| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| | |
|
| | |
|
| | |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch implements the idea of deferring (most) type errors to
runtime, instead emitting only a warning at compile time. The
basic idea is very simple:
* The on-the-fly unifier in TcUnify never fails; instead if it
gets stuck it emits a constraint.
* The constraint solver tries to solve the constraints (and is
entirely unchanged, hooray).
* The remaining, unsolved constraints (if any) are passed to
TcErrors.reportUnsolved. With -fdefer-type-errors, instead of
emitting an error message, TcErrors emits a warning, AND emits
a binding for the constraint witness, binding it
to (error "the error message"), via the new form of evidence
TcEvidence.EvDelayedError. So, when the program is run,
when (and only when) that witness is needed, the program will
crash with the exact same error message that would have been
given at compile time.
Simple really. But, needless to say, the exercise forced me
into some major refactoring.
* TcErrors is almost entirely rewritten
* EvVarX and WantedEvVar have gone away entirely
* ErrUtils is changed a bit:
* New Severity field in ErrMsg
* Renamed the type Message to MsgDoc (this change
touches a lot of files trivially)
* One minor change is that in the constraint solver we try
NOT to combine insoluble constraints, like Int~Bool, else
all such type errors get combined together and result in
only one error message!
* I moved some definitions from TcSMonad to TcRnTypes,
where they seem to belong more
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch should have no user-visible effect. It implements a
significant internal refactoring of the way that FC axioms are
handled. The ultimate goal is to put us in a position to implement
"pattern-matching axioms". But the changes here are only does
refactoring; there is no change in functionality.
Specifically:
* We now treat data/type family instance declarations very,
very similarly to types class instance declarations:
- Renamed InstEnv.Instance as InstEnv.ClsInst, for symmetry with
FamInstEnv.FamInst. This change does affect the GHC API, but
for the better I think.
- Previously, each family type/data instance declaration gave rise
to a *TyCon*; typechecking a type/data instance decl produced
that TyCon. Now, each type/data instance gives rise to
a *FamInst*, by direct analogy with each class instance
declaration giving rise to a ClsInst.
- Just as each ClsInst contains its evidence, a DFunId, so each FamInst
contains its evidence, a CoAxiom. See Note [FamInsts and CoAxioms]
in FamInstEnv. The CoAxiom is a System-FC thing, and can relate any
two types, whereas the FamInst relates directly to the Haskell source
language construct, and always has a function (F tys) on the LHS.
- Just as a DFunId has its own declaration in an interface file, so now
do CoAxioms (see IfaceSyn.IfaceAxiom).
These changes give rise to almost all the refactoring.
* We used to have a hack whereby a type family instance produced a dummy
type synonym, thus
type instance F Int = Bool -> Bool
translated to
axiom FInt :: F Int ~ R:FInt
type R:FInt = Bool -> Bool
This was always a hack, and now it's gone. Instead the type instance
declaration produces a FamInst, whose axiom has kind
axiom FInt :: F Int ~ Bool -> Bool
just as you'd expect.
* Newtypes are done just as before; they generate a CoAxiom. These
CoAxioms are "implicit" (do not generate an IfaceAxiom declaration),
unlike the ones coming from family instance declarations. See
Note [Implicit axioms] in TyCon
On the whole the code gets significantly nicer. There were consequential
tidy-ups in the vectoriser, but I think I got them right.
|
| | |
|
| | |
|
| | |
|
| |
| |
| |
| |
| |
| |
| |
| | |
We no longer have many separate, clashing getDynFlags functions
I've given each GhcMonad its own HasDynFlags instance, rather than
using UndecidableInstances to make a GhcMonad m => HasDynFlags m
instance.
|
| | |
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This is so that we can process the Stg code in constant space. Before
we were generating all the C-- up front, leading to a large space
leak.
I haven't converted the LLVM or C back ends to the incremental scheme,
but it's not hard to do.
|
| | |
|
|/ |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This was pretty straightforward: collect the filenames in the lexer,
and add them in to the tcg_dependent_files list that the typechecker
collects.
Note that we still don't get #included files in the ghc -M output.
Since we don't normally lex the whole file in ghc -M, this same
mechanism can't be used directly.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
This big patch implements a kind-polymorphic core for GHC. The current
implementation focuses on making sure that all kind-monomorphic programs still
work in the new core; it is not yet guaranteed that kind-polymorphic programs
(using the new -XPolyKinds flag) will work.
For more information, see http://haskell.org/haskellwiki/GHC/Kinds
|
| |
|
|
|
|
|
|
|
|
| |
Let GHC know about an external dependency that Template Haskell uses
so that GHC can recompile when the dependency changes.
No support for ghc -M
There is a corresponding addition to the template-haskell library
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
User visible changes
====================
Profilng
--------
Flags renamed (the old ones are still accepted for now):
OLD NEW
--------- ------------
-auto-all -fprof-auto
-auto -fprof-exported
-caf-all -fprof-cafs
New flags:
-fprof-auto Annotates all bindings (not just top-level
ones) with SCCs
-fprof-top Annotates just top-level bindings with SCCs
-fprof-exported Annotates just exported bindings with SCCs
-fprof-no-count-entries Do not maintain entry counts when profiling
(can make profiled code go faster; useful with
heap profiling where entry counts are not used)
Cost-centre stacks have a new semantics, which should in most cases
result in more useful and intuitive profiles. If you find this not to
be the case, please let me know. This is the area where I have been
experimenting most, and the current solution is probably not the
final version, however it does address all the outstanding bugs and
seems to be better than GHC 7.2.
Stack traces
------------
+RTS -xc now gives more information. If the exception originates from
a CAF (as is common, because GHC tends to lift exceptions out to the
top-level), then the RTS walks up the stack and reports the stack in
the enclosing update frame(s).
Result: +RTS -xc is much more useful now - but you still have to
compile for profiling to get it. I've played around a little with
adding 'head []' to GHC itself, and +RTS -xc does pinpoint the problem
quite accurately.
I plan to add more facilities for stack tracing (e.g. in GHCi) in the
future.
Coverage (HPC)
--------------
* derived instances are now coloured yellow if they weren't used
* likewise record field names
* entry counts are more accurate (hpc --fun-entry-count)
* tab width is now correct (markup was previously off in source with
tabs)
Internal changes
================
In Core, the Note constructor has been replaced by
Tick (Tickish b) (Expr b)
which is used to represent all the kinds of source annotation we
support: profiling SCCs, HPC ticks, and GHCi breakpoints.
Depending on the properties of the Tickish, different transformations
apply to Tick. See CoreUtils.mkTick for details.
Tickets
=======
This commit closes the following tickets, test cases to follow:
- Close #2552: not a bug, but the behaviour is now more intuitive
(test is T2552)
- Close #680 (test is T680)
- Close #1531 (test is result001)
- Close #949 (test is T949)
- Close #2466: test case has bitrotted (doesn't compile against current
version of vector-space package)
|
| |
|
|
|