
|
| |
[ci skip]
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Supply branch incomps when building an IfaceClosedSynFamilyTyCon
`pprTyThing` now has access to incomps. This also causes them to be
written out to .hi files, but that doesn't pose an issue other than a
more faithful bijection between `tyThingToIfaceDecl` and `tcIfaceDecl`.
The machinery for displaying axiom incomps was already present but not
in use. Since this is now a thing that pops up in ghci's :info the
format was modified to look like a haskell comment.
Documentation and a test for the new feature included.
Test Plan: T15546
Reviewers: simonpj, bgamari, goldfire
Reviewed By: simonpj
Subscribers: rwbarton, carter
GHC Trac Issues: #15546
Differential Revision: https://phabricator.haskell.org/D5097
|
| |
|
|
|
|
| |
[skip-ci]
|
|
|
|
| |
separate file and add -ddump-cmm-verbose-by-proc to keep old behaviour (#16930)
|
|
|
|
| |
-fno-max-relevant-binds
|
|
|
|
|
|
|
|
| |
These are unexploded minds as far as the linter is concerned. I don't
want to hit in my MRs by mistake!
I did this with `sed`, and then rolled back some changes in the docs,
config.guess, and the linter itself.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit partly reverts e69619e923e84ae61a6bb4357f06862264daa94b
commit by reintroducing Sf_SafeInferred SafeHaskellMode.
We preserve whether module was declared or inferred Safe. When
declared-Safe module imports inferred-Safe, we warn. This inferred
status is volatile, often enough it's a happy coincidence, something
which cannot be relied upon. However, explicitly Safe or Trustworthy
packages won't accidentally become Unsafe.
Updates haddock submodule.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes three infelicities related to the programs that are
(and aren't) accepted with `UnliftedNewtypes`:
* Enabling `UnliftedNewtypes` would permit newtypes to have return
kind `Id Type`, which had disastrous results (i.e., GHC panics).
* Data family declarations ending in kind `TYPE r` (for some `r`)
weren't being accepted if `UnliftedNewtypes` wasn't enabled,
despite the GHC proposal specifying otherwise.
* GHC wasn't warning about programs that _would_ typecheck if
`UnliftedNewtypes` were enabled in certain common cases.
As part of fixing these issues, I factored out the logic for checking
all of the various properties about data type/data family return
kinds into a single `checkDataKindSig` function. I also cleaned up
some of the formatting in the existing error message that gets
thrown.
Fixes #16821, fixes #16827, and fixes #16829.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds a new kind of plugin, Hole fit plugins. These plugins
can change what candidates are considered when looking for valid hole
fits, and add hole fits of their own. The type of a plugin is relatively
simple,
```
type FitPlugin = TypedHole -> [HoleFit] -> TcM [HoleFit]
type CandPlugin = TypedHole -> [HoleFitCandidate] -> TcM [HoleFitCandidate]
data HoleFitPlugin = HoleFitPlugin { candPlugin :: CandPlugin
, fitPlugin :: FitPlugin }
data TypedHole = TyH { tyHRelevantCts :: Cts
-- ^ Any relevant Cts to the hole
, tyHImplics :: [Implication]
-- ^ The nested implications of the hole with the
-- innermost implication first.
, tyHCt :: Maybe Ct
-- ^ The hole constraint itself, if available.
}
This allows users and plugin writers to interact with the candidates and
fits as they wish, even going as far as to allow them to reimplement the
current functionality (since `TypedHole` contains all the relevant
information).
As an example, consider the following plugin:
```
module HolePlugin where
import GhcPlugins
import TcHoleErrors
import Data.List (intersect, stripPrefix)
import RdrName (importSpecModule)
import TcRnTypes
import System.Process
plugin :: Plugin
plugin = defaultPlugin { holeFitPlugin = hfp, pluginRecompile = purePlugin }
hfp :: [CommandLineOption] -> Maybe HoleFitPluginR
hfp opts = Just (fromPureHFPlugin $ HoleFitPlugin (candP opts) (fp opts))
toFilter :: Maybe String -> Maybe String
toFilter = flip (>>=) (stripPrefix "_module_")
replace :: Eq a => a -> a -> [a] -> [a]
replace match repl str = replace' [] str
where
replace' sofar (x:xs) | x == match = replace' (repl:sofar) xs
replace' sofar (x:xs) = replace' (x:sofar) xs
replace' sofar [] = reverse sofar
-- | This candidate plugin filters the candidates by module,
-- using the name of the hole as module to search in
candP :: [CommandLineOption] -> CandPlugin
candP _ hole cands =
do let he = case tyHCt hole of
Just (CHoleCan _ h) -> Just (occNameString $ holeOcc h)
_ -> Nothing
case toFilter he of
Just undscModName -> do let replaced = replace '_' '.' undscModName
let res = filter (greNotInOpts [replaced]) cands
return $ res
_ -> return cands
where greNotInOpts opts (GreHFCand gre) = not $ null $ intersect (inScopeVia gre) opts
greNotInOpts _ _ = True
inScopeVia = map (moduleNameString . importSpecModule) . gre_imp
-- Yes, it's pretty hacky, but it is just an example :)
searchHoogle :: String -> IO [String]
searchHoogle ty = lines <$> (readProcess "hoogle" [(show ty)] [])
fp :: [CommandLineOption] -> FitPlugin
fp ("hoogle":[]) hole hfs =
do dflags <- getDynFlags
let tyString = showSDoc dflags . ppr . ctPred <$> tyHCt hole
res <- case tyString of
Just ty -> liftIO $ searchHoogle ty
_ -> return []
return $ (take 2 $ map (RawHoleFit . text . ("Hoogle says: " ++)) res) ++ hfs
fp _ _ hfs = return hfs
```
with this plugin available, you can compile the following file
```
{-# OPTIONS -fplugin=HolePlugin -fplugin-opt=HolePlugin:hoogle #-}
module Main where
import Prelude hiding (head, last)
import Data.List (head, last)
t :: [Int] -> Int
t = _module_Prelude
g :: [Int] -> Int
g = _module_Data_List
main :: IO ()
main = print $ t [1,2,3]
```
and get the following output:
```
Main.hs:14:5: error:
• Found hole: _module_Prelude :: [Int] -> Int
Or perhaps ‘_module_Prelude’ is mis-spelled, or not in scope
• In the expression: _module_Prelude
In an equation for ‘t’: t = _module_Prelude
• Relevant bindings include
t :: [Int] -> Int (bound at Main.hs:14:1)
Valid hole fits include
Hoogle says: GHC.List length :: [a] -> Int
Hoogle says: GHC.OldList length :: [a] -> Int
t :: [Int] -> Int (bound at Main.hs:14:1)
g :: [Int] -> Int (bound at Main.hs:17:1)
length :: forall (t :: * -> *) a. Foldable t => t a -> Int
with length @[] @Int
(imported from ‘Prelude’ at Main.hs:5:1-34
(and originally defined in ‘Data.Foldable’))
maximum :: forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
with maximum @[] @Int
(imported from ‘Prelude’ at Main.hs:5:1-34
(and originally defined in ‘Data.Foldable’))
(Some hole fits suppressed; use -fmax-valid-hole-fits=N or -fno-max-valid-hole-fits)
|
14 | t = _module_Prelude
| ^^^^^^^^^^^^^^^
Main.hs:17:5: error:
• Found hole: _module_Data_List :: [Int] -> Int
Or perhaps ‘_module_Data_List’ is mis-spelled, or not in scope
• In the expression: _module_Data_List
In an equation for ‘g’: g = _module_Data_List
• Relevant bindings include
g :: [Int] -> Int (bound at Main.hs:17:1)
Valid hole fits include
Hoogle says: GHC.List length :: [a] -> Int
Hoogle says: GHC.OldList length :: [a] -> Int
g :: [Int] -> Int (bound at Main.hs:17:1)
head :: forall a. [a] -> a
with head @Int
(imported from ‘Data.List’ at Main.hs:7:19-22
(and originally defined in ‘GHC.List’))
last :: forall a. [a] -> a
with last @Int
(imported from ‘Data.List’ at Main.hs:7:25-28
(and originally defined in ‘GHC.List’))
|
17 | g = _module_Data_List
```
This relatively simple plugin has two functions, as an example of what
is possible to do with hole fit plugins. The candidate plugin starts by
filtering the candidates considered by module, indicated by the name of
the hole (`_module_Data_List`). The second function is in the fit
plugin, where the plugin invokes a local hoogle instance to search by
the type of the hole.
By adding the `RawHoleFit` type, we can also allow these completely free
suggestions, used in the plugin above to display fits found by Hoogle.
Additionally, the `HoleFitPluginR` wrapper can be used for plugins to
maintain state between invocations, which can be used to speed up
invocation of plugins that have expensive initialization.
```
-- | HoleFitPluginR adds a TcRef to hole fit plugins so that plugins can
-- track internal state. Note the existential quantification, ensuring that
-- the state cannot be modified from outside the plugin.
data HoleFitPluginR = forall s. HoleFitPluginR
{ hfPluginInit :: TcM (TcRef s)
-- ^ Initializes the TcRef to be passed to the plugin
, hfPluginRun :: TcRef s -> HoleFitPlugin
-- ^ The function defining the plugin itself
, hfPluginStop :: TcRef s -> TcM ()
-- ^ Cleanup of state, guaranteed to be called even on error
}
```
Of course, the syntax here is up for debate, but hole fit plugins allow
us to experiment relatively easily with ways to interact with
typed-holes without having to dig deep into GHC.
Reviewers: bgamari
Subscribers: rwbarton, carter
Differential Revision: https://phabricator.haskell.org/D5373
|
|
|
|
|
| |
We no longer emit a warning when a safe module is explicitly declared as
such.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GHC Proposal: 0013-unlifted-newtypes.rst
Discussion: https://github.com/ghc-proposals/ghc-proposals/pull/98
Issues: #15219, #1311, #13595, #15883
Implementation Details:
Note [Implementation of UnliftedNewtypes]
Note [Unifying data family kinds]
Note [Compulsory newtype unfolding]
This patch introduces the -XUnliftedNewtypes extension. When this
extension is enabled, GHC drops the restriction that the field in
a newtype must be of kind (TYPE 'LiftedRep). This allows types
like Int# and ByteArray# to be used in a newtype. Additionally,
coerce is made levity-polymorphic so that it can be used with
newtypes over unlifted types.
The bulk of the changes are in TcTyClsDecls.hs. With -XUnliftedNewtypes,
getInitialKind is more liberal, introducing a unification variable to
return the kind (TYPE r0) rather than just returning (TYPE 'LiftedRep).
When kind-checking a data constructor with kcConDecl, we attempt to
unify the kind of a newtype with the kind of its field's type. When
typechecking a data declaration with tcTyClDecl, we again perform a
unification. See the implementation note for more on this.
Co-authored-by: Richard Eisenberg <rae@richarde.dev>
|
|
|
|
|
|
|
| |
Strangely these were only causing the build to fail in the aarch64-linux
job, despite Sphinx throwing errors in all jobs I checked.
Also changes some `#ifdef`s to `#if defined` to satisfy the linter.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: bgamari, simonpj
Reviewed By: simonpj
Subscribers: hvr, simonpj, mpickering, rwbarton, carter
GHC Trac Issues: #15838
Differential Revision: https://phabricator.haskell.org/D5285
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds two new commands `:enable` and `:disable` to the GHCi debugger.
Opposite to `:set stop <n> :continue` a breakpoint disabled with `:disable` will
not loose its previously set stop command.
A new field breakEnabled is added to the BreakLocation data structure to
track the enable/disable state. When a breakpoint is disabled with a `:disable`
command, the following happens:
The corresponding BreakLocation data element is searched dictionary of the
`breaks` field of the GHCiStateMonad. If the break point is found and not
already in the disabled state, the breakpoint is removed from bytecode.
The BreakLocation data structure is kept in the breaks list and the new
breakEnabled field is set to false.
The `:enable` command works similar.
The breaks field in the GHCiStateMonad was changed from an association list
to int `IntMap`.
|
|
|
|
|
|
|
| |
This allows a user to observe how long a sampling period lasts so that
the time taken can be removed from the profiling output.
Fixes #16697
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds the `:instances` command to ghci following proosal
number 41.
This makes it possible to query which instances are available to a given
type.
The output of this command is all the possible instances with type
variables and constraints instantiated.
|