| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch refactors internal representation of type synonyms and type families by splitting them into two separate data constructors of TyCon data type. The main motivation is is that some fields make sense only for type synonyms and some make sense only for type families. This will be even more true with the upcoming injective type families.
There is also some refactoring of names to keep the naming constistent. And thus tc_kind field has become tyConKind and tc_roles has become tcRoles. Both changes are not visible from the outside of TyCon module.
Updates haddock submodule
Reviewers: simonpj
Differential Revision: https://phabricator.haskell.org/D508
GHC Trac Issues: #9812
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This includes pretty much all the changes needed to make `Applicative`
a superclass of `Monad` finally. There's mostly reshuffling in the
interests of avoid orphans and boot files, but luckily we can resolve
all of them, pretty much. The only catch was that
Alternative/MonadPlus also had to go into Prelude to avoid this.
As a result, we must update the hsc2hs and haddock submodules.
Signed-off-by: Austin Seipp <austin@well-typed.com>
Test Plan: Build things, they might not explode horribly.
Reviewers: hvr, simonmar
Subscribers: simonmar
Differential Revision: https://phabricator.haskell.org/D13
|
|
|
|
|
|
|
|
|
| |
Vectorise.Generic.PAMethods.buildToArrPReprs was building an expression like
pvoids# (lengthSels2# sels)
which does not satisfy the let/app invariant. It should be more like
case lengthSels2# sels of l -> pvoids# l
This was caught by Core Lint (once it was taught to check for the invariant)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was a serious bug, exposed by Trac #9175. The matcher and wrapper
must be LocalIds, like record selectors and dictionary functions, for
the reasons now documented in Note [Exported LocalIds] in Id.lhs
In fixing this I found
- PatSyn should have an Id inside it (apart from the wrapper and matcher)
It should be a Name. Hence psId --> psName, with knock-on consequences
- Tidying of PatSyns in TidyPgm was wrong
- The keep-alive set in Desugar.deSugar (now) doesn't need pattern synonyms
in it
I also cleaned up the interface to PatSyn a little, so there's a tiny knock-on
effect in Haddock; hence the haddock submodule update.
It's very hard to make a test for this bug, so I haven't.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
reorganized, while following the convention, to
- place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
any `{-# OPTIONS_GHC #-}`-lines.
- Moreover, if the list of language extensions fit into a single
`{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
individual language extension. In both cases, try to keep the
enumeration alphabetically ordered.
(The latter layout is preferable as it's more diff-friendly)
While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
|
| |
|
|
|
|
|
| |
No change in functionality, just a cleaner story, with the RHS for
dictionary selectors being treated less specially than before.
|
|
|
|
|
|
|
|
|
|
| |
The issue here is described in Note [Binding scoped type variables] in
TcPat. When implementing this fix I was able to make things quite a
bit simpler:
* The type variables in a type signature now never unify
with each other, and so can be straightfoward skolems.
* We only need the SigTv stuff for signatures in patterns,
and for kind variables.
|
|
|
|
|
| |
This was easy to do, except that the desugar monad needs a
FamInstEnv init. Straightforward, routine, albeit a bit clunky.
|
| |
|
|
|
|
|
|
|
| |
Simple refactoring.
Also in Vectorise.Types/TyConDecl, simply propagate the classMinimalDef
from the class we are vectorising. Simpler and more direct.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds a `{-# MINIMAL #-}` pragma, which defines the possible
minimal complete definitions for a class. The body of the pragma is a
boolean formula of names.
The old warning for missing methods is replaced with this new one.
Note: The interface file format is changed to store the minimal complete
definition.
Authored-by: Twan van Laarhoven <twanvl@gmail.com>
Signed-off-by: Herbert Valerio Riedel <hvr@gnu.org>
|
|
|
|
| |
and add related function tyConsOfTyCon.
|
| |
|
|
|
|
| |
I'd still prefer if a native english speaker would check them.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Roles are a solution to the GeneralizedNewtypeDeriving type-safety
problem.
Roles were first described in the "Generative type abstraction" paper,
by Stephanie Weirich, Dimitrios Vytiniotis, Simon PJ, and Steve Zdancewic.
The implementation is a little different than that paper. For a quick
primer, check out Note [Roles] in Coercion. Also see
http://ghc.haskell.org/trac/ghc/wiki/Roles
and
http://ghc.haskell.org/trac/ghc/wiki/RolesImplementation
For a more formal treatment, check out docs/core-spec/core-spec.pdf.
This fixes Trac #1496, #4846, #7148.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit changes the syntax and story around overlapping type
family instances. Before, we had "unbranched" instances and
"branched" instances. Now, we have closed type families and
open ones.
The behavior of open families is completely unchanged. In particular,
coincident overlap of open type family instances still works, despite
emails to the contrary.
A closed type family is declared like this:
> type family F a where
> F Int = Bool
> F a = Char
The equations are tried in order, from top to bottom, subject to
certain constraints, as described in the user manual. It is not
allowed to declare an instance of a closed family.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a long-standing regression (Trac #7797), which meant that in
particular the Eq [Char] instance does not get specialised.
(The *methods* do, but the dictionary itself doesn't.) So when you
call a function
f :: Eq a => blah
on a string type (ie a=[Char]), 7.6 passes a dictionary of un-specialised
methods.
This only matters when calling an overloaded function from a
specialised context, but that does matter in some programs. I
remember (though I cannot find the details) that Nick Frisby discovered
this to be the source of some pretty solid performanc regresisons.
Anyway it works now. The key change is that a DFunUnfolding now takes
a form that is both simpler than before (the DFunArg type is eliminated)
and more general:
data Unfolding
= ...
| DFunUnfolding { -- The Unfolding of a DFunId
-- See Note [DFun unfoldings]
-- df = /\a1..am. \d1..dn. MkD t1 .. tk
-- (op1 a1..am d1..dn)
-- (op2 a1..am d1..dn)
df_bndrs :: [Var], -- The bound variables [a1..m],[d1..dn]
df_con :: DataCon, -- The dictionary data constructor (never a newtype datacon)
df_args :: [CoreExpr] -- Args of the data con: types, superclasses and methods,
} -- in positional order
That in turn allowed me to re-enable the DFunUnfolding specialisation in
DsBinds. Lots of details here in TcInstDcls:
Note [SPECIALISE instance pragmas]
I also did some refactoring, in particular to pass the InScopeSet to
exprIsConApp_maybe (which in turn means it has to go to a RuleFun).
NB: Interface file format has changed!
|
| |
|
| |
|
| |
|
|\
| |
| |
| |
| |
| |
| |
| |
| | |
Conflicts:
compiler/rename/RnSource.lhs
compiler/simplCore/OccurAnal.lhs
compiler/vectorise/Vectorise/Exp.hs
NB: Merging instead of rebasing for a change. During rebase Git got confused due to the lack of the submodules in my quite old fork.
|
| |
| |
| |
| |
| | |
* By default '-fvectorisation-avoidance' is enabled at all optimisation levels (but it only matters in combination with '-fvectorise').
* The new vectoriser always uses vectorisation avoidance, but with '-fno-vectorisation-avoidance' it restricts it to simple scalar applications (and dictionary computations)
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
| |
| |
| |
| | |
* We need to keep the vectorised version of a variable alive while the original is alive.
* This implies that the vectorised version needs to get into the iface if the original appears in an unfolding.
|
| |
| |
| |
| | |
also parallel
|
| | |
|
| | |
|
| | |
|
| |
| |
| |
| | |
arbitrary form
|
| | |
|
| |
| |
| |
| | |
- We sometimes need to vectorise types and functions because they might be needed in a vectorised context, not because they do directly introduce parallelism.
|
| | |
|
| |
| |
| |
| |
| |
| |
| | |
* Vectorisation avoidance is now the default
* Types and values from unvectorised modules are permitted in scalar code
* Simplified the VECTORISE pragmas (see http://hackage.haskell.org/trac/ghc/wiki/DataParallel/VectPragma for the spec)
* Vectorisation information is now included in the annotated Core AST
|
| | |
|
| | |
|
|\ \
| | |
| | |
| | |
| | | |
Conflicts:
compiler/types/Coercion.lhs
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
* Move tidyType and friends from TcType to TypeRep
(It was always wrong to have it in TcType.)
* Move mkCoAxBranch and friends from FamInst to Coercion
* Move pprCoAxBranch and friends from FamInstEnv to Coercion
No change in functionality, though there might be a little
wibble in error message output, because I combined two different
functions both called pprCoAxBranch!
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Quite a bit of tidying up here; the fix to #7524 is actually
only a small part.
* Be fully clear that the cab_tvs in a CoAxBranch are not
fresh. See Note [CoAxBranch type variables] in CoAxiom.
* Use CoAxBranch to replace the ATDfeault type in Class.
CoAxBranch is perfect here. This change allowed me to
delete quite a bit of boilerplate code, including the
corresponding IfaceSynType.
* Tidy up the construction of CoAxBranches, and when FamIntBranch is
freshened. The latter onw happens only in FamInst.newFamInst.
* Tidy the tyvars of a CoAxBranch when we build them, done in
FamInst.mkCoAxBranch. See Note [Tidy axioms when we build them]
in that module. This is what fixes #7524.
Much niceer now.
|
|\ \ \
| |/ /
| | |
| | |
| | | |
Conflicts:
compiler/basicTypes/DataCon.lhs
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
It should be the case that either an entire mutually recursive
group of data type declarations can be promoted, or none of them.
It's really odd to promote some data constructors of a type but
not others. Eg
data T a = T1 a | T2 Int
Here T1 is sort-of-promotable but T2 isn't (becuase Int isn't
promotable).
This patch makes it all-or-nothing. At the same time I've made
the TyCon point to its promoted cousin (via the tcPromoted field
of an AlgTyCon), as well as vice versa (via the ty_con field of
PromotedTyCon).
The inference for the group is done in TcTyDecls, the same place
that infers which data types are recursive, another global question.
|
|/ /
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The main payload of this patch is to extend CPR so that it
detects when a function always returns a result constructed
with the *same* constructor, even if the constructor comes from
a sum type. This doesn't matter very often, but it does improve
some things (results below).
Binary sizes increase a little bit, I think because there are more
wrappers. This with -split-objs. Without split-ojbs binary sizes
increased by 6% even for HelloWorld.hs. It's hard to see exactly why,
but I think it was because System.Posix.Types.o got included in the
linked binary, whereas it didn't before.
Program Size Allocs Runtime Elapsed TotalMem
fluid +1.8% -0.3% 0.01 0.01 +0.0%
tak +2.2% -0.2% 0.02 0.02 +0.0%
ansi +1.7% -0.3% 0.00 0.00 +0.0%
cacheprof +1.6% -0.3% +0.6% +0.5% +1.4%
parstof +1.4% -4.4% 0.00 0.00 +0.0%
reptile +2.0% +0.3% 0.02 0.02 +0.0%
----------------------------------------------------------------------
Min +1.1% -4.4% -4.7% -4.7% -15.0%
Max +2.3% +0.3% +8.3% +9.4% +50.0%
Geometric Mean +1.9% -0.1% +0.6% +0.7% +0.3%
Other things in this commit
~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Got rid of the Lattice class in Demand
* Refactored the way that products and newtypes are
decomposed (no change in functionality)
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This commit mirrors work done in the commit for ClsInsts, 5efe9b...
Specifically:
- All FamInsts have *fresh* type variables. So, no more freshness work
in addLocalFamInst
Also:
- Some pretty-printing code around FamInsts was cleaned up a bit
This caused location information to be added to CoAxioms and index
information to be added to FamInstBranches.
|
|\ \
| | |
| | |
| | |
| | |
| | | |
Conflicts:
compiler/basicTypes/MkId.lhs
compiler/iface/IfaceSyn.lhs
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
An ordered, overlapping type family instance is introduced by 'type
instance
where', followed by equations. See the new section in the user manual
(7.7.2.2) for details. The canonical example is Boolean equality at the
type
level:
type family Equals (a :: k) (b :: k) :: Bool
type instance where
Equals a a = True
Equals a b = False
A branched family instance, such as this one, checks its equations in
order
and applies only the first the matches. As explained in the note
[Instance
checking within groups] in FamInstEnv.lhs, we must be careful not to
simplify,
say, (Equals Int b) to False, because b might later unify with Int.
This commit includes all of the commits on the overlapping-tyfams
branch. SPJ
requested that I combine all my commits over the past several months
into one
monolithic commit. The following GHC repos are affected: ghc, testsuite,
utils/haddock, libraries/template-haskell, and libraries/dph.
Here are some details for the interested:
- The definition of CoAxiom has been moved from TyCon.lhs to a
new file CoAxiom.lhs. I made this decision because of the
number of definitions necessary to support BranchList.
- BranchList is a GADT whose type tracks whether it is a
singleton list or not-necessarily-a-singleton-list. The reason
I introduced this type is to increase static checking of places
where GHC code assumes that a FamInst or CoAxiom is indeed a
singleton. This assumption takes place roughly 10 times
throughout the code. I was worried that a future change to GHC
would invalidate the assumption, and GHC might subtly fail to
do the right thing. By explicitly labeling CoAxioms and
FamInsts as being Unbranched (singleton) or
Branched (not-necessarily-singleton), we make this assumption
explicit and checkable. Furthermore, to enforce the accuracy of
this label, the list of branches of a CoAxiom or FamInst is
stored using a BranchList, whose constructors constrain its
type index appropriately.
I think that the decision to use BranchList is probably the most
controversial decision I made from a code design point of view.
Although I provide conversions to/from ordinary lists, it is more
efficient to use the brList... functions provided in CoAxiom than
always to convert. The use of these functions does not wander far
from the core CoAxiom/FamInst logic.
BranchLists are motivated and explained in the note [Branched axioms] in
CoAxiom.lhs.
- The CoAxiom type has changed significantly. You can see the new
type in CoAxiom.lhs. It uses a CoAxBranch type to track
branches of the CoAxiom. Correspondingly various functions
producing and consuming CoAxioms had to change, including the
binary layout of interface files.
- To get branched axioms to work correctly, it is important to have a
notion
of type "apartness": two types are apart if they cannot unify, and no
substitution of variables can ever get them to unify, even after type
family
simplification. (This is different than the normal failure to unify
because
of the type family bit.) This notion in encoded in tcApartTys, in
Unify.lhs.
Because apartness is finer-grained than unification, the tcUnifyTys
now
calls tcApartTys.
- CoreLinting axioms has been updated, both to reflect the new
form of CoAxiom and to enforce the apartness rules of branch
application. The formalization of the new rules is in
docs/core-spec/core-spec.pdf.
- The FamInst type (in types/FamInstEnv.lhs) has changed
significantly, paralleling the changes to CoAxiom. Of course,
this forced minor changes in many files.
- There are several new Notes in FamInstEnv.lhs, including one
discussing confluent overlap and why we're not doing it.
- lookupFamInstEnv, lookupFamInstEnvConflicts, and
lookup_fam_inst_env' (the function that actually does the work)
have all been more-or-less completely rewritten. There is a
Note [lookup_fam_inst_env' implementation] describing the
implementation. One of the changes that affects other files is
to change the type of matches from a pair of (FamInst, [Type])
to a new datatype (which now includes the index of the matching
branch). This seemed a better design.
- The TySynInstD constructor in Template Haskell was updated to
use the new datatype TySynEqn. I also bumped the TH version
number, requiring changes to DPH cabal files. (That's why the
DPH repo has an overlapping-tyfams branch.)
- As SPJ requested, I refactored some of the code in HsDecls:
* splitting up TyDecl into SynDecl and DataDecl, correspondingly
changing HsTyDefn to HsDataDefn (with only one constructor)
* splitting FamInstD into TyFamInstD and DataFamInstD and
splitting FamInstDecl into DataFamInstDecl and TyFamInstDecl
* making the ClsInstD take a ClsInstDecl, for parallelism with
InstDecl's other constructors
* changing constructor TyFamily into FamDecl
* creating a FamilyDecl type that stores the details for a family
declaration; this is useful because FamilyDecls can appear in classes
but
other decls cannot
* restricting the associated types and associated type defaults for a
* class
to be the new, more restrictive types
* splitting cid_fam_insts into cid_tyfam_insts and cid_datafam_insts,
according to the new types
* perhaps one or two more that I'm overlooking
None of these changes has far-reaching implications.
- The user manual, section 7.7.2.2, is updated to describe the new type
family
instances.
|
|/ /
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This fixes most of Trac #3990. Consider
data family D a
data instance D Double = CD Int Int
data T = T {-# UNPACK #-} !(D Double)
Then we want the (D Double unpacked).
To do this we need to construct a suitable coercion, and it's much
safer to record that coercion in the interface file, lest the in-scope
instances differ somehow. That in turn means elaborating the HsBang
type to include a coercion.
To do that I moved HsBang from BasicTypes to DataCon, which caused
quite a few minor knock-on changes.
Interface-file format has changed!
Still to do: need to do knot-tying to allow instances to take effect
within the same module.
|