| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes a fairly long-standing bug (dating back to 2015) in
RdrName.bestImport, namely
commit 9376249b6b78610db055a10d05f6592d6bbbea2f
Author: Simon Peyton Jones <simonpj@microsoft.com>
Date: Wed Oct 28 17:16:55 2015 +0000
Fix unused-import stuff in a better way
In that patch got the sense of the comparison back to front, and
thereby failed to implement the unused-import rules described in
Note [Choosing the best import declaration] in RdrName
This led to Trac #13064 and #15393
Fixing this bug revealed a bunch of unused imports in libraries;
the ones in the GHC repo are part of this commit.
The two important changes are
* Fix the bug in bestImport
* Modified the rules by adding (a) in
Note [Choosing the best import declaration] in RdrName
Reason: the previosu rules made Trac #5211 go bad again. And
the new rule (a) makes sense to me.
In unravalling this I also ended up doing a few other things
* Refactor RnNames.ImportDeclUsage to use a [GlobalRdrElt] for the
things that are used, rather than [AvailInfo]. This is simpler
and more direct.
* Rename greParentName to greParent_maybe, to follow GHC
naming conventions
* Delete dead code RdrName.greUsedRdrName
Bumps a few submodules.
Reviewers: hvr, goldfire, bgamari, simonmar, jrtc27
Subscribers: rwbarton, carter
Differential Revision: https://phabricator.haskell.org/D5312
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch implements a new code layout algorithm.
It has been tested for x86 and is disabled on other platforms.
Performance varies slightly be CPU/Machine but in general seems to be better
by around 2%.
Nofib shows only small differences of about +/- ~0.5% overall depending on
flags/machine performance in other benchmarks improved significantly.
Other benchmarks includes at least the benchmarks of: aeson, vector, megaparsec, attoparsec,
containers, text and xeno.
While the magnitude of gains differed three different CPUs where tested with
all getting faster although to differing degrees. I tested: Sandy Bridge(Xeon), Haswell,
Skylake
* Library benchmark results summarized:
* containers: ~1.5% faster
* aeson: ~2% faster
* megaparsec: ~2-5% faster
* xml library benchmarks: 0.2%-1.1% faster
* vector-benchmarks: 1-4% faster
* text: 5.5% faster
On average GHC compile times go down, as GHC compiled with the new layout
is faster than the overhead introduced by using the new layout algorithm,
Things this patch does:
* Move code responsilbe for block layout in it's own module.
* Move the NcgImpl Class into the NCGMonad module.
* Extract a control flow graph from the input cmm.
* Update this cfg to keep it in sync with changes during
asm codegen. This has been tested on x64 but should work on x86.
Other platforms still use the old codelayout.
* Assign weights to the edges in the CFG based on type and limited static
analysis which are then used for block layout.
* Once we have the final code layout eliminate some redundant jumps.
In particular turn a sequences of:
jne .foo
jmp .bar
foo:
into
je bar
foo:
..
Test Plan: ci
Reviewers: bgamari, jmct, jrtc27, simonmar, simonpj, RyanGlScott
Reviewed By: RyanGlScott
Subscribers: RyanGlScott, trommler, jmct, carter, thomie, rwbarton
GHC Trac Issues: #15124
Differential Revision: https://phabricator.haskell.org/D4726
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds foldl' to GhcPrelude and changes must occurences
of foldl to foldl'. This leads to better performance especially
for quick builds where GHC does not perform strictness analysis.
It does change strictness behaviour when we use foldl' to turn
a argument list into function applications. But this is only a
drawback if code looks ONLY at the last argument but not at the first.
And as the benchmarks show leads to fewer allocations in practice
at O2.
Compiler performance for Nofib:
O2 Allocations:
-1 s.d. ----- -0.0%
+1 s.d. ----- -0.0%
Average ----- -0.0%
O2 Compile Time:
-1 s.d. ----- -2.8%
+1 s.d. ----- +1.3%
Average ----- -0.8%
O0 Allocations:
-1 s.d. ----- -0.2%
+1 s.d. ----- -0.1%
Average ----- -0.2%
Test Plan: ci
Reviewers: goldfire, bgamari, simonmar, tdammers, monoidal
Reviewed By: bgamari, monoidal
Subscribers: tdammers, rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D4929
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
On Windows one is not allowed to drop the stack by more than a page size.
The reason for this is that the OS only allocates enough stack till what
the TEB specifies. After that a guard page is placed and the rest of the
virtual address space is unmapped.
The intention is that doing stack allocations will cause you to hit the
guard which will then map the next page in and move the guard. This is
done to prevent what in the Linux world is known as stack clash
vulnerabilities https://access.redhat.com/security/cve/cve-2017-1000364.
There are modules in GHC for which the liveliness analysis thinks the
reserved 8KB of spill slots isn't enough. One being DynFlags and the
other being Cabal.
Though I think the Cabal one is likely a bug:
```
4d6544: 81 ec 00 46 00 00 sub $0x4600,%esp
4d654a: 8d 85 94 fe ff ff lea -0x16c(%ebp),%eax
4d6550: 3b 83 1c 03 00 00 cmp 0x31c(%ebx),%eax
4d6556: 0f 82 de 8d 02 00 jb 4ff33a <_cLpg_info+0x7a>
4d655c: c7 45 fc 14 3d 50 00 movl $0x503d14,-0x4(%ebp)
4d6563: 8b 75 0c mov 0xc(%ebp),%esi
4d6566: 83 c5 fc add $0xfffffffc,%ebp
4d6569: 66 f7 c6 03 00 test $0x3,%si
4d656e: 0f 85 a6 d7 02 00 jne 503d1a <_cLpb_info+0x6>
4d6574: 81 c4 00 46 00 00 add $0x4600,%esp
```
It allocates nearly 18KB of spill slots for a simple 4 line function
and doesn't even use it. Note that this doesn't happen on x64 or
when making a validate build. Only when making a build without a
validate and build.mk.
This and the allocation in DynFlags means the stack allocation will jump
over the guard page into unmapped memory areas and GHC or an end program
segfaults.
The pagesize on x86 Windows is 4KB which means we hit it very easily for
these two modules, which explains the total DOA of GHC 32bit for the past
3 releases and the "random" segfaults on Windows.
```
0:000> bp 00503d29
0:000> gn
Breakpoint 0 hit
WARNING: Stack overflow detected. The unwound frames are extracted from outside
normal stack bounds.
eax=03b6b9c9 ebx=00dc90f0 ecx=03cac48c edx=03cac43d esi=03b6b9c9 edi=03abef40
eip=00503d29 esp=013e96fc ebp=03cf8f70 iopl=0 nv up ei pl nz na po nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000202
setup+0x103d29:
00503d29 89442440 mov dword ptr [esp+40h],eax ss:002b:013e973c=????????
WARNING: Stack overflow detected. The unwound frames are extracted from outside
normal stack bounds.
WARNING: Stack overflow detected. The unwound frames are extracted from outside
normal stack bounds.
0:000> !teb
TEB at 00384000
ExceptionList: 013effcc
StackBase: 013f0000
StackLimit: 013eb000
```
This doesn't fix the liveliness analysis but does fix the allocations, by
emitting a function call to `__chkstk_ms` when doing allocations of larger
than a page, this will make sure the stack is probed every page so the kernel
maps in the next page.
`__chkstk_ms` is provided by `libGCC`, which is under the
`GNU runtime exclusion license`, so it's safe to link against it, even for
proprietary code. (Technically we already do since we link compiled C code in.)
For allocations smaller than a page we drop the stack and probe the new address.
This avoids the function call and still makes sure we hit the guard if needed.
PS: In case anyone is Wondering why we didn't notice this before, it's because we
only test x86_64 and on Windows 10. On x86_64 the page size is 8KB and also the
kernel is a bit more lenient on Windows 10 in that it seems to catch the segfault
and resize the stack if it was unmapped:
```
0:000> t
eax=03b6b9c9 ebx=00dc90f0 ecx=03cac48c edx=03cac43d esi=03b6b9c9 edi=03abef40
eip=00503d2d esp=013e96fc ebp=03cf8f70 iopl=0 nv up ei pl nz na po nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000202
setup+0x103d2d:
00503d2d 8b461b mov eax,dword ptr [esi+1Bh] ds:002b:03b6b9e4=03cac431
0:000> !teb
TEB at 00384000
ExceptionList: 013effcc
StackBase: 013f0000
StackLimit: 013e9000
```
Likely Windows 10 has a guard page larger than previous versions.
This fixes the stack allocations, and as soon as I get the time I will look at
the liveliness analysis. I find it highly unlikely that simple Cabal function
requires ~2200 spill slots.
Test Plan: ./validate
Reviewers: simonmar, bgamari
Reviewed By: bgamari
Subscribers: AndreasK, rwbarton, thomie, carter
GHC Trac Issues: #15154
Differential Revision: https://phabricator.haskell.org/D4917
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main job of this commit is to track more accurately the scope
of tyvars introduced by user-written foralls. For example, it would
be to have something like this:
forall a. Int -> (forall k (b :: k). Proxy '[a, b]) -> Bool
In that type, a's kind must be k, but k isn't in scope. We had a
terrible way of doing this before (not worth repeating or describing
here, but see the old tcImplicitTKBndrs and friends), but now
we have a principled approach: make an Implication when kind-checking
a forall. Doing so then hooks into the existing machinery for
preventing skolem-escape, performing floating, etc. This also means
that we bump the TcLevel whenever going into a forall.
The new behavior is done in TcHsType.scopeTyVars, but see also
TcHsType.tc{Im,Ex}plicitTKBndrs, which have undergone significant
rewriting. There are several Notes near there to guide you. Of
particular interest there is that Implication constraints can now
have skolems that are out of order; this situation is reported in
TcErrors.
A major consequence of this is a slightly tweaked process for type-
checking type declarations. The new Note [Use SigTvs in kind-checking
pass] in TcTyClsDecls lays it out.
The error message for dependent/should_fail/TypeSkolEscape has become
noticeably worse. However, this is because the code in TcErrors goes to
some length to preserve pre-8.0 error messages for kind errors. It's time
to rip off that plaster and get rid of much of the kind-error-specific
error messages. I tried this, and doing so led to a lovely error message
for TypeSkolEscape. So: I'm accepting the error message quality regression
for now, but will open up a new ticket to fix it, along with a larger
error-message improvement I've been pondering. This applies also to
dependent/should_fail/{BadTelescope2,T14066,T14066e}, polykinds/T11142.
Other minor changes:
- isUnliftedTypeKind didn't look for tuples and sums. It does now.
- check_type used check_arg_type on both sides of an AppTy. But the left
side of an AppTy isn't an arg, and this was causing a bad error message.
I've changed it to use check_type on the left-hand side.
- Some refactoring around when we print (TYPE blah) in error messages.
The changes decrease the times when we do so, to good effect.
Of course, this is still all controlled by
-fprint-explicit-runtime-reps
Fixes #14066 #14749
Test cases: dependent/should_compile/{T14066a,T14749},
dependent/should_fail/T14066{,c,d,e,f,g,h}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It seems that most uses of these folds should be strict left folds
(I could only find a single place that benefits from a right fold).
So this removes the existing `setFold`/`mapFold`/`mapFoldWihKey`
replaces them with:
- `setFoldl`/`mapFoldl`/`mapFoldlWithKey` (strict left folds)
- `setFoldr`/`mapFoldr` (for the less common case where a right fold
actually makes sense, e.g., `CmmProcPoint`)
Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com>
Test Plan: ./validate
Reviewers: bgamari, simonmar
Reviewed By: bgamari
Subscribers: rwbarton, thomie, carter, kavon
Differential Revision: https://phabricator.haskell.org/D4356
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When allocating and potentially spilling registers, we need to check
the desired allocations against current allocations to decide where we
can spill to, cq. which allocations we can toss and if so, how.
Previously, this was done by walking the Cartesian product of the
current allocations (`assig`) and the allocations to keep (`keep`),
which has quadratic complexity. This patch introduces two improvements:
1. pre-filter the `assig` list, because we are only interested in two
types of allocations (in register, and in register+memory), which will
only make up a small and constant portion of the list; and
2. use set / map operations instead of lists, which reduces algorithmic
complexity.
Reviewers: austin, bgamari
Reviewed By: bgamari
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D4109
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches the compiler/ component to get compiled with
-XNoImplicitPrelude and a `import GhcPrelude` is inserted in all
modules.
This is motivated by the upcoming "Prelude" re-export of
`Semigroup((<>))` which would cause lots of name clashes in every
modulewhich imports also `Outputable`
Reviewers: austin, goldfire, bgamari, alanz, simonmar
Reviewed By: bgamari
Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari
Differential Revision: https://phabricator.haskell.org/D3989
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The LLVM backend shells out to LLVMs `opt` and `llc` tools. This clean
up introduces a shared data structure to carry the arguments we pass to
each tool so that corresponding flags are next to each other. It drops
the hard coded data layouts in favor of using `-mtriple` and have LLVM
infer them. Furthermore we add `clang` as a proper tool, so we don't
rely on assuming that `clang` is called `clang` on the `PATH` when using
`clang` as the assembler. Finally this diff also changes the type of
`optLevel` from `Int` to `Word`, as we do not have negative optimization
levels.
Reviewers: erikd, hvr, austin, rwbarton, bgamari, kavon
Reviewed By: kavon
Subscribers: michalt, Ericson2314, ryantrinkle, dfeuer, carter, simonpj,
kavon, simonmar, thomie, erikd, snowleopard
Differential Revision: https://phabricator.haskell.org/D3352
|
|
|
|
|
|
|
|
|
|
|
| |
There were a couple places where we indexed into linked lists of
register names. Replace these with arrays.
Reviewers: austin
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D3893
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This copies the subset of Hoopl's functionality needed by GHC to
`cmm/Hoopl` and removes the dependency on the Hoopl package.
The main motivation for this change is the confusing/noisy interface
between GHC and Hoopl:
- Hoopl has `Label` which is GHC's `BlockId` but different than
GHC's `CLabel`
- Hoopl has `Unique` which is different than GHC's `Unique`
- Hoopl has `Unique{Map,Set}` which are different than GHC's
`Uniq{FM,Set}`
- GHC has its own specialized copy of `Dataflow`, so `cmm/Hoopl` is
needed just to filter the exposed functions (filter out some of the
Hoopl's and add the GHC ones)
With this change, we'll be able to simplify this significantly.
It'll also be much easier to do invasive changes (Hoopl is a public
package on Hackage with users that depend on the current behavior)
This should introduce no changes in functionality - it merely
copies the relevant code.
Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com>
Test Plan: ./validate
Reviewers: austin, bgamari, simonmar
Reviewed By: bgamari, simonmar
Subscribers: simonpj, kavon, rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D3616
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This refactoring makes it more obvious when we are constructing
a Node for the digraph rather than a less useful 3-tuple.
Reviewers: austin, goldfire, bgamari, simonmar, dfeuer
Reviewed By: dfeuer
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D3414
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The fundamental problem with `type UniqSet = UniqFM` is that `UniqSet`
has a key invariant `UniqFM` does not. For example, `fmap` over
`UniqSet` will generally produce nonsense.
* Upgrade `UniqSet` from a type synonym to a newtype.
* Remove unused and shady `extendVarSet_C` and `addOneToUniqSet_C`.
* Use cached unique in `tyConsOfType` by replacing
`unitNameEnv (tyConName tc) tc` with `unitUniqSet tc`.
Reviewers: austin, hvr, goldfire, simonmar, niteria, bgamari
Reviewed By: niteria
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D3146
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Manipulations of `FreeRegs` values are all just bit-operations on a
word. Turning these `foldr`s into `foldl'`s has a very small but consistent
effect on compiler allocations,
```
-1 s.d. ----- -0.065%
+1 s.d. ----- -0.018%
Average ----- -0.042%
```
Test Plan: Validate
Reviewers: austin
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2966
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Define constants for 64-bit PowerPC in graph coloring register
allocator.
Test Plan: ./validate
Reviewers: simonmar, austin, erikd, bgamari, hvr
Reviewed By: bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2791
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This continues removal of `BlockId` module in favor of Hoopl's `Label`.
Most of the changes here are mechanical, apart from the orphan
`Outputable` instances for `LabelMap` and `LabelSet`. For now I've
moved them to `cmm/Hoopl`, since it's already trying to manage all
imports from Hoopl (to avoid any collisions).
Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com>
Test Plan: validate
Reviewers: bgamari, austin, simonmar
Reviewed By: simonmar
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2800
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It seems that `BlockId` module could simply go away in favor
of Hoopl's `Label`. This is the first step to do that.
In a few places I had to add some type signatures, but most of
them seem to help with code readability.
Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com>
Test Plan: ./validate
Reviewers: austin, simonmar, bgamari
Reviewed By: bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2765
|
|
|
|
|
|
|
| |
these actually are complete, but due to the use of pattern guards, the
compiler does not see that. Refactor the code that it does.
Differential Revision: https://phabricator.haskell.org/D2574
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Bit-for-bit reproducible binaries are not a goal for now,
so this is just marking places that could be a problem.
Doing this will allow eltsUFM to be removed and will
leave only nonDetEltsUFM.
GHC Trac: #4012
|
|
|
|
|
|
|
| |
This documents nondeterminism in code generation and removes
the nondeterministic ufmToList function. In the future someone
will have to use nonDetEltsUFM (with proper explanation)
or pprUFM.
|
|
|
|
|
|
|
| |
This documents nondeterminism in code generation and removes
the nondeterministic ufmToList function. In the future someone
will have to use nonDetUFMToList (with proper explanation)
or pprUFMWithKeys.
|
|
|
|
|
|
| |
These get annoying when `undefined` is actually used as placeholder in WIP code.
Some of these were also completely redundant (just call `deAnnotate'` instead of
`deAnnotate` etc.).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We want to remove the `Ord Unique` instance because there's
no way to implement it in deterministic way and it's too
easy to use by accident.
We sometimes compute SCC for datatypes whose Ord instance
is implemented in terms of Unique. The Ord constraint on
SCC is just an artifact of some internal data structures.
We can have an alternative implementation with a data
structure that uses Uniquable instead.
This does exactly that and I'm pleased that I didn't have
to introduce any duplication to do that.
Test Plan:
./validate
I looked at performance tests and it's a tiny bit better.
Reviewers: bgamari, simonmar, ezyang, austin, goldfire
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2359
GHC Trac Issues: #4012
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I planned to just say that we don't care about this part.
Turns out I was able to document away the uses in the codegenerator.
Test Plan: ./validate
Reviewers: simonmar, austin, bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2307
GHC Trac Issues: #4012
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Note [Unsound mapUniqSet] explains why it got removed.
Test Plan: build ghc
Reviewers: simonpj, austin, bgamari
Reviewed By: bgamari
Subscribers: thomie, simonmar
Differential Revision: https://phabricator.haskell.org/D2152
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In the past the canonical way for constructing an SDoc string literal was the
composition `ptext . sLit`. But for some time now we have function `text` that
does the same. Plus it has some rules that optimize its runtime behaviour.
This patch takes all uses of `ptext . sLit` in the compiler and replaces them
with calls to `text`. The main benefits of this patch are clener (shorter) code
and less dependencies between module, because many modules now do not need to
import `FastString`. I don't expect any performance benefits - we mostly use
SDocs to report errors and it seems there is little to be gained here.
Test Plan: ./validate
Reviewers: bgamari, austin, goldfire, hvr, alanz
Subscribers: goldfire, thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D1784
|
|
|
|
|
|
| |
Starting with GHC 7.10 and base-4.8, `Monad` implies `Applicative`,
which allows to simplify some definitions to exploit the superclass
relationship. This a first refactoring to that end.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since GHC 8.1/8.2 only needs to be bootstrap-able by GHC 7.10 and
GHC 8.0 (and GHC 8.2), we can now finally drop all that pre-AMP
compatibility CPP-mess for good!
Reviewers: austin, goldfire, bgamari
Subscribers: goldfire, thomie, erikd
Differential Revision: https://phabricator.haskell.org/D1724
|
|
|
|
|
|
|
|
|
|
|
|
| |
Explicitly pass "--no-relax" on ArchSPARC64
(as ArchSPARC does) where gcc's default specs
set "-mrelax" which conflicts with "-Wl,-r".
Known architecture will also help extending
sparc NCG support 64-bit ABI.
Signed-off-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Signed-off-by: Sergei Trofimovich <siarheit@google.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the ideas originally put forward in
"System FC with Explicit Kind Equality" (ICFP'13).
There are several noteworthy changes with this patch:
* We now have casts in types. These change the kind
of a type. See new constructor `CastTy`.
* All types and all constructors can be promoted.
This includes GADT constructors. GADT pattern matches
take place in type family equations. In Core,
types can now be applied to coercions via the
`CoercionTy` constructor.
* Coercions can now be heterogeneous, relating types
of different kinds. A coercion proving `t1 :: k1 ~ t2 :: k2`
proves both that `t1` and `t2` are the same and also that
`k1` and `k2` are the same.
* The `Coercion` type has been significantly enhanced.
The documentation in `docs/core-spec/core-spec.pdf` reflects
the new reality.
* The type of `*` is now `*`. No more `BOX`.
* Users can write explicit kind variables in their code,
anywhere they can write type variables. For backward compatibility,
automatic inference of kind-variable binding is still permitted.
* The new extension `TypeInType` turns on the new user-facing
features.
* Type families and synonyms are now promoted to kinds. This causes
trouble with parsing `*`, leading to the somewhat awkward new
`HsAppsTy` constructor for `HsType`. This is dispatched with in
the renamer, where the kind `*` can be told apart from a
type-level multiplication operator. Without `-XTypeInType` the
old behavior persists. With `-XTypeInType`, you need to import
`Data.Kind` to get `*`, also known as `Type`.
* The kind-checking algorithms in TcHsType have been significantly
rewritten to allow for enhanced kinds.
* The new features are still quite experimental and may be in flux.
* TODO: Several open tickets: #11195, #11196, #11197, #11198, #11203.
* TODO: Update user manual.
Tickets addressed: #9017, #9173, #7961, #10524, #8566, #11142.
Updates Haddock submodule.
|
|
|
|
|
| |
George's new exhaustiveness checker now realizes these are impossible.
Yay!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch refactors pure/(*>) and return/(>>) in MRP-friendly way, i.e.
such that the explicit definitions for `return` and `(>>)` match the
MRP-style default-implementation, i.e.
return = pure
and
(>>) = (*>)
This way, e.g. all `return = pure` definitions can easily be grepped and
removed in GHC 8.1;
Test Plan: Harbormaster
Reviewers: goldfire, alanz, bgamari, quchen, austin
Reviewed By: quchen, austin
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1312
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverses some of the work done in #1405, and goes back to the
assumption that the bootstrap compiler understands GHC-haskell.
In particular:
* use MagicHash instead of _ILIT and _CLIT
* pattern matching on I# if possible, instead of using iUnbox
unnecessarily
* use Int#/Char#/Addr# instead of the following type synonyms:
- type FastInt = Int#
- type FastChar = Char#
- type FastPtr a = Addr#
* inline the following functions:
- iBox = I#
- cBox = C#
- fastChr = chr#
- fastOrd = ord#
- eqFastChar = eqChar#
- shiftLFastInt = uncheckedIShiftL#
- shiftR_FastInt = uncheckedIShiftRL#
- shiftRLFastInt = uncheckedIShiftRL#
* delete the following unused functions:
- minFastInt
- maxFastInt
- uncheckedIShiftRA#
- castFastPtr
- panicDocFastInt and pprPanicFastInt
* rename panicFastInt back to panic#
These functions remain, since they actually do something:
* iUnbox
* bitAndFastInt
* bitOrFastInt
Test Plan: validate
Reviewers: austin, bgamari
Subscribers: rwbarton
Differential Revision: https://phabricator.haskell.org/D1141
GHC Trac Issues: #1405
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverses some of the work done in Trac #1405, and assumes GHC is
smart enough to do its own unboxing of booleans now.
I would like to do some more performance measurements, but the code
changes can be reviewed already.
Test Plan:
With a perf build:
./inplace/bin/ghc-stage2 nofib/spectral/simple/Main.hs -fforce-recomp
+RTS -t --machine-readable
before:
```
[("bytes allocated", "1300744864")
,("num_GCs", "302")
,("average_bytes_used", "8811118")
,("max_bytes_used", "24477464")
,("num_byte_usage_samples", "9")
,("peak_megabytes_allocated", "64")
,("init_cpu_seconds", "0.001")
,("init_wall_seconds", "0.001")
,("mutator_cpu_seconds", "2.833")
,("mutator_wall_seconds", "4.283")
,("GC_cpu_seconds", "0.960")
,("GC_wall_seconds", "0.961")
]
```
after:
```
[("bytes allocated", "1301088064")
,("num_GCs", "310")
,("average_bytes_used", "8820253")
,("max_bytes_used", "24539904")
,("num_byte_usage_samples", "9")
,("peak_megabytes_allocated", "64")
,("init_cpu_seconds", "0.001")
,("init_wall_seconds", "0.001")
,("mutator_cpu_seconds", "2.876")
,("mutator_wall_seconds", "4.474")
,("GC_cpu_seconds", "0.965")
,("GC_wall_seconds", "0.979")
]
```
CPU time seems to be up a bit, but I'm not sure. Unfortunately CPU time
measurements are rather noisy.
Reviewers: austin, bgamari, rwbarton
Subscribers: nomeata
Differential Revision: https://phabricator.haskell.org/D1143
GHC Trac Issues: #1405
|
|
|
|
|
|
|
|
|
|
|
|
| |
Test Plan: none
Reviewers: austin, simonmar, bgamari
Reviewed By: simonmar, bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1112
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extend the PowerPC 32-bit native code generator for "64-bit
PowerPC ELF Application Binary Interface Supplement 1.9" by
Ian Lance Taylor and "Power Architecture 64-Bit ELF V2 ABI Specification --
OpenPOWER ABI for Linux Supplement" by IBM.
The latter ABI is mainly used on POWER7/7+ and POWER8
Linux systems running in little-endian mode. The code generator
supports both static and dynamic linking. PowerPC 64-bit
code for ELF ABI 1.9 and 2 is mostly position independent
anyway, and thus so is all the code emitted by the code
generator. In other words, -fPIC does not make a difference.
rts/stg/SMP.h support is implemented.
Following the spirit of the introductory comment in
PPC/CodeGen.hs, the rest of the code is a straightforward
extension of the 32-bit implementation.
Limitations:
* Code is generated only in the medium code model, which
is also gcc's default
* Local symbols are not accessed directly, which seems to
also be the case for 32-bit
* LLVM does not work, but this does not work on 32-bit either
* Must use the system runtime linker in GHCi, because the
GHC linker for "static" object files (rts/Linker.c) for
PPC 64-bit is not implemented. The system runtime
(dynamic) linker works.
* The handling of the system stack (register 1) is not ELF-
compliant so stack traces break. Instead of allocating a new
stack frame, spill code should use the "official" spill area
in the current stack frame and deallocation code should restore
the back chain
* DWARF support is missing
Fixes #9863
Test Plan: validate (on powerpc, too)
Reviewers: simonmar, trofi, erikd, austin
Reviewed By: trofi
Subscribers: bgamari, arnons1, kgardas, thomie
Differential Revision: https://phabricator.haskell.org/D629
GHC Trac Issues: #9863
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: It looks like during .lhs -> .hs switch the comments were not updated. So doing exactly that.
Reviewers: austin, jstolarek, hvr, goldfire
Reviewed By: austin, jstolarek
Subscribers: thomie, goldfire
Differential Revision: https://phabricator.haskell.org/D621
GHC Trac Issues: #9986
|
|
|
|
| |
-fwarn-redundant-constraints
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This generates DWARF, albeit indirectly using the assembler. This is
the easiest (and, apparently, quite standard) method of generating the
.debug_line DWARF section.
Notes:
* Note we have to make sure that .file directives appear correctly
before the respective .loc. Right now we ppr them manually, which makes
them absent from dumps. Fixing this would require .file to become a
native instruction.
* We have to pass a lot of things around the native code generator. I
know Ian did quite a bit of refactoring already, but having one common
monad could *really* simplify things here...
* To support SplitObjcs, we need to emit/reset all DWARF data at every
split. We use the occassion to move split marker generation to
cmmNativeGenStream as well, so debug data extraction doesn't have to
choke on it.
(From Phabricator D396)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Don't export `getUs` and `getUniqueUs`. `UniqSM` has a `MonadUnique` instance:
instance MonadUnique UniqSM where
getUniqueSupplyM = getUs
getUniqueM = getUniqueUs
getUniquesM = getUniquesUs
Commandline-fu used:
git grep -l 'getUs\>' |
grep -v compiler/basicTypes/UniqSupply.lhs |
xargs sed -i 's/getUs/getUniqueSupplyM/g
git grep -l 'getUniqueUs\>' |
grep -v combiler/basicTypes/UniqSupply.lhs |
xargs sed -i 's/getUniqueUs/getUniqueM/g'
Follow up on b522d3a3f970a043397a0d6556ca555648e7a9c3
Reviewed By: austin, hvr
Differential Revision: https://phabricator.haskell.org/D220
|