summaryrefslogtreecommitdiff
path: root/compiler/nativeGen/RegAlloc/Liveness.hs
Commit message (Collapse)AuthorAgeFilesLines
* Modules: CmmToAsm (#13009)Sylvain Henry2020-02-241-1025/+0
|
* Modules: Driver (#13009)Sylvain Henry2020-02-211-1/+1
| | | | submodule updates: nofib, haddock
* Use concatMap(M) instead of `concat . map` and the monadic variantÖmer Sinan Ağacan2020-02-201-1/+1
|
* Do CafInfo/SRT analysis in CmmÖmer Sinan Ağacan2020-01-311-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch removes all CafInfo predictions and various hacks to preserve predicted CafInfos from the compiler and assigns final CafInfos to interface Ids after code generation. SRT analysis is extended to support static data, and Cmm generator is modified to allow generating static_link fields after SRT analysis. This also fixes `-fcatch-bottoms`, which introduces error calls in case expressions in CorePrep, which runs *after* CoreTidy (which is where we decide on CafInfos) and turns previously non-CAFFY things into CAFFY. Fixes #17648 Fixes #9718 Evaluation ========== NoFib ----- Boot with: `make boot mode=fast` Run: `make mode=fast EXTRA_RUNTEST_OPTS="-cachegrind" NoFibRuns=1` -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- CS -0.0% 0.0% -0.0% -0.0% -0.0% CSD -0.0% 0.0% -0.0% -0.0% -0.0% FS -0.0% 0.0% -0.0% -0.0% -0.0% S -0.0% 0.0% -0.0% -0.0% -0.0% VS -0.0% 0.0% -0.0% -0.0% -0.0% VSD -0.0% 0.0% -0.0% -0.0% -0.5% VSM -0.0% 0.0% -0.0% -0.0% -0.0% anna -0.1% 0.0% -0.0% -0.0% -0.0% ansi -0.0% 0.0% -0.0% -0.0% -0.0% atom -0.0% 0.0% -0.0% -0.0% -0.0% awards -0.0% 0.0% -0.0% -0.0% -0.0% banner -0.0% 0.0% -0.0% -0.0% -0.0% bernouilli -0.0% 0.0% -0.0% -0.0% -0.0% binary-trees -0.0% 0.0% -0.0% -0.0% -0.0% boyer -0.0% 0.0% -0.0% -0.0% -0.0% boyer2 -0.0% 0.0% -0.0% -0.0% -0.0% bspt -0.0% 0.0% -0.0% -0.0% -0.0% cacheprof -0.0% 0.0% -0.0% -0.0% -0.0% calendar -0.0% 0.0% -0.0% -0.0% -0.0% cichelli -0.0% 0.0% -0.0% -0.0% -0.0% circsim -0.0% 0.0% -0.0% -0.0% -0.0% clausify -0.0% 0.0% -0.0% -0.0% -0.0% comp_lab_zift -0.0% 0.0% -0.0% -0.0% -0.0% compress -0.0% 0.0% -0.0% -0.0% -0.0% compress2 -0.0% 0.0% -0.0% -0.0% -0.0% constraints -0.0% 0.0% -0.0% -0.0% -0.0% cryptarithm1 -0.0% 0.0% -0.0% -0.0% -0.0% cryptarithm2 -0.0% 0.0% -0.0% -0.0% -0.0% cse -0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e1 -0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e2 -0.0% 0.0% -0.0% -0.0% -0.0% dom-lt -0.0% 0.0% -0.0% -0.0% -0.0% eliza -0.0% 0.0% -0.0% -0.0% -0.0% event -0.0% 0.0% -0.0% -0.0% -0.0% exact-reals -0.0% 0.0% -0.0% -0.0% -0.0% exp3_8 -0.0% 0.0% -0.0% -0.0% -0.0% expert -0.0% 0.0% -0.0% -0.0% -0.0% fannkuch-redux -0.0% 0.0% -0.0% -0.0% -0.0% fasta -0.0% 0.0% -0.0% -0.0% -0.0% fem -0.0% 0.0% -0.0% -0.0% -0.0% fft -0.0% 0.0% -0.0% -0.0% -0.0% fft2 -0.0% 0.0% -0.0% -0.0% -0.0% fibheaps -0.0% 0.0% -0.0% -0.0% -0.0% fish -0.0% 0.0% -0.0% -0.0% -0.0% fluid -0.1% 0.0% -0.0% -0.0% -0.0% fulsom -0.0% 0.0% -0.0% -0.0% -0.0% gamteb -0.0% 0.0% -0.0% -0.0% -0.0% gcd -0.0% 0.0% -0.0% -0.0% -0.0% gen_regexps -0.0% 0.0% -0.0% -0.0% -0.0% genfft -0.0% 0.0% -0.0% -0.0% -0.0% gg -0.0% 0.0% -0.0% -0.0% -0.0% grep -0.0% 0.0% -0.0% -0.0% -0.0% hidden -0.0% 0.0% -0.0% -0.0% -0.0% hpg -0.1% 0.0% -0.0% -0.0% -0.0% ida -0.0% 0.0% -0.0% -0.0% -0.0% infer -0.0% 0.0% -0.0% -0.0% -0.0% integer -0.0% 0.0% -0.0% -0.0% -0.0% integrate -0.0% 0.0% -0.0% -0.0% -0.0% k-nucleotide -0.0% 0.0% -0.0% -0.0% -0.0% kahan -0.0% 0.0% -0.0% -0.0% -0.0% knights -0.0% 0.0% -0.0% -0.0% -0.0% lambda -0.0% 0.0% -0.0% -0.0% -0.0% last-piece -0.0% 0.0% -0.0% -0.0% -0.0% lcss -0.0% 0.0% -0.0% -0.0% -0.0% life -0.0% 0.0% -0.0% -0.0% -0.0% lift -0.0% 0.0% -0.0% -0.0% -0.0% linear -0.1% 0.0% -0.0% -0.0% -0.0% listcompr -0.0% 0.0% -0.0% -0.0% -0.0% listcopy -0.0% 0.0% -0.0% -0.0% -0.0% maillist -0.0% 0.0% -0.0% -0.0% -0.0% mandel -0.0% 0.0% -0.0% -0.0% -0.0% mandel2 -0.0% 0.0% -0.0% -0.0% -0.0% mate -0.0% 0.0% -0.0% -0.0% -0.0% minimax -0.0% 0.0% -0.0% -0.0% -0.0% mkhprog -0.0% 0.0% -0.0% -0.0% -0.0% multiplier -0.0% 0.0% -0.0% -0.0% -0.0% n-body -0.0% 0.0% -0.0% -0.0% -0.0% nucleic2 -0.0% 0.0% -0.0% -0.0% -0.0% para -0.0% 0.0% -0.0% -0.0% -0.0% paraffins -0.0% 0.0% -0.0% -0.0% -0.0% parser -0.1% 0.0% -0.0% -0.0% -0.0% parstof -0.1% 0.0% -0.0% -0.0% -0.0% pic -0.0% 0.0% -0.0% -0.0% -0.0% pidigits -0.0% 0.0% -0.0% -0.0% -0.0% power -0.0% 0.0% -0.0% -0.0% -0.0% pretty -0.0% 0.0% -0.3% -0.4% -0.4% primes -0.0% 0.0% -0.0% -0.0% -0.0% primetest -0.0% 0.0% -0.0% -0.0% -0.0% prolog -0.0% 0.0% -0.0% -0.0% -0.0% puzzle -0.0% 0.0% -0.0% -0.0% -0.0% queens -0.0% 0.0% -0.0% -0.0% -0.0% reptile -0.0% 0.0% -0.0% -0.0% -0.0% reverse-complem -0.0% 0.0% -0.0% -0.0% -0.0% rewrite -0.0% 0.0% -0.0% -0.0% -0.0% rfib -0.0% 0.0% -0.0% -0.0% -0.0% rsa -0.0% 0.0% -0.0% -0.0% -0.0% scc -0.0% 0.0% -0.3% -0.5% -0.4% sched -0.0% 0.0% -0.0% -0.0% -0.0% scs -0.0% 0.0% -0.0% -0.0% -0.0% simple -0.1% 0.0% -0.0% -0.0% -0.0% solid -0.0% 0.0% -0.0% -0.0% -0.0% sorting -0.0% 0.0% -0.0% -0.0% -0.0% spectral-norm -0.0% 0.0% -0.0% -0.0% -0.0% sphere -0.0% 0.0% -0.0% -0.0% -0.0% symalg -0.0% 0.0% -0.0% -0.0% -0.0% tak -0.0% 0.0% -0.0% -0.0% -0.0% transform -0.0% 0.0% -0.0% -0.0% -0.0% treejoin -0.0% 0.0% -0.0% -0.0% -0.0% typecheck -0.0% 0.0% -0.0% -0.0% -0.0% veritas -0.0% 0.0% -0.0% -0.0% -0.0% wang -0.0% 0.0% -0.0% -0.0% -0.0% wave4main -0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve1 -0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve2 -0.0% 0.0% -0.0% -0.0% -0.0% x2n1 -0.0% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.3% -0.5% -0.5% Max -0.0% 0.0% -0.0% -0.0% -0.0% Geometric Mean -0.0% -0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- circsim -0.1% 0.0% -0.0% -0.0% -0.0% constraints -0.0% 0.0% -0.0% -0.0% -0.0% fibheaps -0.0% 0.0% -0.0% -0.0% -0.0% gc_bench -0.0% 0.0% -0.0% -0.0% -0.0% hash -0.0% 0.0% -0.0% -0.0% -0.0% lcss -0.0% 0.0% -0.0% -0.0% -0.0% power -0.0% 0.0% -0.0% -0.0% -0.0% spellcheck -0.0% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.0% -0.0% -0.0% Max -0.0% 0.0% -0.0% -0.0% -0.0% Geometric Mean -0.0% +0.0% -0.0% -0.0% -0.0% Manual inspection of programs in testsuite/tests/programs --------------------------------------------------------- I built these programs with a bunch of dump flags and `-O` and compared STG, Cmm, and Asm dumps and file sizes. (Below the numbers in parenthesis show number of modules in the program) These programs have identical compiler (same .hi and .o sizes, STG, and Cmm and Asm dumps): - Queens (1), andre_monad (1), cholewo-eval (2), cvh_unboxing (3), andy_cherry (7), fun_insts (1), hs-boot (4), fast2haskell (2), jl_defaults (1), jq_readsPrec (1), jules_xref (1), jtod_circint (4), jules_xref2 (1), lennart_range (1), lex (1), life_space_leak (1), bargon-mangler-bug (7), record_upd (1), rittri (1), sanders_array (1), strict_anns (1), thurston-module-arith (2), okeefe_neural (1), joao-circular (6), 10queens (1) Programs with different compiler outputs: - jl_defaults (1): For some reason GHC HEAD marks a lot of top-level `[Int]` closures as CAFFY for no reason. With this patch we no longer make them CAFFY and generate less SRT entries. For some reason Main.o is slightly larger with this patch (1.3%) and the executable sizes are the same. (I'd expect both to be smaller) - launchbury (1): Same as jl_defaults: top-level `[Int]` closures marked as CAFFY for no reason. Similarly `Main.o` is 1.4% larger but the executable sizes are the same. - galois_raytrace (13): Differences are in the Parse module. There are a lot, but some of the changes are caused by the fact that for some reason (I think a bug) GHC HEAD marks the dictionary for `Functor Identity` as CAFFY. Parse.o is 0.4% larger, the executable size is the same. - north_array: We now generate less SRT entries because some of array primops used in this program like `NewArrayOp` get eliminated during Stg-to-Cmm and turn some CAFFY things into non-CAFFY. Main.o gets 24% larger (9224 bytes from 9000 bytes), executable sizes are the same. - seward-space-leak: Difference in this program is better shown by this smaller example: module Lib where data CDS = Case [CDS] [(Int, CDS)] | Call CDS CDS instance Eq CDS where Case sels1 rets1 == Case sels2 rets2 = sels1 == sels2 && rets1 == rets2 Call a1 b1 == Call a2 b2 = a1 == a2 && b1 == b2 _ == _ = False In this program GHC HEAD builds a new SRT for the recursive group of `(==)`, `(/=)` and the dictionary closure. Then `/=` points to `==` in its SRT field, and `==` uses the SRT object as its SRT. With this patch we use the closure for `/=` as the SRT and add `==` there. Then `/=` gets an empty SRT field and `==` points to `/=` in its SRT field. This change looks fine to me. Main.o gets 0.07% larger, executable sizes are identical. head.hackage ------------ head.hackage's CI script builds 428 packages from Hackage using this patch with no failures. Compiler performance -------------------- The compiler perf tests report that the compiler allocates slightly more (worst case observed so far is 4%). However most programs in the test suite are small, single file programs. To benchmark compiler performance on something more realistic I build Cabal (the library, 236 modules) with different optimisation levels. For the "max residency" row I run GHC with `+RTS -s -A100k -i0 -h` for more accurate numbers. Other rows are generated with just `-s`. (This is because `-i0` causes running GC much more frequently and as a result "bytes copied" gets inflated by more than 25x in some cases) * -O0 | | GHC HEAD | This MR | Diff | | --------------- | -------------- | -------------- | ------ | | Bytes allocated | 54,413,350,872 | 54,701,099,464 | +0.52% | | Bytes copied | 4,926,037,184 | 4,990,638,760 | +1.31% | | Max residency | 421,225,624 | 424,324,264 | +0.73% | * -O1 | | GHC HEAD | This MR | Diff | | --------------- | --------------- | --------------- | ------ | | Bytes allocated | 245,849,209,992 | 246,562,088,672 | +0.28% | | Bytes copied | 26,943,452,560 | 27,089,972,296 | +0.54% | | Max residency | 982,643,440 | 991,663,432 | +0.91% | * -O2 | | GHC HEAD | This MR | Diff | | --------------- | --------------- | --------------- | ------ | | Bytes allocated | 291,044,511,408 | 291,863,910,912 | +0.28% | | Bytes copied | 37,044,237,616 | 36,121,690,472 | -2.49% | | Max residency | 1,071,600,328 | 1,086,396,256 | +1.38% | Extra compiler allocations -------------------------- Runtime allocations of programs are as reported above (NoFib section). The compiler now allocates more than before. Main source of allocation in this patch compared to base commit is the new SRT algorithm (GHC.Cmm.Info.Build). Below is some of the extra work we do with this patch, numbers generated by profiled stage 2 compiler when building a pathological case (the test 'ManyConstructors') with '-O2': - We now sort the final STG for a module, which means traversing the entire program, generating free variable set for each top-level binding, doing SCC analysis, and re-ordering the program. In ManyConstructors this step allocates 97,889,952 bytes. - We now do SRT analysis on static data, which in a program like ManyConstructors causes analysing 10,000 bindings that we would previously just skip. This step allocates 70,898,352 bytes. - We now maintain an SRT map for the entire module as we compile Cmm groups: data ModuleSRTInfo = ModuleSRTInfo { ... , moduleSRTMap :: SRTMap } (SRTMap is just a strict Map from the 'containers' library) This map gets an entry for most bindings in a module (exceptions are THUNKs and CAFFY static functions). For ManyConstructors this map gets 50015 entries. - Once we're done with code generation we generate a NameSet from SRTMap for the non-CAFFY names in the current module. This set gets the same number of entries as the SRTMap. - Finally we update CafInfos in ModDetails for the non-CAFFY Ids, using the NameSet generated in the previous step. This usually does the least amount of allocation among the work listed here. Only place with this patch where we do less work in the CAF analysis in the tidying pass (CoreTidy). However that doesn't save us much, as the pass still needs to traverse the whole program and update IdInfos for other reasons. Only thing we don't here do is the `hasCafRefs` pass over the RHS of bindings, which is a stateless pass that returns a boolean value, so it doesn't allocate much. (Metric changes blow are all increased allocations) Metric changes -------------- Metric Increase: ManyAlternatives ManyConstructors T13035 T14683 T1969 T9961
* Disable two warnings for files that trigger themTom Ellis2020-01-271-0/+2
| | | | | | incomplete-uni-patterns and incomplete-record-updates will be in -Wall at a future date, so prepare for that by disabling those warnings on files that trigger them.
* Module hierarchy: Cmm (cf #13009)Sylvain Henry2020-01-251-4/+4
|
* Fix bug in the x86 backend involving the CFG.Andreas Klebinger2019-10-231-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is part two of fixing #17334. There are two parts to this commit: - A bugfix for computing loop levels - A bugfix of basic block invariants in the NCG. ----------------------------------------------------------- In the first bug we ended up with a CFG of the sort: [A -> B -> C] This was represented via maps as fromList [(A,B),(B,C)] and later transformed into a adjacency array. However the transformation did not include block C in the array (since we only looked at the keys of the map). This was still fine until we tried to look up successors for C and tried to read outside of the array bounds when accessing C. In order to prevent this in the future I refactored to code to include all nodes as keys in the map representation. And make this a invariant which is checked in a few places. Overall I expect this to make the code more robust as now any failed lookup will represent an error, versus failed lookups sometimes being expected and sometimes not. In terms of performance this makes some things cheaper (getting a list of all nodes) and others more expensive (adding a new edge). Overall this adds up to no noteable performance difference. ----------------------------------------------------------- Part 2: When the NCG generated a new basic block, it did not always insert a NEWBLOCK meta instruction in the stream which caused a quite subtle bug. During instruction selection a statement `s` in a block B with control of the sort: B -> C will sometimes result in control flow of the sort: ┌ < ┐ v ^ B -> B1 ┴ -> C as is the case for some atomic operations. Now to keep the CFG in sync when introducing B1 we clearly want to insert it between B and C. However there is a catch when we have to deal with self loops. We might start with code and a CFG of these forms: loop: stmt1 ┌ < ┐ .... v ^ stmtX loop ┘ stmtY .... goto loop: Now we introduce B1: ┌ ─ ─ ─ ─ ─┐ loop: │ ┌ < ┐ │ instrs v │ │ ^ .... loop ┴ B1 ┴ ┘ instrsFromX stmtY goto loop: This is simple, all outgoing edges from loop now simply start from B1 instead and the code generator knows which new edges it introduced for the self loop of B1. Disaster strikes if the statement Y follows the same pattern. If we apply the same rule that all outgoing edges change then we end up with: loop ─> B1 ─> B2 ┬─┐ │ │ └─<┤ │ │ └───<───┘ │ └───────<────────┘ This is problematic. The edge B1->B1 is modified as expected. However the modification is wrong! The assembly in this case looked like this: _loop: <instrs> _B1: ... cmpxchgq ... jne _B1 <instrs> <end _B1> _B2: ... cmpxchgq ... jne _B2 <instrs> jmp loop There is no edge _B2 -> _B1 here. It's still a self loop onto _B1. The problem here is that really B1 should be two basic blocks. Otherwise we have control flow in the *middle* of a basic block. A contradiction! So to account for this we add yet another basic block marker: _B: <instrs> _B1: ... cmpxchgq ... jne _B1 jmp _B1' _B1': <instrs> <end _B1> _B2: ... Now when inserting B2 we will only look at the outgoing edges of B1' and everything will work out nicely. You might also wonder why we don't insert jumps at the end of _B1'. There is no way another block ends up jumping to the labels _B1 or _B2 since they are essentially invisible to other blocks. View them as control flow labels local to the basic block if you'd like. Not doing this ultimately caused (part 2 of) #17334.
* Remove unused imports of the form 'import foo ()' (Fixes #17065)James Foster2019-08-151-1/+0
| | | | | | | | | | | These kinds of imports are necessary in some cases such as importing instances of typeclasses or intentionally creating dependencies in the build system, but '-Wunused-imports' can't detect when they are no longer needed. This commit removes the unused ones currently in the code base (not including test files or submodules), with the hope that doing so may increase parallelism in the build system by removing unnecessary dependencies.
* Move 'Platform' to ghc-bootJohn Ericson2019-06-191-1/+1
| | | | | | | ghc-pkg needs to be aware of platforms so it can figure out which subdire within the user package db to use. This is admittedly roundabout, but maybe Cabal could use the same notion of a platform as GHC to good affect too.
* Rip out object splittingBen Gamari2019-03-051-4/+0
| | | | | | | | | | | | | | | The splitter is an evil Perl script that processes assembler code. Its job can be done better by the linker's --gc-sections flag. GHC passes this flag to the linker whenever -split-sections is passed on the command line. This is based on @DemiMarie's D2768. Fixes Trac #11315 Fixes Trac #9832 Fixes Trac #8964 Fixes Trac #8685 Fixes Trac #8629
* Don't wrap the entry map for LiveInfo in Maybe.klebinger.andreas@gmx.at2019-02-151-13/+19
| | | | | | | | | | | | | It never really encoded a invariant. * The linear register allocator just did partial pattern matches * The graph allocator just set it to (Just mapEmpty) for Nothing So I changed LiveInfo to directly contain the map. Further natCmmTopToLive which filled in Nothing is no longer exported. Instead we know call cmmTopLiveness which changes the type AND fills in the map.
* NCG: New code layout algorithm.Andreas Klebinger2018-11-171-16/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: This patch implements a new code layout algorithm. It has been tested for x86 and is disabled on other platforms. Performance varies slightly be CPU/Machine but in general seems to be better by around 2%. Nofib shows only small differences of about +/- ~0.5% overall depending on flags/machine performance in other benchmarks improved significantly. Other benchmarks includes at least the benchmarks of: aeson, vector, megaparsec, attoparsec, containers, text and xeno. While the magnitude of gains differed three different CPUs where tested with all getting faster although to differing degrees. I tested: Sandy Bridge(Xeon), Haswell, Skylake * Library benchmark results summarized: * containers: ~1.5% faster * aeson: ~2% faster * megaparsec: ~2-5% faster * xml library benchmarks: 0.2%-1.1% faster * vector-benchmarks: 1-4% faster * text: 5.5% faster On average GHC compile times go down, as GHC compiled with the new layout is faster than the overhead introduced by using the new layout algorithm, Things this patch does: * Move code responsilbe for block layout in it's own module. * Move the NcgImpl Class into the NCGMonad module. * Extract a control flow graph from the input cmm. * Update this cfg to keep it in sync with changes during asm codegen. This has been tested on x64 but should work on x86. Other platforms still use the old codelayout. * Assign weights to the edges in the CFG based on type and limited static analysis which are then used for block layout. * Once we have the final code layout eliminate some redundant jumps. In particular turn a sequences of: jne .foo jmp .bar foo: into je bar foo: .. Test Plan: ci Reviewers: bgamari, jmct, jrtc27, simonmar, simonpj, RyanGlScott Reviewed By: RyanGlScott Subscribers: RyanGlScott, trommler, jmct, carter, thomie, rwbarton GHC Trac Issues: #15124 Differential Revision: https://phabricator.haskell.org/D4726
* stack: fix stack allocations on WindowsTamar Christina2018-07-181-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: On Windows one is not allowed to drop the stack by more than a page size. The reason for this is that the OS only allocates enough stack till what the TEB specifies. After that a guard page is placed and the rest of the virtual address space is unmapped. The intention is that doing stack allocations will cause you to hit the guard which will then map the next page in and move the guard. This is done to prevent what in the Linux world is known as stack clash vulnerabilities https://access.redhat.com/security/cve/cve-2017-1000364. There are modules in GHC for which the liveliness analysis thinks the reserved 8KB of spill slots isn't enough. One being DynFlags and the other being Cabal. Though I think the Cabal one is likely a bug: ``` 4d6544: 81 ec 00 46 00 00 sub $0x4600,%esp 4d654a: 8d 85 94 fe ff ff lea -0x16c(%ebp),%eax 4d6550: 3b 83 1c 03 00 00 cmp 0x31c(%ebx),%eax 4d6556: 0f 82 de 8d 02 00 jb 4ff33a <_cLpg_info+0x7a> 4d655c: c7 45 fc 14 3d 50 00 movl $0x503d14,-0x4(%ebp) 4d6563: 8b 75 0c mov 0xc(%ebp),%esi 4d6566: 83 c5 fc add $0xfffffffc,%ebp 4d6569: 66 f7 c6 03 00 test $0x3,%si 4d656e: 0f 85 a6 d7 02 00 jne 503d1a <_cLpb_info+0x6> 4d6574: 81 c4 00 46 00 00 add $0x4600,%esp ``` It allocates nearly 18KB of spill slots for a simple 4 line function and doesn't even use it. Note that this doesn't happen on x64 or when making a validate build. Only when making a build without a validate and build.mk. This and the allocation in DynFlags means the stack allocation will jump over the guard page into unmapped memory areas and GHC or an end program segfaults. The pagesize on x86 Windows is 4KB which means we hit it very easily for these two modules, which explains the total DOA of GHC 32bit for the past 3 releases and the "random" segfaults on Windows. ``` 0:000> bp 00503d29 0:000> gn Breakpoint 0 hit WARNING: Stack overflow detected. The unwound frames are extracted from outside normal stack bounds. eax=03b6b9c9 ebx=00dc90f0 ecx=03cac48c edx=03cac43d esi=03b6b9c9 edi=03abef40 eip=00503d29 esp=013e96fc ebp=03cf8f70 iopl=0 nv up ei pl nz na po nc cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000202 setup+0x103d29: 00503d29 89442440 mov dword ptr [esp+40h],eax ss:002b:013e973c=???????? WARNING: Stack overflow detected. The unwound frames are extracted from outside normal stack bounds. WARNING: Stack overflow detected. The unwound frames are extracted from outside normal stack bounds. 0:000> !teb TEB at 00384000 ExceptionList: 013effcc StackBase: 013f0000 StackLimit: 013eb000 ``` This doesn't fix the liveliness analysis but does fix the allocations, by emitting a function call to `__chkstk_ms` when doing allocations of larger than a page, this will make sure the stack is probed every page so the kernel maps in the next page. `__chkstk_ms` is provided by `libGCC`, which is under the `GNU runtime exclusion license`, so it's safe to link against it, even for proprietary code. (Technically we already do since we link compiled C code in.) For allocations smaller than a page we drop the stack and probe the new address. This avoids the function call and still makes sure we hit the guard if needed. PS: In case anyone is Wondering why we didn't notice this before, it's because we only test x86_64 and on Windows 10. On x86_64 the page size is 8KB and also the kernel is a bit more lenient on Windows 10 in that it seems to catch the segfault and resize the stack if it was unmapped: ``` 0:000> t eax=03b6b9c9 ebx=00dc90f0 ecx=03cac48c edx=03cac43d esi=03b6b9c9 edi=03abef40 eip=00503d2d esp=013e96fc ebp=03cf8f70 iopl=0 nv up ei pl nz na po nc cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000202 setup+0x103d2d: 00503d2d 8b461b mov eax,dword ptr [esi+1Bh] ds:002b:03b6b9e4=03cac431 0:000> !teb TEB at 00384000 ExceptionList: 013effcc StackBase: 013f0000 StackLimit: 013e9000 ``` Likely Windows 10 has a guard page larger than previous versions. This fixes the stack allocations, and as soon as I get the time I will look at the liveliness analysis. I find it highly unlikely that simple Cabal function requires ~2200 spill slots. Test Plan: ./validate Reviewers: simonmar, bgamari Reviewed By: bgamari Subscribers: AndreasK, rwbarton, thomie, carter GHC Trac Issues: #15154 Differential Revision: https://phabricator.haskell.org/D4917
* Track type variable scope more carefully.Richard Eisenberg2018-03-311-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The main job of this commit is to track more accurately the scope of tyvars introduced by user-written foralls. For example, it would be to have something like this: forall a. Int -> (forall k (b :: k). Proxy '[a, b]) -> Bool In that type, a's kind must be k, but k isn't in scope. We had a terrible way of doing this before (not worth repeating or describing here, but see the old tcImplicitTKBndrs and friends), but now we have a principled approach: make an Implication when kind-checking a forall. Doing so then hooks into the existing machinery for preventing skolem-escape, performing floating, etc. This also means that we bump the TcLevel whenever going into a forall. The new behavior is done in TcHsType.scopeTyVars, but see also TcHsType.tc{Im,Ex}plicitTKBndrs, which have undergone significant rewriting. There are several Notes near there to guide you. Of particular interest there is that Implication constraints can now have skolems that are out of order; this situation is reported in TcErrors. A major consequence of this is a slightly tweaked process for type- checking type declarations. The new Note [Use SigTvs in kind-checking pass] in TcTyClsDecls lays it out. The error message for dependent/should_fail/TypeSkolEscape has become noticeably worse. However, this is because the code in TcErrors goes to some length to preserve pre-8.0 error messages for kind errors. It's time to rip off that plaster and get rid of much of the kind-error-specific error messages. I tried this, and doing so led to a lovely error message for TypeSkolEscape. So: I'm accepting the error message quality regression for now, but will open up a new ticket to fix it, along with a larger error-message improvement I've been pondering. This applies also to dependent/should_fail/{BadTelescope2,T14066,T14066e}, polykinds/T11142. Other minor changes: - isUnliftedTypeKind didn't look for tuples and sums. It does now. - check_type used check_arg_type on both sides of an AppTy. But the left side of an AppTy isn't an arg, and this was causing a bad error message. I've changed it to use check_type on the left-hand side. - Some refactoring around when we print (TYPE blah) in error messages. The changes decrease the times when we do so, to good effect. Of course, this is still all controlled by -fprint-explicit-runtime-reps Fixes #14066 #14749 Test cases: dependent/should_compile/{T14066a,T14749}, dependent/should_fail/T14066{,c,d,e,f,g,h}
* Typofix in panicGabor Greif2017-10-301-1/+1
|
* compiler: introduce custom "GhcPrelude" PreludeHerbert Valerio Riedel2017-09-191-0/+2
| | | | | | | | | | | | | | | | | | This switches the compiler/ component to get compiled with -XNoImplicitPrelude and a `import GhcPrelude` is inserted in all modules. This is motivated by the upcoming "Prelude" re-export of `Semigroup((<>))` which would cause lots of name clashes in every modulewhich imports also `Outputable` Reviewers: austin, goldfire, bgamari, alanz, simonmar Reviewed By: bgamari Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari Differential Revision: https://phabricator.haskell.org/D3989
* Hoopl: remove dependency on Hoopl packageMichal Terepeta2017-06-231-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This copies the subset of Hoopl's functionality needed by GHC to `cmm/Hoopl` and removes the dependency on the Hoopl package. The main motivation for this change is the confusing/noisy interface between GHC and Hoopl: - Hoopl has `Label` which is GHC's `BlockId` but different than GHC's `CLabel` - Hoopl has `Unique` which is different than GHC's `Unique` - Hoopl has `Unique{Map,Set}` which are different than GHC's `Uniq{FM,Set}` - GHC has its own specialized copy of `Dataflow`, so `cmm/Hoopl` is needed just to filter the exposed functions (filter out some of the Hoopl's and add the GHC ones) With this change, we'll be able to simplify this significantly. It'll also be much easier to do invasive changes (Hoopl is a public package on Hackage with users that depend on the current behavior) This should introduce no changes in functionality - it merely copies the relevant code. Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com> Test Plan: ./validate Reviewers: austin, bgamari, simonmar Reviewed By: bgamari, simonmar Subscribers: simonpj, kavon, rwbarton, thomie Differential Revision: https://phabricator.haskell.org/D3616
* Replace Digraph's Node type synonym with a data typeMatthew Pickering2017-04-041-10/+10
| | | | | | | | | | | | | This refactoring makes it more obvious when we are constructing a Node for the digraph rather than a less useful 3-tuple. Reviewers: austin, goldfire, bgamari, simonmar, dfeuer Reviewed By: dfeuer Subscribers: rwbarton, thomie Differential Revision: https://phabricator.haskell.org/D3414
* Upgrade UniqSet to a newtypeDavid Feuer2017-03-011-12/+16
| | | | | | | | | | | | | | | | | | | | | The fundamental problem with `type UniqSet = UniqFM` is that `UniqSet` has a key invariant `UniqFM` does not. For example, `fmap` over `UniqSet` will generally produce nonsense. * Upgrade `UniqSet` from a type synonym to a newtype. * Remove unused and shady `extendVarSet_C` and `addOneToUniqSet_C`. * Use cached unique in `tyConsOfType` by replacing `unitNameEnv (tyConName tc) tc` with `unitUniqSet tc`. Reviewers: austin, hvr, goldfire, simonmar, niteria, bgamari Reviewed By: niteria Subscribers: thomie Differential Revision: https://phabricator.haskell.org/D3146
* Typofixes in manual and comments [ci skip]Gabor Greif2017-01-041-1/+1
|
* BlockId: remove BlockMap and BlockSet synonymsMichal Terepeta2016-12-081-3/+4
| | | | | | | | | | | | | | | | | | | | This continues removal of `BlockId` module in favor of Hoopl's `Label`. Most of the changes here are mechanical, apart from the orphan `Outputable` instances for `LabelMap` and `LabelSet`. For now I've moved them to `cmm/Hoopl`, since it's already trying to manage all imports from Hoopl (to avoid any collisions). Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com> Test Plan: validate Reviewers: bgamari, austin, simonmar Reviewed By: simonmar Subscribers: thomie Differential Revision: https://phabricator.haskell.org/D2800
* Remove most functions from cmm/BlockIdMichal Terepeta2016-11-291-5/+5
| | | | | | | | | | | | | | | | | | | | It seems that `BlockId` module could simply go away in favor of Hoopl's `Label`. This is the first step to do that. In a few places I had to add some type signatures, but most of them seem to help with code readability. Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com> Test Plan: ./validate Reviewers: austin, simonmar, bgamari Reviewed By: bgamari Subscribers: thomie Differential Revision: https://phabricator.haskell.org/D2765
* RegAlloc: Make some pattern matched completeJoachim Breitner2016-10-061-5/+5
| | | | | | | these actually are complete, but due to the use of pattern guards, the compiler does not see that. Refactor the code that it does. Differential Revision: https://phabricator.haskell.org/D2574
* RegAlloc: Use IntSet/IntMaps instead of generic Set/MapsÖmer Sinan Ağacan2016-08-061-7/+5
|
* Remove uniqSetToListBartosz Nitka2016-07-011-9/+15
| | | | | | | This documents nondeterminism in code generation and removes the nondeterministic ufmToList function. In the future someone will have to use nonDetEltsUFM (with proper explanation) or pprUFM.
* Remove ufmToListBartosz Nitka2016-06-301-4/+8
| | | | | | | This documents nondeterminism in code generation and removes the nondeterministic ufmToList function. In the future someone will have to use nonDetUFMToList (with proper explanation) or pprUFMWithKeys.
* Provide Uniquable version of SCCBartosz Nitka2016-06-231-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | We want to remove the `Ord Unique` instance because there's no way to implement it in deterministic way and it's too easy to use by accident. We sometimes compute SCC for datatypes whose Ord instance is implemented in terms of Unique. The Ord constraint on SCC is just an artifact of some internal data structures. We can have an alternative implementation with a data structure that uses Uniquable instead. This does exactly that and I'm pleased that I didn't have to introduce any duplication to do that. Test Plan: ./validate I looked at performance tests and it's a tiny bit better. Reviewers: bgamari, simonmar, ezyang, austin, goldfire Subscribers: thomie Differential Revision: https://phabricator.haskell.org/D2359 GHC Trac Issues: #4012
* Replace calls to `ptext . sLit` with `text`Jan Stolarek2016-01-181-8/+7
| | | | | | | | | | | | | | | | | | | | Summary: In the past the canonical way for constructing an SDoc string literal was the composition `ptext . sLit`. But for some time now we have function `text` that does the same. Plus it has some rules that optimize its runtime behaviour. This patch takes all uses of `ptext . sLit` in the compiler and replaces them with calls to `text`. The main benefits of this patch are clener (shorter) code and less dependencies between module, because many modules now do not need to import `FastString`. I don't expect any performance benefits - we mostly use SDocs to report errors and it seems there is little to be gained here. Test Plan: ./validate Reviewers: bgamari, austin, goldfire, hvr, alanz Subscribers: goldfire, thomie, mpickering Differential Revision: https://phabricator.haskell.org/D1784
* Kill redundant patternsBen Gamari2015-12-031-2/+0
| | | | | George's new exhaustiveness checker now realizes these are impossible. Yay!
* Delete hack that was once needed to fix the buildThomas Miedema2014-09-251-0/+1
| | | | | | | | | | | | | | | | | Summary: Introduced in 6c7b41cc2b24f533697a62bf1843507ae043fc97. I checked the rest of that commit, and this is all that was left to revert. Test Plan: x Reviewers: ezyang, austin Reviewed By: ezyang, austin Subscribers: simonmar, ezyang, carter, thomie Differential Revision: https://phabricator.haskell.org/D241
* Allow multiple entry points when allocating recursive groups (#9303)Simon Marlow2014-07-311-11/+15
| | | | | | | | | | | | | | | | | Summary: In this example we ended up with some code that was only reachable via an info table, because a branch had been optimised away by the native code generator. The register allocator then got confused because it was only considering the first block of the proc to be an entry point, when actually any of the info tables are entry points. Test Plan: validate Reviewers: simonpj, austin Subscribers: simonmar, relrod, carter Differential Revision: https://phabricator.haskell.org/D88
* Fix discarding of unreachable code in the register allocator (#9155)Simon Marlow2014-06-061-4/+10
| | | | | | | A previous fix to this was wrong: f5879acd018494b84233f26fba828ce376d0f81d and left some unreachable code behind. So rather than try to be clever and do this at the same time as the strongly-connected-component analysis, I'm doing a separate reachability pass first.
* Add LANGUAGE pragmas to compiler/ source filesHerbert Valerio Riedel2014-05-151-1/+6
| | | | | | | | | | | | | | | | | | In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been reorganized, while following the convention, to - place `{-# LANGUAGE #-}` pragmas at the top of the source file, before any `{-# OPTIONS_GHC #-}`-lines. - Moreover, if the list of language extensions fit into a single `{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each individual language extension. In both cases, try to keep the enumeration alphabetically ordered. (The latter layout is preferable as it's more diff-friendly) While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
* Validate inferred theta. Fixes #8883Jan Stolarek2014-04-191-0/+1
| | | | | | | This checks that all the required extensions are enabled for the inferred type signature. Updates binary and vector submodules.
* Discard unreachable code in the register allocator (#7574)Simon Marlow2013-09-231-7/+33
| | | | | | | | | | | | | | | | | | | The problem with unreachable code is that it might refer to undefined registers. This happens accidentally: a block can be orphaned by an optimisation, for example when the result of a comparsion becomes known. The register allocator panics when it finds an undefined register, because they shouldn't occur in generated code. So we need to also discard unreachable code to prevent this panic being triggered by optimisations. The register alloator already does a strongly-connected component analysis, so it ought to be easy to make it discard unreachable code as part of that traversal. It turns out that we need a different variant of the scc algorithm to do that (see Digraph), however the new variant also generates slightly better code by putting the blocks within a loop in a better order for register allocation.
* Fix typosGabor Greif2013-04-071-3/+3
|
* Remove OldCmm, convert backends to consume new CmmSimon Marlow2012-11-121-6/+7
| | | | | | | | | | | | | | | | | | This removes the OldCmm data type and the CmmCvt pass that converts new Cmm to OldCmm. The backends (NCGs, LLVM and C) have all been converted to consume new Cmm. The main difference between the two data types is that conditional branches in new Cmm have both true/false successors, whereas in OldCmm the false case was a fallthrough. To generate slightly better code we occasionally need to invert a conditional to ensure that the branch-not-taken becomes a fallthrough; this was previously done in CmmCvt, and it is now done in CmmContFlowOpt. We could go further and use the Hoopl Block representation for native code, which would mean that we could use Hoopl's postorderDfs and analyses for native code, but for now I've left it as is, using the old ListGraph representation for native code.
* Attach global register liveness info to Cmm procedures.Geoffrey Mainland2012-10-301-21/+21
| | | | | | | All Cmm procedures now include the set of global registers that are live on procedure entry, i.e., the global registers used to pass arguments to the procedure. Only global registers that are use to pass arguments are included in this list.
* Merge branch 'master' of darcs.haskell.org:/srv/darcs//ghcIan Lynagh2012-09-201-0/+5
|\
| * fix warningSimon Marlow2012-09-201-0/+5
| |
* | Remove redundant pragmas from RegAlloc.LivenessIan Lynagh2012-09-201-2/+0
|/
* Move some more constants into platformConstantsIan Lynagh2012-09-141-7/+8
|
* Pass platform down to lastxmmIan Lynagh2012-08-211-38/+45
|
* New codegen: do not split proc-points when using the NCGSimon Marlow2012-07-301-2/+2
| | | | | | | | | Proc-point splitting is only required by backends that do not support having proc-points within a code block (that is, everything except the native backend, i.e. LLVM and C). Not doing proc-point splitting saves some compilation time, and might produce slightly better code in some cases.
* Stop exporting, and stop using, some deprecated functionsIan Lynagh2012-06-131-3/+3
|
* Remove more unused Platform argumentsIan Lynagh2012-06-131-5/+4
|
* Remove PlatformOutputableIan Lynagh2012-06-131-30/+25
| | | | | We can now get the Platform from the DynFlags inside an SDoc, so we no longer need to pass the Platform in.
* some small optimisationsSimon Marlow2011-12-131-1/+1
|
* More CPP removal: pprDynamicLinkerAsmLabel in CLabelIan Lynagh2011-10-021-8/+14
| | | | And some knock-on changes
* Renaming onlySimon Peyton Jones2011-08-251-22/+22
| | | | | CmmTop -> CmmDecl CmmPgm -> CmmGroup