| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Test Plan: validate
Reviewers: simonpj, simonmar, hvr, austin
Subscribers: simonmar, relrod, ezyang, carter
Differential Revision: https://phabricator.haskell.org/D107
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The general approach is to add a new field to the package database,
reexported-modules, which considered by the module finder as possible
module declarations. Unlike declaring stub module files, multiple
reexports of the same physical package at the same name do not
result in an ambiguous import.
Has submodule updates for Cabal and haddock.
NB: When a reexport renames a module, that renaming is *not* accessible
from inside the package. This is not so much a deliberate design choice
as for implementation expediency (reexport resolution happens only when
a package is in the package database.)
TODO: Error handling when there are duplicate reexports/etc is not very
well tested.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Conflicts:
compiler/main/HscTypes.lhs
testsuite/.gitignore
utils/haddock
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously, both Cabal and GHC defined the type PackageId, and we expected
them to be roughly equivalent (but represented differently). This refactoring
separates these two notions.
A package ID is a user-visible identifier; it's the thing you write in a
Cabal file, e.g. containers-0.9. The components of this ID are semantically
meaningful, and decompose into a package name and a package vrsion.
A package key is an opaque identifier used by GHC to generate linking symbols.
Presently, it just consists of a package name and a package version, but
pursuant to #9265 we are planning to extend it to record other information.
Within a single executable, it uniquely identifies a package. It is *not* an
InstalledPackageId, as the choice of a package key affects the ABI of a package
(whereas an InstalledPackageId is computed after compilation.) Cabal computes
a package key for the package and passes it to GHC using -package-name (now
*extremely* misnamed).
As an added bonus, we don't have to worry about shadowing anymore.
As a follow on, we should introduce -current-package-key having the same role as
-package-name, and deprecate the old flag. This commit is just renaming.
The haddock submodule needed to be updated.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Test Plan: validate
Reviewers: simonpj, simonmar, hvr, austin
Subscribers: simonmar, relrod, carter
Differential Revision: https://phabricator.haskell.org/D79
Conflicts:
compiler/main/HscTypes.lhs
compiler/main/Packages.lhs
utils/haddock
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All the initial work on this was done fy 'archblob' (fcsernik@gmail.com);
thank you!
I reviewed the patch, started some tidying, up and then ended up in a huge
swamp of changes, not all of which I can remember now. But:
* To suppress kind arguments when we have -fno-print-explicit-kinds,
- IfaceTyConApp argument types are in a tagged list IfaceTcArgs
* To allow overloaded types to be printed with =>, add IfaceDFunTy to IfaceType.
* When printing data/type family instances for the user, I've made them
print out an informative RHS, which is a new feature. Thus
ghci> info T
data family T a
data instance T Int = T1 Int Int
data instance T Bool = T2
* In implementation terms, pprIfaceDecl has just one "context" argument,
of type IfaceSyn.ShowSub, which says
- How to print the binders of the decl
see note [Printing IfaceDecl binders] in IfaceSyn
- Which sub-comoponents (eg constructors) to print
* Moved FastStringEnv from RnEnv to OccName
It all took a ridiculously long time to do. But it's done!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
reorganized, while following the convention, to
- place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
any `{-# OPTIONS_GHC #-}`-lines.
- Moreover, if the list of language extensions fit into a single
`{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
individual language extension. In both cases, try to keep the
enumeration alphabetically ordered.
(The latter layout is preferable as it's more diff-friendly)
While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
|
|
|
|
| |
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Update several old
http://hackage.haskell.org/trac/ghc
URLs references to the current
http://ghc.haskell.org/trac/ghc
URLs.
Signed-off-by: Herbert Valerio Riedel <hvr@gnu.org>
|
| |
|
|
|
|
|
|
| |
Fallout from 4ade9627608ea0a88450506222bb9afbbcff4294
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The binutils linker on ARM emits unnecessary R_ARM_COPY relocations
which breaks tables-next-to-code in dynamically linked modules. This
check should be more selective but there is currently no released
version where this bug is fixed. See
https://sourceware.org/bugzilla/show_bug.cgi?id=16177 and
https://ghc.haskell.org/trac/ghc/ticket/4210#comment:29 for details.
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
|
|
|
| |
If we don't do this, then in various GHC API scenarios
(which use runGhc) with tracing/debugging/ASSERTs on,
we try to read those unsafe global dynamic flags and
find them uninitialised.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It is important that if a program recieved ^C from the user, and the
program terminates as a result, that it exit with SIGINT so that the
parent process knows that was the case. For example cabal calling ghc
will then be able to tell the difference between it failing and the user
interrupting with ^C and report (or not) appropriately.
So we should just let the UserInterrupt exception propagate to the top
level error handler which will do the right thing.
See http://www.cons.org/cracauer/sigint.html
|
|
|
|
|
|
| |
Instead of reporting only one "module not found"" error.
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit exposes GHC's internal compiler pipeline through a `Hooks`
module in the GHC API. It currently allows you to hook:
* Foreign import/exports declarations
* The frontend up to type checking
* The one shot compilation mode
* Core compilation, and the module iface
* Linking and the phases in DriverPhases.hs
* Quasiquotation
Authored-by: Luite Stegeman <stegeman@gmail.com>
Authored-by: Edsko de Vries <edsko@well-typed.com>
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit changes the syntax and story around overlapping type
family instances. Before, we had "unbranched" instances and
"branched" instances. Now, we have closed type families and
open ones.
The behavior of open families is completely unchanged. In particular,
coincident overlap of open type family instances still works, despite
emails to the contrary.
A closed type family is declared like this:
> type family F a where
> F Int = Bool
> F a = Char
The equations are tried in order, from top to bottom, subject to
certain constraints, as described in the user manual. It is not
allowed to declare an instance of a closed family.
|
|
|
|
| |
We now just pass the filename as an argument
|
|
|
|
| |
We now just pass the output filename as an argument instead
|
|
|
|
| |
v2: added a couple of comments
|
|
|
|
|
| |
It would probably still benefit from some tidying up, but it's now
much more opaque, with the control flow easier to understand.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Function responsible for parsing the static flags, that were spread
across two modules (StaticFlags and StaticFlagParser), are now
in one file. This is analogous to dynamic flags parsing, which is
also contained within a single module.
Signed-off-by: David Terei <davidterei@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
An ordered, overlapping type family instance is introduced by 'type
instance
where', followed by equations. See the new section in the user manual
(7.7.2.2) for details. The canonical example is Boolean equality at the
type
level:
type family Equals (a :: k) (b :: k) :: Bool
type instance where
Equals a a = True
Equals a b = False
A branched family instance, such as this one, checks its equations in
order
and applies only the first the matches. As explained in the note
[Instance
checking within groups] in FamInstEnv.lhs, we must be careful not to
simplify,
say, (Equals Int b) to False, because b might later unify with Int.
This commit includes all of the commits on the overlapping-tyfams
branch. SPJ
requested that I combine all my commits over the past several months
into one
monolithic commit. The following GHC repos are affected: ghc, testsuite,
utils/haddock, libraries/template-haskell, and libraries/dph.
Here are some details for the interested:
- The definition of CoAxiom has been moved from TyCon.lhs to a
new file CoAxiom.lhs. I made this decision because of the
number of definitions necessary to support BranchList.
- BranchList is a GADT whose type tracks whether it is a
singleton list or not-necessarily-a-singleton-list. The reason
I introduced this type is to increase static checking of places
where GHC code assumes that a FamInst or CoAxiom is indeed a
singleton. This assumption takes place roughly 10 times
throughout the code. I was worried that a future change to GHC
would invalidate the assumption, and GHC might subtly fail to
do the right thing. By explicitly labeling CoAxioms and
FamInsts as being Unbranched (singleton) or
Branched (not-necessarily-singleton), we make this assumption
explicit and checkable. Furthermore, to enforce the accuracy of
this label, the list of branches of a CoAxiom or FamInst is
stored using a BranchList, whose constructors constrain its
type index appropriately.
I think that the decision to use BranchList is probably the most
controversial decision I made from a code design point of view.
Although I provide conversions to/from ordinary lists, it is more
efficient to use the brList... functions provided in CoAxiom than
always to convert. The use of these functions does not wander far
from the core CoAxiom/FamInst logic.
BranchLists are motivated and explained in the note [Branched axioms] in
CoAxiom.lhs.
- The CoAxiom type has changed significantly. You can see the new
type in CoAxiom.lhs. It uses a CoAxBranch type to track
branches of the CoAxiom. Correspondingly various functions
producing and consuming CoAxioms had to change, including the
binary layout of interface files.
- To get branched axioms to work correctly, it is important to have a
notion
of type "apartness": two types are apart if they cannot unify, and no
substitution of variables can ever get them to unify, even after type
family
simplification. (This is different than the normal failure to unify
because
of the type family bit.) This notion in encoded in tcApartTys, in
Unify.lhs.
Because apartness is finer-grained than unification, the tcUnifyTys
now
calls tcApartTys.
- CoreLinting axioms has been updated, both to reflect the new
form of CoAxiom and to enforce the apartness rules of branch
application. The formalization of the new rules is in
docs/core-spec/core-spec.pdf.
- The FamInst type (in types/FamInstEnv.lhs) has changed
significantly, paralleling the changes to CoAxiom. Of course,
this forced minor changes in many files.
- There are several new Notes in FamInstEnv.lhs, including one
discussing confluent overlap and why we're not doing it.
- lookupFamInstEnv, lookupFamInstEnvConflicts, and
lookup_fam_inst_env' (the function that actually does the work)
have all been more-or-less completely rewritten. There is a
Note [lookup_fam_inst_env' implementation] describing the
implementation. One of the changes that affects other files is
to change the type of matches from a pair of (FamInst, [Type])
to a new datatype (which now includes the index of the matching
branch). This seemed a better design.
- The TySynInstD constructor in Template Haskell was updated to
use the new datatype TySynEqn. I also bumped the TH version
number, requiring changes to DPH cabal files. (That's why the
DPH repo has an overlapping-tyfams branch.)
- As SPJ requested, I refactored some of the code in HsDecls:
* splitting up TyDecl into SynDecl and DataDecl, correspondingly
changing HsTyDefn to HsDataDefn (with only one constructor)
* splitting FamInstD into TyFamInstD and DataFamInstD and
splitting FamInstDecl into DataFamInstDecl and TyFamInstDecl
* making the ClsInstD take a ClsInstDecl, for parallelism with
InstDecl's other constructors
* changing constructor TyFamily into FamDecl
* creating a FamilyDecl type that stores the details for a family
declaration; this is useful because FamilyDecls can appear in classes
but
other decls cannot
* restricting the associated types and associated type defaults for a
* class
to be the new, more restrictive types
* splitting cid_fam_insts into cid_tyfam_insts and cid_datafam_insts,
according to the new types
* perhaps one or two more that I'm overlooking
None of these changes has far-reaching implications.
- The user manual, section 7.7.2.2, is updated to describe the new type
family
instances.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
Mostly d -> g (matching DynFlag -> GeneralFlag).
Also renamed if* to when*, matching the Haskell if/when names
|
|
|
|
|
| |
This avoids confusion due to [DynFlag] and DynFlags being completely
different types.
|
|
|
|
|
|
|
|
|
| |
This is an ugly kludge to make a DynFlags value available for the
'trace' functions. It may not be the value we really ought to use,
but it'll be good enough for the pretty-printer to use.
Ideally we'd pass the real DynFlags down to all the trace calls,
but this will do for now at least.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Make Any into a type family (which it should always have been)
This is to support the future introduction of eta rules for
product types (see email on ghc-users title "PolyKind issue"
early Sept 2012)
* Add the *internal* data type support for
(a) closed type families [so that you can't give
type instance for 'Any']
(b) injective type families [because Any is really
injective]
This amounts to two boolean flags on the SynFamilyTyCon
constructor of TyCon.SynTyConRhs.
There is some knock-on effect, but all of a routine nature.
It remains to offer source syntax for either closed or
injective families.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
A side-effect is that we can no longer use the LogAction in
defaultErrorHandler, as we don't have DynFlags at that point.
But all that defaultErrorHandler did is to print Strings as
SevFatal, so now it takes a 'FatalMessager' instead.
|
|
|
|
|
| |
We now include the String and the SDoc in the exception, and don't
flatten them into a String until near the top-level
|
| |
|
|
|
|
|
|
|
|
| |
Modification of previous commit:
e0e99f9948c1eac82cf69dd3cc30cb068e42d45e
Allows setting which monad GHCi runs statements in. Unsupported at this
stage.
|
|
|
|
|
|
|
|
|
|
| |
Two problems, for now at any rate
a) Breaks the build with lots of errors like
No instance for (Show (IO ())) arising from a use of `print'
b) Discussion of the approache hasn't converged yet
(Simon M had a number of suggestions)
This reverts commit eecd7c98c1f079c14d99ed831dff33a48ee45e67.
|
|
|
|
|
|
|
|
|
| |
This command allows you to lift user stmts in GHCi into an IO monad
that implements the GHC.GHCi.GHCiSandboxIO type class. This allows for
easy sandboxing of GHCi using :runmonad and Safe Haskell.
Longer term it would be nice to allow a more general model for the Monad
than GHCiSandboxIO but delaying this for the moment.
|
| |
|
|
|
|
|
| |
This fixes haddock so it correctly reports
the safe haskell mode of a module.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GHCi now maintains two DynFlags: one that applies to whole modules
loaded with :load, and one that applies to things typed at the prompt
(expressions, statements, declarations, commands).
The :set command modifies both DynFlags. This is for backwards
compatibility: users won't notice any difference.
The :seti command applies only to the interactive DynFlags.
Additionally, I made a few changes to ":set" (with no arguments):
* Now it only prints out options that differ from the defaults,
rather than the whole list.
* There is a new variant, ":set -a" to print out all options (the
old behaviour).
* It also prints out language options.
e.g.
Prelude> :set
options currently set: none.
base language is: Haskell2010
with the following modifiers:
-XNoDatatypeContexts
-XNondecreasingIndentation
GHCi-specific dynamic flag settings:
other dynamic, non-language, flag settings:
-fimplicit-import-qualified
warning settings:
":seti" (with no arguments) does the same as ":set", but for the
interactive options. It also has the "-a" option.
The interactive DynFlags are kept in the InteractiveContext, and
copied into the HscEnv at the appropriate points (all in HscMain).
There are some new GHC API operations:
-- | Set the 'DynFlags' used to evaluate interactive expressions.
setInteractiveDynFlags :: GhcMonad m => DynFlags -> m ()
-- | Get the 'DynFlags' used to evaluate interactive expressions.
getInteractiveDynFlags :: GhcMonad m => m DynFlags
-- | Sets the program 'DynFlags'.
setProgramDynFlags :: GhcMonad m => DynFlags -> m [PackageId]
-- | Returns the program 'DynFlags'.
getProgramDynFlags :: GhcMonad m => m DynFlags
Note I have not completed the whole of the plan outlined in #3217 yet:
when in the context of a loaded module we don't take the interactive
DynFlags from that module. That needs some more refactoring and
thinking about, because we'll need to save and restore the original
interactive DynFlags.
This solves the immediate problem that people are having with the new
flag checking in 7.4.1, because now it is possible to set language
options in ~/.ghci that do not affect loaded modules and thereby cause
recompilation.
|
|
|
|
|
|
| |
stdout/stderr might be closed, so we can't just hFlush them.
So we instead allow configuration in the same way that log_action
is configurable.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch should have no user-visible effect. It implements a
significant internal refactoring of the way that FC axioms are
handled. The ultimate goal is to put us in a position to implement
"pattern-matching axioms". But the changes here are only does
refactoring; there is no change in functionality.
Specifically:
* We now treat data/type family instance declarations very,
very similarly to types class instance declarations:
- Renamed InstEnv.Instance as InstEnv.ClsInst, for symmetry with
FamInstEnv.FamInst. This change does affect the GHC API, but
for the better I think.
- Previously, each family type/data instance declaration gave rise
to a *TyCon*; typechecking a type/data instance decl produced
that TyCon. Now, each type/data instance gives rise to
a *FamInst*, by direct analogy with each class instance
declaration giving rise to a ClsInst.
- Just as each ClsInst contains its evidence, a DFunId, so each FamInst
contains its evidence, a CoAxiom. See Note [FamInsts and CoAxioms]
in FamInstEnv. The CoAxiom is a System-FC thing, and can relate any
two types, whereas the FamInst relates directly to the Haskell source
language construct, and always has a function (F tys) on the LHS.
- Just as a DFunId has its own declaration in an interface file, so now
do CoAxioms (see IfaceSyn.IfaceAxiom).
These changes give rise to almost all the refactoring.
* We used to have a hack whereby a type family instance produced a dummy
type synonym, thus
type instance F Int = Bool -> Bool
translated to
axiom FInt :: F Int ~ R:FInt
type R:FInt = Bool -> Bool
This was always a hack, and now it's gone. Instead the type instance
declaration produces a FamInst, whose axiom has kind
axiom FInt :: F Int ~ Bool -> Bool
just as you'd expect.
* Newtypes are done just as before; they generate a CoAxiom. These
CoAxioms are "implicit" (do not generate an IfaceAxiom declaration),
unlike the ones coming from family instance declarations. See
Note [Implicit axioms] in TyCon
On the whole the code gets significantly nicer. There were consequential
tidy-ups in the vectoriser, but I think I got them right.
|
| |
|
| |
|