| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new flag -msse2 enables code generation for SSE2 on x86. It
results in substantially faster floating-point performance; the main
reason for doing this was that our x87 code generation is appallingly
bad, and since we plan to drop -fvia-C soon, we need a way to generate
half-decent floating-point code.
The catch is that SSE2 is only available on CPUs that support it (P4+,
AMD K8+). We'll have to think hard about whether we should enable it
by default for the libraries we ship. In the meantime, at least
-msse2 should be an acceptable replacement for "-fvia-C
-optc-ffast-math -fexcess-precision".
SSE2 also has the advantage of performing all operations at the
correct precision, so floating-point results are consistent with other
platforms.
I also tweaked the x87 code generation a bit while I was here, now
it's slighlty less bad than before.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
variables
DO NOT MERGE TO GHC 6.12 branch
(Reason: interface file format change.)
The typechecker needs to instantiate otherwise-unconstraint type variables to
an appropriately-kinded constant type, but we didn't have a supply of
arbitrarily-kinded tycons for this purpose. Now we do.
The details are described in Note [Any types] in TysPrim. The
fundamental change is that there is a new sort of TyCon, namely
AnyTyCon, defined in TyCon.
Ter's a small change to interface-file binary format, because the new
AnyTyCons have to be serialised.
I tided up the handling of uniques a bit too, so that mkUnique is not
exported, so that we can see all the different name spaces in one module.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The first phase of this tidyup is focussed on the header files, and in
particular making sure we are exposinng publicly exactly what we need
to, and no more.
- Rts.h now includes everything that the RTS exposes publicly,
rather than a random subset of it.
- Most of the public header files have moved into subdirectories, and
many of them have been renamed. But clients should not need to
include any of the other headers directly, just #include the main
public headers: Rts.h, HsFFI.h, RtsAPI.h.
- All the headers needed for via-C compilation have moved into the
stg subdirectory, which is self-contained. Most of the headers for
the rest of the RTS APIs have moved into the rts subdirectory.
- I left MachDeps.h where it is, because it is so widely used in
Haskell code.
- I left a deprecated stub for RtsFlags.h in place. The flag
structures are now exposed by Rts.h.
- Various internal APIs are no longer exposed by public header files.
- Various bits of dead code and declarations have been removed
- More gcc warnings are turned on, and the RTS code is more
warning-clean.
- More source files #include "PosixSource.h", and hence only use
standard POSIX (1003.1c-1995) interfaces.
There is a lot more tidying up still to do, this is just the first
pass. I also intend to standardise the names for external RTS APIs
(e.g use the rts_ prefix consistently), and declare the internal APIs
as hidden for shared libraries.
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* The old Reg type is now split into VirtualReg and RealReg.
* For the graph coloring allocator, the type of the register graph
is now (Graph VirtualReg RegClass RealReg), which shows that it colors
in nodes representing virtual regs with colors representing real regs.
(as was intended)
* RealReg contains two contructors, RealRegSingle and RealRegPair,
where RealRegPair is used to represent a SPARC double reg
constructed from two single precision FP regs.
* On SPARC we can now allocate double regs into an arbitrary register
pair, instead of reserving some reg ranges to only hold float/double values.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- nativeGen/Instruction defines a type class for a generic
instruction set. Each of the instruction sets we have,
X86, PPC and SPARC are instances of it.
- The register alloctors use this type class when they need
info about a certain register or instruction, such as
regUsage, mkSpillInstr, mkJumpInstr, patchRegs..
- nativeGen/Platform defines some data types enumerating
the architectures and operating systems supported by the
native code generator.
- DynFlags now keeps track of the current build platform, and
the PositionIndependentCode module uses this to decide what
to do instead of relying of #ifdefs.
- It's not totally retargetable yet. Some info info about the
build target is still hardwired, but I've tried to contain
most of it to a single module, TargetRegs.
- Moved the SPILL and RELOAD instructions into LiveInstr.
- Reg and RegClass now have their own modules, and are shared
across all architectures.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
* Also fix a nasty bug when creating fixup code that has a cyclic
register movement graph.
|
|
|