| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* SysTools
* Parser
* GHC.Builtin
* GHC.Iface.Recomp
* Settings
Update Haddock submodule
Metric Decrease:
Naperian
parsing001
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes every unused TTG extension constructor to be strict in
its field so that the pattern-match coverage checker is smart enough
any such constructors are unreachable in pattern matches. This lets
us remove nearly every use of `noExtCon` in the GHC API. The only
ones we cannot remove are ones underneath uses of `ghcPass`, but that
is only because GHC 8.8's and 8.10's coverage checkers weren't smart
enough to perform this kind of reasoning. GHC HEAD's coverage
checker, on the other hand, _is_ smart enough, so we guard these uses
of `noExtCon` with CPP for now.
Bumps the `haddock` submodule.
Fixes #17992.
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
|
|
| |
Update submodule: haddock
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When GHC is parsing a file generated by a tool, e.g. by the C preprocessor, the
tool may insert #line pragmas to adjust the locations reported to the user.
As the result, the locations recorded in RealSrcLoc are not monotonic. Elements
that appear later in the StringBuffer are not guaranteed to have a higher
line/column number.
In fact, there are no guarantees whatsoever, as #line pragmas can arbitrarily
modify locations. This lack of guarantees makes ideas such as #17544
infeasible.
This patch adds an additional bit of information to every SrcLoc:
newtype BufPos = BufPos { bufPos :: Int }
A BufPos represents the location in the StringBuffer, unaffected by any
pragmas.
Updates haddock submodule.
Metric Increase:
haddock.Cabal
haddock.base
haddock.compiler
MultiLayerModules
Naperian
parsing001
T12150
|
|
|
|
| |
submodule updates: nofib, haddock
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During parsing, GHC collects lexical information about AST nodes and
stores it in a map. It is needed to faithfully restore original source
code, e.g. compare these expressions:
a = b
a = b
The position of the equality sign is not recorded in the AST, so it must
be stored elsewhere.
This system is described in Note [Api annotations].
Before this patch, the mapping was represented by:
Map (SrcSpan, AnnKeywordId) SrcSpan
After this patch, the mapping is represented by:
Map (RealSrcSpan, AnnKeywordId) RealSrcSpan
The motivation behind this change is to avoid using the Ord SrcSpan
instance (required by Map here), as it interferes with #17632 (see the
discussion there).
SrcSpan is isomorphic to Either String RealSrcSpan, but we shouldn't
use those strings as Map keys. Those strings are intended as hints to
the user, e.g. "<interactive>" or "<compiler-generated code>", so they
are not a valid way to identify nodes in the source code.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are two main payloads of this patch:
1. This introduces IsPass, which allows e.g. printing
code to ask what pass it is running in (Renamed vs
Typechecked) and thus print extension fields. See
Note [IsPass] in Hs.Extension
2. This moves the HsWrap constructor into an extension
field, where it rightly belongs. This is done for
HsExpr and HsCmd, but not for HsPat, which is left
as an exercise for the reader.
There is also some refactoring around SyntaxExprs, but this
is really just incidental.
This patch subsumes !1721 (sorry @chreekat).
Along the way, there is a bit of refactoring in GHC.Hs.Extension,
including the removal of NameOrRdrName in favor of NoGhcTc.
This meant that we had no real need for GHC.Hs.PlaceHolder, so
I got rid of it.
Updates haddock submodule.
-------------------------
Metric Decrease:
haddock.compiler
-------------------------
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
Metric Decrease:
haddock.compiler
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements a part of GHC Proposal #229 that covers five
operators:
* the bang operator (!)
* the tilde operator (~)
* the at operator (@)
* the dollar operator ($)
* the double dollar operator ($$)
Based on surrounding whitespace, these operators are disambiguated into
bang patterns, lazy patterns, strictness annotations, type
applications, splices, and typed splices.
This patch doesn't cover the (-) operator or the -Woperator-whitespace
warning, which are left as future work.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
with equality constraints
In #17304, Richard and Simon dicovered that using `-XFlexibleInstances`
for `Outputable` instances of AST data types means users can provide orphan
`Outputable` instances for passes other than `GhcPass`.
Type inference doesn't currently to suffer, and Richard gave an example
in #17304 that shows how rare a case would be where the slightly worse
type inference would matter.
So I went ahead with the refactoring, attempting to fix #17304.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, all constraints from all top-level groups (as
separated by top-level splices) were lumped together and solved
at the end. This could leak metavariables to TH, though, and
that's bad. This patch solves each group's constraints before
running the next group's splice.
Naturally, we now report fewer errors in some cases.
One nice benefit is that this also fixes #11680, but in a much
simpler way than the original fix for that ticket. Admittedly,
the error messages degrade just a bit from the fix from #11680
(previously, we informed users about variables that will be
brought into scope below a top-level splice, and now we just
report an out-of-scope error), but the amount of complexity
required throughout GHC to get that error was just not worth it.
This patch thus reverts much of
f93c9517a2c6e158e4a5c5bc7a3d3f88cb4ed119.
Fixes #16980
Test cases: th/T16980{,a}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implements GHC Proposal #54: .../ghc-proposals/blob/master/proposals/0054-kind-signatures.rst
With this patch, a type constructor can now be given an explicit
standalone kind signature:
{-# LANGUAGE StandaloneKindSignatures #-}
type Functor :: (Type -> Type) -> Constraint
class Functor f where
fmap :: (a -> b) -> f a -> f b
This is a replacement for CUSKs (complete user-specified
kind signatures), which are now scheduled for deprecation.
User-facing changes
-------------------
* A new extension flag has been added, -XStandaloneKindSignatures, which
implies -XNoCUSKs.
* There is a new syntactic construct, a standalone kind signature:
type <name> :: <kind>
Declarations of data types, classes, data families, type families, and
type synonyms may be accompanied by a standalone kind signature.
* A standalone kind signature enables polymorphic recursion in types,
just like a function type signature enables polymorphic recursion in
terms. This obviates the need for CUSKs.
* TemplateHaskell AST has been extended with 'KiSigD' to represent
standalone kind signatures.
* GHCi :info command now prints the kind signature of type constructors:
ghci> :info Functor
type Functor :: (Type -> Type) -> Constraint
...
Limitations
-----------
* 'forall'-bound type variables of a standalone kind signature do not
scope over the declaration body, even if the -XScopedTypeVariables is
enabled. See #16635 and #16734.
* Wildcards are not allowed in standalone kind signatures, as partial
signatures do not allow for polymorphic recursion.
* Associated types may not be given an explicit standalone kind
signature. Instead, they are assumed to have a CUSK if the parent class
has a standalone kind signature and regardless of the -XCUSKs flag.
* Standalone kind signatures do not support multiple names at the moment:
type T1, T2 :: Type -> Type -- rejected
type T1 = Maybe
type T2 = Either String
See #16754.
* Creative use of equality constraints in standalone kind signatures may
lead to GHC panics:
type C :: forall (a :: Type) -> a ~ Int => Constraint
class C a where
f :: C a => a -> Int
See #16758.
Implementation notes
--------------------
* The heart of this patch is the 'kcDeclHeader' function, which is used to
kind-check a declaration header against its standalone kind signature.
It does so in two rounds:
1. check user-written binders
2. instantiate invisible binders a la 'checkExpectedKind'
* 'kcTyClGroup' now partitions declarations into declarations with a
standalone kind signature or a CUSK (kinded_decls) and declarations
without either (kindless_decls):
* 'kinded_decls' are kind-checked with 'checkInitialKinds'
* 'kindless_decls' are kind-checked with 'getInitialKinds'
* DerivInfo has been extended with a new field:
di_scoped_tvs :: ![(Name,TyVar)]
These variables must be added to the context in case the deriving clause
references tcTyConScopedTyVars. See #16731.
|
|
|
|
|
|
|
| |
Add GHC.Hs module hierarchy replacing hsSyn.
Metric Increase:
haddock.compiler
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To avoid having to `panic` any time a TTG extension constructor is
consumed, this MR introduces an uninhabited 'NoExtCon' type and uses
that in every extension constructor's type family instance where it
is appropriate. This also introduces a 'noExtCon' function which
eliminates a 'NoExtCon', much like 'Data.Void.absurd' eliminates
a 'Void'.
I also renamed the existing `NoExt` type to `NoExtField` to better
distinguish it from `NoExtCon`. Unsurprisingly, there is a lot of
code churn resulting from this.
Bumps the Haddock submodule. Fixes #15247.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Associated type family default declarations behave strangely in a
couple of ways:
1. If one tries to bind the type variables with an explicit `forall`,
the `forall`'d part will simply be ignored. (#16110)
2. One cannot use visible kind application syntax on the left-hand
sides of associated default equations, unlike every other form
of type family equation. (#16356)
Both of these issues have a common solution. Instead of using
`LHsQTyVars` to represent the left-hand side arguments of an
associated default equation, we instead use `HsTyPats`, which is what
other forms of type family equations use. In particular, here are
some highlights of this patch:
* `FamEqn` is no longer parameterized by a `pats` type variable, as
the `feqn_pats` field is now always `HsTyPats`.
* The new design for `FamEqn` in chronicled in
`Note [Type family instance declarations in HsSyn]`.
* `TyFamDefltEqn` now becomes the same thing as `TyFamInstEqn`. This
means that many of `TyFamDefltEqn`'s code paths can now reuse the
code paths for `TyFamInstEqn`, resulting in substantial
simplifications to various parts of the code dealing with
associated type family defaults.
Fixes #16110 and #16356.
|
| |
|
|
|
|
|
|
| |
`checkTyClHdr`'s case for `HsTyVar` was grabbing the wrong `SrcSpan`,
which lead to error messages pointing to the wrong location. Easily
fixed.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes 'EWildPat', 'EAsPat', 'EViewPat', and 'ELazyPat'
from 'HsExpr' by using the ambiguity resolution system introduced
earlier for the command/expression ambiguity.
Problem: there are places in the grammar where we do not know whether we
are parsing an expression or a pattern, for example:
do { Con a b <- x } -- 'Con a b' is a pattern
do { Con a b } -- 'Con a b' is an expression
Until we encounter binding syntax (<-) we don't know whether to parse
'Con a b' as an expression or a pattern.
The old solution was to parse as HsExpr always, and rejig later:
checkPattern :: LHsExpr GhcPs -> P (LPat GhcPs)
This meant polluting 'HsExpr' with pattern-related constructors. In
other words, limitations of the parser were affecting the AST, and all
other code (the renamer, the typechecker) had to deal with these extra
constructors.
We fix this abstraction leak by parsing into an overloaded
representation:
class DisambECP b where ...
newtype ECP = ECP { runECP_PV :: forall b. DisambECP b => PV (Located b) }
See Note [Ambiguous syntactic categories] for details.
Now the intricacies of parsing have no effect on the hsSyn AST when it
comes to the expression/pattern ambiguity.
|
|
|
|
|
| |
There is a hint added to error messages reported in checkPattern.
Instead of passing it manually, we put it in a ReaderT environment inside PV.
|
|
|
|
|
|
|
|
|
|
|
| |
Previously we defined type PV = P,
this had the downside that if we wanted to change PV,
we would have to modify P as well.
Now PV is free to evolve independently from P.
The common operations addError, addFatalError, getBit, addAnnsAt,
were abstracted into a class called MonadP.
|
|
|
|
|
|
|
|
|
| |
Rather than massaging the output of the parser to re-arrange docs and
bangs, it is simpler to patch the two places in which the strictness
info is needed (to accept that the `HsBangTy` may be inside an
`HsDocTy`).
Fixes #16585.
|
|
|
|
|
|
|
|
|
|
|
| |
Before this change, we used a roundabout encoding:
1. a GADT (ExpCmdG)
2. a class to pass it around (ExpCmdI)
3. helpers to match on it (ecHsApp, ecHsIf, ecHsCase, ...)
It is more straightforward to turn these helpers into class methods,
removing the need for a GADT.
|
|
|
|
|
| |
This moves all URL references to Trac tickets to their corresponding
GitLab counterparts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements GHC proposal 35
(https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0035-forall-arrow.rst)
by adding the ability to write kinds with
visible dependent quantification (VDQ).
Most of the work for supporting VDQ was actually done _before_ this
patch. That is, GHC has been able to reason about kinds with VDQ for
some time, but it lacked the ability to let programmers directly
write these kinds in the source syntax. This patch is primarly about
exposing this ability, by:
* Changing `HsForAllTy` to add an additional field of type
`ForallVisFlag` to distinguish between invisible `forall`s (i.e,
with dots) and visible `forall`s (i.e., with arrows)
* Changing `Parser.y` accordingly
The rest of the patch mostly concerns adding validity checking to
ensure that VDQ is never used in the type of a term (as permitting
this would require full-spectrum dependent types). This is
accomplished by:
* Adding a `vdqAllowed` predicate to `TcValidity`.
* Introducing `splitLHsSigmaTyInvis`, a variant of `splitLHsSigmaTy`
that only splits invisible `forall`s. This function is used in
certain places (e.g., in instance declarations) to ensure that GHC
doesn't try to split visible `forall`s (e.g., if it tried splitting
`instance forall a -> Show (Blah a)`, then GHC would mistakenly
allow that declaration!)
This also updates Template Haskell by introducing a new `ForallVisT`
constructor to `Type`.
Fixes #16326. Also fixes #15658 by documenting this feature in the
users' guide.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes 'HsArrApp' and 'HsArrForm' from 'HsExpr' by
introducing a new ambiguity resolution system in the parser.
Problem: there are places in the grammar where we do not know whether we
are parsing an expression or a command:
proc x -> do { (stuff) -< x } -- 'stuff' is an expression
proc x -> do { (stuff) } -- 'stuff' is a command
Until we encounter arrow syntax (-<) we don't know whether to parse
'stuff' as an expression or a command.
The old solution was to parse as HsExpr always, and rejig later:
checkCommand :: LHsExpr GhcPs -> P (LHsCmd GhcPs)
This meant polluting 'HsExpr' with command-related constructors. In
other words, limitations of the parser were affecting the AST, and
all other code (the renamer, the typechecker) had to deal with these
extra constructors by panicking.
We fix this abstraction leak by parsing into an intermediate
representation, 'ExpCmd':
data ExpCmdG b where
ExpG :: ExpCmdG HsExpr
CmdG :: ExpCmdG HsCmd
type ExpCmd = forall b. ExpCmdG b -> PV (Located (b GhcPs))
checkExp :: ExpCmd -> PV (LHsExpr GhcPs)
checkCmd :: ExpCmd -> PV (LHsCmd GhcPs)
checkExp f = f ExpG -- interpret as an expression
checkCmd f = f CmdG -- interpret as a command
See Note [Ambiguous syntactic categories] for details.
Now the intricacies of parsing have no effect on the hsSyn AST when it
comes to the expression/command ambiguity.
Future work: apply the same principles to the expression/pattern
ambiguity.
|
|
|
|
|
| |
By parsing '~' in 'tyconsym' instead of 'oqtycon', we
get one less shift/reduce conflict.
|
|
|
|
|
|
|
|
| |
The dot type operator was handled in the 'tyvarop' parser production, and the
bang type operator in 'tyapp'. However, export lists and role annotations use
'oqtycon', so these type operators could not be exported or assigned roles.
The fix is to handle them in a lower level production, 'tyconsym'.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
-Wredundant-record-wildcards warns when a .. pattern binds no variables.
-Wunused-record-wildcards warns when none of the variables bound by a ..
pattern are used.
These flags are enabled by `-Wall`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch from https://phabricator.haskell.org/D4865 introduces
go _ (HsParTy _ (dL->L l (HsStarTy _ isUni))) acc ann fix
= do { warnStarBndr l
; let name = mkOccName tcClsName (if isUni then "★" else "*")
; return (cL l (Unqual name), acc, fix, ann) }
which discards the parens annotations belonging to the HsParTy.
Updates haddock submodule
Closes #16265
|
|
|
|
|
|
|
|
|
|
|
|
| |
For the code
type family F1 (a :: k) (f :: k -> Type) :: Type where
F1 @Peano a f = T @Peano f a
the API annotation for the first @ is not attached to a SourceSpan in
the ParsedSource
Closes #16236
|
|
|
|
|
|
|
| |
The AnnForall annotations introduced via Phab:D4894 are not always
attached to the correct SourceSpan.
Closes #16230
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
The parens around the kinded tyvars should be attached to the class
declaration as a whole, they are attached to the tyvar instead,
outside the span.
An annotation must always be within or after the span it is contained
in.
Closes #16212
|
|
|
|
| |
This reverts commit 76c8fd674435a652c75a96c85abbf26f1f221876.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is a fixed version of the reverted d2fbc33c4ff3074126ab71654af8bbf8a46e4e11
and 5aa29231ab7603537284eff5e4caff3a73dba6d2.
Obtaining a `DynFlags` is difficult, making using the lexer/parser
for pure parsing/lexing unreasonably difficult, even with `mkPStatePure`.
This is despite the fact that we only really need
* language extension flags
* warning flags
* a handful of boolean options
The new `mkParserFlags'` function makes is easier to directly construct a
`ParserFlags`. Furthermore, since `pExtsBitmap` is just a footgun, I've gone
ahead and made `ParserFlags` an abstract type.
Also, we now export `ExtBits` and `getBit` instead of defining/exporting a
bunch of boilerplate functions that test for a particular 'ExtBits'.
In the process, I also
* cleaned up an unneeded special case for `ITstatic`
* made `UsePosPrags` another variant of `ExtBits`
* made the logic in `reservedSymsFM` match that of `reservedWordsFM`
Test Plan: make test
Reviewers: bgamari, alanz, tdammers
Subscribers: sjakobi, tdammers, rwbarton, mpickering, carter
GHC Trac Issues: #11301
Differential Revision: https://phabricator.haskell.org/D5405
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch implements visible kind application (GHC Proposal 15/#12045), as well as #15360 and #15362.
It also refactors unnamed wildcard handling, and requires that type equations in type families in Template Haskell be
written with full type on lhs. PartialTypeSignatures are on and warnings are off automatically with visible kind
application, just like in term-level.
There are a few remaining issues with this patch, as documented in
ticket #16082.
Includes a submodule update for Haddock.
Test Plan: Tests T12045a/b/c/TH1/TH2, T15362, T15592a
Reviewers: simonpj, goldfire, bgamari, alanz, RyanGlScott, Iceland_jack
Subscribers: ningning, Iceland_jack, RyanGlScott, int-index, rwbarton, mpickering, carter
GHC Trac Issues: `#12045`, `#15362`, `#15592`, `#15788`, `#15793`, `#15795`, `#15797`, `#15799`, `#15801`, `#15807`, `#15816`
Differential Revision: https://phabricator.haskell.org/D5229
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
My original goal was (Trac #15809) to move towards using level numbers
as the basis for deciding which type variables to generalise, rather
than searching for the free varaibles of the environment. However
it has turned into a truly major refactoring of the kind inference
engine.
Let's deal with the level-numbers part first:
* Augment quantifyTyVars to calculate the type variables to
quantify using level numbers, and compare the result with
the existing approach. That is; no change in behaviour,
just a WARNing if the two approaches give different answers.
* To do this I had to get the level number right when calling
quantifyTyVars, and this entailed a bit of care, especially
in the code for kind-checking type declarations.
* However, on the way I was able to eliminate or simplify
a number of calls to solveEqualities.
This work is incomplete: I'm not /using/ level numbers yet.
When I subsequently get rid of any remaining WARNings in
quantifyTyVars, that the level-number answers differ from
the current answers, then I can rip out the current
"free vars of the environment" stuff.
Anyway, this led me into deep dive into kind inference for type and
class declarations, which is an increasingly soggy part of GHC.
Richard already did some good work recently in
commit 5e45ad10ffca1ad175b10f6ef3327e1ed8ba25f3
Date: Thu Sep 13 09:56:02 2018 +0200
Finish fix for #14880.
The real change that fixes the ticket is described in
Note [Naughty quantification candidates] in TcMType.
but I kept turning over stones. So this patch has ended up
with a pretty significant refactoring of that code too.
Kind inference for types and classes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Major refactoring in the way we generalise the inferred kind of
a TyCon, in kcTyClGroup. Indeed, I made it into a new top-level
function, generaliseTcTyCon. Plus a new Note to explain it
Note [Inferring kinds for type declarations].
* We decided (Trac #15592) not to treat class type variables specially
when dealing with Inferred/Specified/Required for associated types.
That simplifies things quite a bit. I also rewrote
Note [Required, Specified, and Inferred for types]
* Major refactoring of the crucial function kcLHsQTyVars:
I split it into
kcLHsQTyVars_Cusk and kcLHsQTyVars_NonCusk
because the two are really quite different. The CUSK case is
almost entirely rewritten, and is much easier because of our new
decision not to treat the class variables specially
* I moved all the error checks from tcTyClTyVars (which was a bizarre
place for it) into generaliseTcTyCon and/or the CUSK case of
kcLHsQTyVars. Now tcTyClTyVars is extremely simple.
* I got rid of all the all the subtleties in tcImplicitTKBndrs. Indeed
now there is no difference between tcImplicitTKBndrs and
kcImplicitTKBndrs; there is now a single bindImplicitTKBndrs.
Same for kc/tcExplicitTKBndrs. None of them monkey with level
numbers, nor build implication constraints. scopeTyVars is gone
entirely, as is kcLHsQTyVarBndrs. It's vastly simpler.
I found I could get rid of kcLHsQTyVarBndrs entirely, in favour of
the bnew bindExplicitTKBndrs.
Quantification
~~~~~~~~~~~~~~
* I now deal with the "naughty quantification candidates"
of the previous patch in candidateQTyVars, rather than in
quantifyTyVars; see Note [Naughty quantification candidates]
in TcMType.
I also killed off closeOverKindsCQTvs in favour of the same
strategy that we use for tyCoVarsOfType: namely, close over kinds
at the occurrences.
And candidateQTyVars no longer needs a gbl_tvs argument.
* Passing the ContextKind, rather than the expected kind itself,
to tc_hs_sig_type_and_gen makes it easy to allocate the expected
result kind (when we are in inference mode) at the right level.
Type families
~~~~~~~~~~~~~~
* I did a major rewrite of the impenetrable tcFamTyPats. The result
is vastly more comprehensible.
* I got rid of kcDataDefn entirely, quite a big function.
* I re-did the way that checkConsistentFamInst works, so
that it allows alpha-renaming of invisible arguments.
* The interaction of kind signatures and family instances is tricky.
Type families: see Note [Apparently-nullary families]
Data families: see Note [Result kind signature for a data family instance]
and Note [Eta-reduction for data families]
* The consistent instantation of an associated type family is tricky.
See Note [Checking consistent instantiation] and
Note [Matching in the consistent-instantation check]
in TcTyClsDecls. It's now checked in TcTyClsDecls because that is
when we have the relevant info to hand.
* I got tired of the compromises in etaExpandFamInst, so I did the
job properly by adding a field cab_eta_tvs to CoAxBranch.
See Coercion.etaExpandCoAxBranch.
tcInferApps and friends
~~~~~~~~~~~~~~~~~~~~~~~
* I got rid of the mysterious and horrible ClsInstInfo argument
to tcInferApps, checkExpectedKindX, and various checkValid
functions. It was horrible!
* I got rid of [Type] result of tcInferApps. This list was used
only in tcFamTyPats, when checking the LHS of a type instance;
and if there is a cast in the middle, the list is meaningless.
So I made tcInferApps simpler, and moved the complexity
(not much) to tcInferApps.
Result: tcInferApps is now pretty comprehensible again.
* I refactored the many function in TcMType that instantiate skolems.
Smaller things
* I rejigged the error message in checkValidTelescope; I think it's
quite a bit better now.
* checkValidType was not rejecting constraints in a kind signature
forall (a :: Eq b => blah). blah2
That led to further errors when we then do an ambiguity check.
So I make checkValidType reject it more aggressively.
* I killed off quantifyConDecl, instead calling kindGeneralize
directly.
* I fixed an outright bug in tyCoVarsOfImplic, where we were not
colleting the tyvar of the kind of the skolems
* Renamed ClsInstInfo to AssocInstInfo, and made it into its
own data type
* Some fiddling around with pretty-printing of family
instances which was trickier than I thought. I wanted
wildcards to print as plain "_" in user messages, although
they each need a unique identity in the CoAxBranch.
Some other oddments
* Refactoring around the trace messages from reportUnsolved.
* A bit of extra tc-tracing in TcHsSyn.commitFlexi
This patch fixes a raft of bugs, and includes tests for them.
* #14887
* #15740
* #15764
* #15789
* #15804
* #15817
* #15870
* #15874
* #15881
|