| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Exposes bSwap{,16,32,64}# primops
* Add a new machop: MO_BSwap
* Use a Stg implementation (hs_bswap{16,32,64}) for other implementation
in NCG.
* Generate bswap in X86 NCG for 32 and 64 bits, and for 16 bits, bswap+shr
instead of using xchg.
* Generate llvm.bswap intrinsics in llvm codegen.
Authored-by: Vincent Hanquez <tab@snarc.org>
Signed-off-by: Austin Seipp <aseipp@pobox.com>
|
|
|
|
|
|
| |
Clang doesn't like whitespace between macro and arguments.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
|
|
|
|
| |
This reverts commit 1c5b0511a89488f5280523569d45ee61c0d09ffa.
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Exposes bSwap{,16,32,64}# primops
* Add a new machops MO_BSwap
* Use a Stg implementation (hs_bswap{16,32,64}) for other implementation
in NCG.
* Generate bswap in X86 NCG for 32 and 64 bits, and for 16 bits, bswap+shr
instead of using xchg.
* Generate llvm.bswap intrinsics in llvm codegen.
Patch from Vincent Hanquez.
|
|
|
|
|
| |
It now has its own class, and the addImport function is defined in that
class, rather than needing to be passed as an argument.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes the OldCmm data type and the CmmCvt pass that converts
new Cmm to OldCmm. The backends (NCGs, LLVM and C) have all been
converted to consume new Cmm.
The main difference between the two data types is that conditional
branches in new Cmm have both true/false successors, whereas in OldCmm
the false case was a fallthrough. To generate slightly better code we
occasionally need to invert a conditional to ensure that the
branch-not-taken becomes a fallthrough; this was previously done in
CmmCvt, and it is now done in CmmContFlowOpt.
We could go further and use the Hoopl Block representation for native
code, which would mean that we could use Hoopl's postorderDfs and
analyses for native code, but for now I've left it as is, using the
old ListGraph representation for native code.
|
|
|
|
|
|
|
| |
All Cmm procedures now include the set of global registers that are live on
procedure entry, i.e., the global registers used to pass arguments to the
procedure. Only global registers that are use to pass arguments are included in
this list.
|
|
|
|
|
| |
Mostly d -> g (matching DynFlag -> GeneralFlag).
Also renamed if* to when*, matching the Haskell if/when names
|
| |
|
| |
|
|
|
|
|
|
| |
I've switched to passing DynFlags rather than Platform, as (a) it's
simpler to not have to extract targetPlatform in so many places, and
(b) it may be useful to have DynFlags around in future.
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
HaskellMachRegs.h is no longer included in anything under compiler/
Also, includes/CodeGen.Platform.hs now includes "stg/MachRegs.h"
rather than <stg/MachRegs.h> which means that we always get the file
from the tree, rather than from the bootstrapping compiler.
|
| |
|
| |
|
|
|
|
|
|
| |
Hopefully I've kept the logic the same, and we now generate warnings if
the user does -fno-PIC but we ignore them (e.g. because they're on OS X
amd64).
|
| |
|
| |
|
|
|
|
|
| |
By using Haskell's debugIsOn rather than CPP's "#ifdef DEBUG", we
don't need to kludge things to keep the warning checker happy etc.
|
|
|
|
|
|
|
|
| |
It allows you to do
(high, low) `quotRem` d
provided high < d.
Currently only has an inefficient fallback implementation.
|
| |
|
| |
|
|
|
|
| |
Currently no NCGs support it
|
|
|
|
| |
No special-casing in any NCGs yet
|
|
|
|
| |
Only amd64 has an efficient implementation currently.
|
|
|
|
|
| |
This means we no longer do a division twice when we are using quotRem
(on platforms on which the op is supported; currently only amd64).
|
|
|
|
|
|
|
|
|
| |
We now carry around with CmmJump statements a list of
the STG registers that are live at that jump site.
This is used by the LLVM backend so it can avoid
unnesecarily passing around dead registers, improving
perfromance. This gives us the framework to finally
fix trac #4308.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
This field was doing nothing. I think it originally appeared in a
very old incarnation of the new code generator.
|
|
|
|
|
| |
Based on a patch from Arnaud Degroote <degroote@NetBSD.org> in
trac #5480.
|
| |
|
|
|
|
|
|
|
| |
This reverts commit f75f26cc4eed3c3cfc256ebfb9e77b8e82a766fc.
On second thoughts, this does make sense, for unregisterised via-C
OSes at least.
|
|
|
|
|
|
| |
It doesn't make sense. If platformOS is OSUnknown then we don't know the
answer to any questions about the OS. So now if we don't recognise the
OS we just fail, and the new OS will need to be added to the datatype.
|
|
|
|
| |
And some knock-on changes
|
|
|
|
|
| |
CmmTop -> CmmDecl
CmmPgm -> CmmGroup
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
There's now a variant of the Outputable class that knows what
platform we're targetting:
class PlatformOutputable a where
pprPlatform :: Platform -> a -> SDoc
pprPlatformPrec :: Platform -> Rational -> a -> SDoc
and various instances have had to be converted to use that class,
and we pass Platform around accordingly.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I observed that the [CmmStatics] within CmmData uses the list in a very stylised way.
The first item in the list is almost invariably a CmmDataLabel. Many parts of the
compiler pattern match on this list and fail if this is not true.
This patch makes the invariant explicit by introducing a structured type CmmStatics
that holds the label and the list of remaining [CmmStatic].
There is one wrinkle: the x86 backend sometimes wants to output an alignment directive just
before the label. However, this can be easily fixed up by parameterising the native codegen
over the type of CmmStatics (though the GenCmmTop parameterisation) and using a pair
(Alignment, CmmStatics) there instead.
As a result, I think we will be able to remove CmmAlign and CmmDataLabel from the CmmStatic
data type, thus nuking a lot of code and failing pattern matches. This change will come as part
of my next patch.
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
| |
|
| |
|