| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
- Remove unneeded ones
- Use <..> for inter-package.
Besides general clean up, helps distinguish between the RTS we link
against vs the RTS we compile for.
|
| |
|
|
|
|
|
|
| |
Add StgToCmm module hierarchy. Platform modules that are used in several
other places (NCG, LLVM codegen, Cmm transformations) are put into
GHC.Platform.
|
|
|
|
|
|
|
|
|
|
|
| |
These kinds of imports are necessary in some cases such as
importing instances of typeclasses or intentionally creating
dependencies in the build system, but '-Wunused-imports' can't
detect when they are no longer needed. This commit removes the
unused ones currently in the code base (not including test files
or submodules), with the hope that doing so may increase
parallelism in the build system by removing unnecessary
dependencies.
|
|
|
|
|
|
|
|
| |
We introduce a PlatformWordSize type and use it in platformWordSize
field.
This removes to panic/error calls called when platform word size is not
32 or 64. We now check for this when reading the platform config.
|
|
|
|
|
|
|
| |
Unfortunately this will require more work; register allocation is
quite broken.
This reverts commit acd795583625401c5554f8e04ec7efca18814011.
|
|
|
|
|
|
|
| |
This adds support for constructing vector types from Float#, Double# etc
and performing arithmetic operations on them
Cleaned-Up-By: Ben Gamari <ben@well-typed.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Here the following changes are introduced:
- A read barrier machine op is added to Cmm.
- The order in which a closure's fields are read and written is changed.
- Memory barriers are added to RTS code to ensure correctness on
out-or-order machines with weak memory ordering.
Cmm has a new CallishMachOp called MO_ReadBarrier. On weak memory machines, this
is lowered to an instruction that ensures memory reads that occur after said
instruction in program order are not performed before reads coming before said
instruction in program order. On machines with strong memory ordering properties
(e.g. X86, SPARC in TSO mode) no such instruction is necessary, so
MO_ReadBarrier is simply erased. However, such an instruction is necessary on
weakly ordered machines, e.g. ARM and PowerPC.
Weam memory ordering has consequences for how closures are observed and mutated.
For example, consider a closure that needs to be updated to an indirection. In
order for the indirection to be safe for concurrent observers to enter, said
observers must read the indirection's info table before they read the
indirectee. Furthermore, the entering observer makes assumptions about the
closure based on its info table contents, e.g. an INFO_TYPE of IND imples the
closure has an indirectee pointer that is safe to follow.
When a closure is updated with an indirection, both its info table and its
indirectee must be written. With weak memory ordering, these two writes can be
arbitrarily reordered, and perhaps even interleaved with other threads' reads
and writes (in the absence of memory barrier instructions). Consider this
example of a bad reordering:
- An updater writes to a closure's info table (INFO_TYPE is now IND).
- A concurrent observer branches upon reading the closure's INFO_TYPE as IND.
- A concurrent observer reads the closure's indirectee and enters it. (!!!)
- An updater writes the closure's indirectee.
Here the update to the indirectee comes too late and the concurrent observer has
jumped off into the abyss. Speculative execution can also cause us issues,
consider:
- An observer is about to case on a value in closure's info table.
- The observer speculatively reads one or more of closure's fields.
- An updater writes to closure's info table.
- The observer takes a branch based on the new info table value, but with the
old closure fields!
- The updater writes to the closure's other fields, but its too late.
Because of these effects, reads and writes to a closure's info table must be
ordered carefully with respect to reads and writes to the closure's other
fields, and memory barriers must be placed to ensure that reads and writes occur
in program order. Specifically, updates to a closure must follow the following
pattern:
- Update the closure's (non-info table) fields.
- Write barrier.
- Update the closure's info table.
Observing a closure's fields must follow the following pattern:
- Read the closure's info pointer.
- Read barrier.
- Read the closure's (non-info table) fields.
This patch updates RTS code to obey this pattern. This should fix long-standing
SMP bugs on ARM (specifically newer aarch64 microarchitectures supporting
out-of-order execution) and PowerPC. This fixes issue #15449.
Co-Authored-By: Ben Gamari <ben@well-typed.com>
|
|
|
|
|
|
|
| |
ghc-pkg needs to be aware of platforms so it can figure out which
subdire within the user package db to use. This is admittedly
roundabout, but maybe Cabal could use the same notion of a platform as
GHC to good affect too.
|
|
|
|
|
| |
Previously log and exp were primitives yet log1p and expm1 were FFI
calls. Fix this non-uniformity.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When ghc was built for powerpc32 built failed as:
It's a fallout of commit 3f46cffcc2850e68405a1
("PPC NCG: Refactor stack allocation code") where
word size used to be
II32/II64
and changed to
II8/panic "no width for given number of bytes"
widthFromBytes ((platformWordSize platform) `quot` 8)
The change restores initial behaviour by removing extra division.
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On powerpc32 64-bit comparison code generated dangling
target labels. This caused ghc build failure as:
$ ./configure --target=powerpc-unknown-linux-gnu && make
...
SCCs aren't in reverse dependent order
bad blockId n3U
This happened because condIntCode' in PPC codegen generated
label name but did not place the label into `cmp_lo` code block.
The change adds the `cmp_lo` label into the case of negative
comparison.
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a new closure identifier is being established to a
local or exported closure already emitted into the same
module, refrain from adding an IND_STATIC closure, and
instead emit an assembly-language alias.
Inter-module IND_STATIC objects still remain, and need to be
addressed by other measures.
Binary-size savings on nofib are around 0.1%.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* simplifies registers to have GPR, Float and Double, by removing the SSE2 and X87 Constructors
* makes -msse2 assumed/default for x86 platforms, fixing a long standing nondeterminism in rounding
behavior in 32bit haskell code
* removes the 80bit floating point representation from the supported float sizes
* theres still 1 tiny bit of x87 support needed,
for handling float and double return values in FFI calls wrt the C ABI on x86_32,
but this one piece does not leak into the rest of NCG.
* Lots of code thats not been touched in a long time got deleted as a
consequence of all of this
all in all, this change paves the way towards a lot of future further
improvements in how GHC handles floating point computations, along with
making the native code gen more accessible to a larger pool of contributors.
|
|
|
|
|
|
| |
This commit includes the necessary changes in code and
documentation to support a primop that reverses a word's
bits. It also includes a test.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We make liveness information for global registers
available on `JMP` and `BCTR`, which were the last instructions
missing. With complete liveness information we do not need to
reserve global registers in `freeReg` anymore. Moreover we
assign R9 and R10 to callee saves registers.
Cleanup by removing `Reg_Su`, which was unused, from `freeReg`
and removing unused register definitions.
The calculation of the number of floating point registers is too
conservative. Just follow X86 and specify the constants directly.
Overall on PowerPC this results in 0.3 % smaller code size in nofib
while runtime is slightly better in some tests.
|
|
|
|
|
| |
This moves all URL references to Trac tickets to their corresponding
GitLab counterparts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The splitter is an evil Perl script that processes assembler code.
Its job can be done better by the linker's --gc-sections flag. GHC
passes this flag to the linker whenever -split-sections is passed on
the command line.
This is based on @DemiMarie's D2768.
Fixes Trac #11315
Fixes Trac #9832
Fixes Trac #8964
Fixes Trac #8685
Fixes Trac #8629
|
|
|
|
|
|
|
|
|
|
| |
This patch adds an optimization into the NCG: for large strings
(threshold configurable via -fbinary-blob-threshold=NNN flag), instead
of printing `.asciz "..."` in the generated ASM source, we print
`.incbin "tmpXXX.dat"` and we dump the contents of the string into a
temporary "tmpXXX.dat" file.
See the note for more details.
|
|
|
|
| |
Fixes #16222
|
|
|
|
|
| |
Rename constructors in calling convention data type to reflect the
fact that they represent an ELF ABI not only a Linux ABI.
|
| |
|
| |
|
| |
|
|
|
|
|
| |
All operating systems except AIX and Darwin follow the ELF
specification.
|
|
|
|
|
| |
There is only one place where UPDATE_SP was used. Instead of the
UPDATE_SP pseudo instruction build the list of instructions directly.
|
| |
|
|
|
|
|
|
|
| |
Support for Mac OS X on PowerPC has been dropped by Apple years ago. We
follow suit and remove PowerPC support for Darwin.
Fixes #16106.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Handle Int*QuotRemOP and Word*QuotRemOp in PPC NCG.
Refactor common code with remainder operation.
Test Plan: validate (I validated on Linux powerpc64le and x86_64)
Reviewers: erikd, hvr, bgamari, simonmar
Reviewed By: bgamari
Subscribers: rwbarton, carter
Differential Revision: https://phabricator.haskell.org/D5323
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Generate code for MachOps with smaller than wordsize data.
Refactor conversion MachOps.
Fixes #15854
Test Plan: validate (I validated on powerpc64le and x86_64 Linux)
Reviewers: bgamari, hvr, erikd, simonmar
Subscribers: rwbarton, carter
GHC Trac Issues: #15854
Differential Revision: https://phabricator.haskell.org/D5300
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In a previous patch we replaced some built-in literal constructors
(MachInt, MachWord, etc.) with a single LitNumber constructor.
In this patch we replace the `Mach` prefix of the remaining constructors
with `Lit` for consistency (e.g., LitChar, LitLabel, etc.).
Sadly the name `LitString` was already taken for a kind of FastString
and it would become misleading to have both `LitStr` (literal
constructor renamed after `MachStr`) and `LitString` (FastString
variant). Hence this patch renames the FastString variant `PtrString`
(which is more accurate) and the literal string constructor now uses the
least surprising `LitString` name.
Both `Literal` and `LitString/PtrString` have recently seen breaking
changes so doing this kind of renaming now shouldn't harm much.
Reviewers: hvr, goldfire, bgamari, simonmar, jrtc27, tdammers
Subscribers: tdammers, rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D4881
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch implements a new code layout algorithm.
It has been tested for x86 and is disabled on other platforms.
Performance varies slightly be CPU/Machine but in general seems to be better
by around 2%.
Nofib shows only small differences of about +/- ~0.5% overall depending on
flags/machine performance in other benchmarks improved significantly.
Other benchmarks includes at least the benchmarks of: aeson, vector, megaparsec, attoparsec,
containers, text and xeno.
While the magnitude of gains differed three different CPUs where tested with
all getting faster although to differing degrees. I tested: Sandy Bridge(Xeon), Haswell,
Skylake
* Library benchmark results summarized:
* containers: ~1.5% faster
* aeson: ~2% faster
* megaparsec: ~2-5% faster
* xml library benchmarks: 0.2%-1.1% faster
* vector-benchmarks: 1-4% faster
* text: 5.5% faster
On average GHC compile times go down, as GHC compiled with the new layout
is faster than the overhead introduced by using the new layout algorithm,
Things this patch does:
* Move code responsilbe for block layout in it's own module.
* Move the NcgImpl Class into the NCGMonad module.
* Extract a control flow graph from the input cmm.
* Update this cfg to keep it in sync with changes during
asm codegen. This has been tested on x64 but should work on x86.
Other platforms still use the old codelayout.
* Assign weights to the edges in the CFG based on type and limited static
analysis which are then used for block layout.
* Once we have the final code layout eliminate some redundant jumps.
In particular turn a sequences of:
jne .foo
jmp .bar
foo:
into
je bar
foo:
..
Test Plan: ci
Reviewers: bgamari, jmct, jrtc27, simonmar, simonpj, RyanGlScott
Reviewed By: RyanGlScott
Subscribers: RyanGlScott, trommler, jmct, carter, thomie, rwbarton
GHC Trac Issues: #15124
Differential Revision: https://phabricator.haskell.org/D4726
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: hvr, bgamari, simonmar, jrtc27
Reviewed By: bgamari
Subscribers: alpmestan, rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D5034
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
On Windows one is not allowed to drop the stack by more than a page size.
The reason for this is that the OS only allocates enough stack till what
the TEB specifies. After that a guard page is placed and the rest of the
virtual address space is unmapped.
The intention is that doing stack allocations will cause you to hit the
guard which will then map the next page in and move the guard. This is
done to prevent what in the Linux world is known as stack clash
vulnerabilities https://access.redhat.com/security/cve/cve-2017-1000364.
There are modules in GHC for which the liveliness analysis thinks the
reserved 8KB of spill slots isn't enough. One being DynFlags and the
other being Cabal.
Though I think the Cabal one is likely a bug:
```
4d6544: 81 ec 00 46 00 00 sub $0x4600,%esp
4d654a: 8d 85 94 fe ff ff lea -0x16c(%ebp),%eax
4d6550: 3b 83 1c 03 00 00 cmp 0x31c(%ebx),%eax
4d6556: 0f 82 de 8d 02 00 jb 4ff33a <_cLpg_info+0x7a>
4d655c: c7 45 fc 14 3d 50 00 movl $0x503d14,-0x4(%ebp)
4d6563: 8b 75 0c mov 0xc(%ebp),%esi
4d6566: 83 c5 fc add $0xfffffffc,%ebp
4d6569: 66 f7 c6 03 00 test $0x3,%si
4d656e: 0f 85 a6 d7 02 00 jne 503d1a <_cLpb_info+0x6>
4d6574: 81 c4 00 46 00 00 add $0x4600,%esp
```
It allocates nearly 18KB of spill slots for a simple 4 line function
and doesn't even use it. Note that this doesn't happen on x64 or
when making a validate build. Only when making a build without a
validate and build.mk.
This and the allocation in DynFlags means the stack allocation will jump
over the guard page into unmapped memory areas and GHC or an end program
segfaults.
The pagesize on x86 Windows is 4KB which means we hit it very easily for
these two modules, which explains the total DOA of GHC 32bit for the past
3 releases and the "random" segfaults on Windows.
```
0:000> bp 00503d29
0:000> gn
Breakpoint 0 hit
WARNING: Stack overflow detected. The unwound frames are extracted from outside
normal stack bounds.
eax=03b6b9c9 ebx=00dc90f0 ecx=03cac48c edx=03cac43d esi=03b6b9c9 edi=03abef40
eip=00503d29 esp=013e96fc ebp=03cf8f70 iopl=0 nv up ei pl nz na po nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000202
setup+0x103d29:
00503d29 89442440 mov dword ptr [esp+40h],eax ss:002b:013e973c=????????
WARNING: Stack overflow detected. The unwound frames are extracted from outside
normal stack bounds.
WARNING: Stack overflow detected. The unwound frames are extracted from outside
normal stack bounds.
0:000> !teb
TEB at 00384000
ExceptionList: 013effcc
StackBase: 013f0000
StackLimit: 013eb000
```
This doesn't fix the liveliness analysis but does fix the allocations, by
emitting a function call to `__chkstk_ms` when doing allocations of larger
than a page, this will make sure the stack is probed every page so the kernel
maps in the next page.
`__chkstk_ms` is provided by `libGCC`, which is under the
`GNU runtime exclusion license`, so it's safe to link against it, even for
proprietary code. (Technically we already do since we link compiled C code in.)
For allocations smaller than a page we drop the stack and probe the new address.
This avoids the function call and still makes sure we hit the guard if needed.
PS: In case anyone is Wondering why we didn't notice this before, it's because we
only test x86_64 and on Windows 10. On x86_64 the page size is 8KB and also the
kernel is a bit more lenient on Windows 10 in that it seems to catch the segfault
and resize the stack if it was unmapped:
```
0:000> t
eax=03b6b9c9 ebx=00dc90f0 ecx=03cac48c edx=03cac43d esi=03b6b9c9 edi=03abef40
eip=00503d2d esp=013e96fc ebp=03cf8f70 iopl=0 nv up ei pl nz na po nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000202
setup+0x103d2d:
00503d2d 8b461b mov eax,dword ptr [esi+1Bh] ds:002b:03b6b9e4=03cac431
0:000> !teb
TEB at 00384000
ExceptionList: 013effcc
StackBase: 013f0000
StackLimit: 013e9000
```
Likely Windows 10 has a guard page larger than previous versions.
This fixes the stack allocations, and as soon as I get the time I will look at
the liveliness analysis. I find it highly unlikely that simple Cabal function
requires ~2200 spill slots.
Test Plan: ./validate
Reviewers: simonmar, bgamari
Reviewed By: bgamari
Subscribers: AndreasK, rwbarton, thomie, carter
GHC Trac Issues: #15154
Differential Revision: https://phabricator.haskell.org/D4917
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change makes it possible to generate a static 32-bit relative label
offset on x86_64. Currently we can only generate word-sized label
offsets.
This will be used in D4634 to shrink info tables. See D4632 for more
details.
Test Plan: See D4632
Reviewers: bgamari, niteria, michalt, erikd, jrtc27, osa1
Subscribers: thomie, carter
Differential Revision: https://phabricator.haskell.org/D4633
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is mostly for congruence with 'subWordC#' and '{add,sub}IntC#'.
I found 'plusWord2#' while implementing this, which both lacks
documentation and has a slightly different specification than
'addWordC#', which means the generic implementation is unnecessarily
complex.
While I was at it, I also added lacking meta-information on PrimOps
and refactored 'subWordC#'s generic implementation to be branchless.
Reviewers: bgamari, simonmar, jrtc27, dfeuer
Reviewed By: bgamari, dfeuer
Subscribers: dfeuer, thomie, carter
Differential Revision: https://phabricator.haskell.org/D4592
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is required by D4363. D4362 has the implementation for i386
this commit adds PowerPC.
Test Plan: validate
Reviewers: erikd, hvr, simonmar, bgamari
Reviewed By: bgamari
Subscribers: rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D4468
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for the bit deposit and extraction operations provided
by the BMI and BMI2 instruction set extensions on modern amd64 machines.
Implement x86 code generator for pdep and pext. Properly initialise
bmiVersion field.
pdep and pext test cases
Fix pattern match for pdep and pext instructions
Fix build of pdep and pext code for 32-bit architectures
Test Plan: Validate
Reviewers: austin, simonmar, bgamari, angerman
Reviewed By: bgamari
Subscribers: trommler, carter, angerman, thomie, rwbarton, newhoggy
GHC Trac Issues: #14206
Differential Revision: https://phabricator.haskell.org/D4236
|
|
|
|
|
|
|
|
|
|
| |
blockLbl was originally changed in 8b007abbeb3045900a11529d907a835080129176 to
use mkTempAsmLabel to fix an inconsistency resulting in #14221. However, this
breaks the C code generator, which doesn't support AsmTempLabels (#14454).
Instead let's try going the other direction: use a new CLabel variety,
LocalBlockLabel. Then we can teach the C code generator to deal with
these as well.
|
|
|
|
|
|
| |
This broke the 32-bit build.
This reverts commit f5dc8ccc29429d0a1d011f62b6b430f6ae50290c.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for the bit deposit and extraction operations provided
by the BMI and BMI2 instruction set extensions on modern amd64 machines.
Test Plan: Validate
Reviewers: austin, simonmar, bgamari, hvr, goldfire, erikd
Reviewed By: bgamari
Subscribers: goldfire, erikd, trommler, newhoggy, rwbarton, thomie
GHC Trac Issues: #14206
Differential Revision: https://phabricator.haskell.org/D4063
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit rGHC8b007ab assigns the same label to the first basic block
of a proc and to the proc entry point. This violates the PPC 64-bit ELF
v. 1.9 and v. 2.0 ABIs and leads to duplicate symbols.
This patch fixes duplicate symbols caused by block labels
In commit rGHCd7b8da1 an info table label is generated from a block id.
Getting the entry label from that info label leads to an undefined
symbol because a suffix "_entry" that is not present in the block label.
To fix that issue add a new info table label flavour for labels
derived from block ids. Converting such a label with toEntryLabel
produces the original block label.
Fixes #14311
Test Plan: ./validate
Reviewers: austin, bgamari, simonmar, erikd, hvr, angerman
Reviewed By: bgamari
Subscribers: rwbarton, thomie
GHC Trac Issues: #14311
Differential Revision: https://phabricator.haskell.org/D4149
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement AtomicRMW ops, atomic read, atomic write
in PowerPC native code generator. Also implement
branch prediction because we need it in atomic ops
anyway.
This patch improves the issue in #12537 a bit but
does not fix it entirely.
The fallback operations for atomicread and atomicwrite
in libraries/ghc-prim/cbits/atomic.c are incorrect.
This patch avoids those functions by implementing the
operations directly in the native code generator. This
is also what the x86/amd64 NCG and the LLVM backend
do.
Test Plan: validate on AIX and PowerPC (32-bit) Linux
Reviewers: erikd, hvr, austin, bgamari, simonmar
Reviewed By: hvr, bgamari
Subscribers: rwbarton, thomie
GHC Trac Issues: #12537
Differential Revision: https://phabricator.haskell.org/D3984
|
|
|
|
|
|
|
|
|
|
|
|
| |
Depends on D4090
Reviewers: austin, bgamari, erikd, simonmar, alexbiehl
Reviewed By: bgamari
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D4091
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches the compiler/ component to get compiled with
-XNoImplicitPrelude and a `import GhcPrelude` is inserted in all
modules.
This is motivated by the upcoming "Prelude" re-export of
`Semigroup((<>))` which would cause lots of name clashes in every
modulewhich imports also `Outputable`
Reviewers: austin, goldfire, bgamari, alanz, simonmar
Reviewed By: bgamari
Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari
Differential Revision: https://phabricator.haskell.org/D3989
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes #14221, where the NCG and the DWARF code were apparently
giving two different names to the same block.
Test Plan: Validate with DWARF support enabled.
Reviewers: simonmar, austin
Subscribers: rwbarton, thomie
GHC Trac Issues: #14221
Differential Revision: https://phabricator.haskell.org/D3977
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously due to #12759 we disabled PIE support entirely. However, this
breaks the user's ability to produce PIEs. Add an explicit flag, -fPIE,
allowing the user to build PIEs.
Test Plan: Validate
Reviewers: rwbarton, austin, simonmar
Subscribers: trommler, simonmar, trofi, jrtc27, thomie
GHC Trac Issues: #12759, #13702
Differential Revision: https://phabricator.haskell.org/D3589
|