| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a flag -split-sections that does similar things to
-split-objs, but using sections in single object files instead of
relying on the Satanic Splitter and other abominations. This is very
similar to the GCC flags -ffunction-sections and -fdata-sections.
The --gc-sections linker flag, which allows unused sections to actually
be removed, is added to all link commands (if the linker supports it) so
that space savings from having base compiled with sections can be
realized.
Supported both in LLVM and the native code-gen, in theory for all
architectures, but really tested on x86 only.
In the GHC build, a new SplitSections variable enables -split-sections
for relevant parts of the build.
Test Plan: validate with both settings of SplitSections
Reviewers: dterei, Phyx, austin, simonmar, thomie, bgamari
Reviewed By: simonmar, thomie, bgamari
Subscribers: hsyl20, erikd, kgardas, thomie
Differential Revision: https://phabricator.haskell.org/D1242
GHC Trac Issues: #8405
|
|
|
|
|
|
|
|
|
|
|
|
| |
It's pretty irritating having hasktags with multiple top-level
declarations with the same type; hasktags can't figure out which
declaration you actually wanted.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Reviewed By: dterei, austin
Differential Revision: https://phabricator.haskell.org/D819
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Rework llvmGen to use LLVM 3.6 exclusively. The plans for the 7.12 release are to ship LLVM alongside GHC in the interests of user (and developer) sanity.
Along the way, refactor TNTC support to take advantage of the new `prefix` data support in LLVM 3.6. This allows us to drop the section-reordering component of the LLVM mangler.
Test Plan: Validate, look at emitted code
Reviewers: dterei, austin, scpmw
Reviewed By: austin
Subscribers: erikd, awson, spacekitteh, thomie, carter
Differential Revision: https://phabricator.haskell.org/D530
GHC Trac Issues: #10074
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Due to changes in LLVM 3.5 aliases now may only refer to definitions.
Previously to handle symbols defined outside of the current commpilation
unit GHC would emit both an `external` declaration, as well as an alias
pointing to it, e.g.,
@stg_BCO_info = external global i8
@stg_BCO_info$alias = alias private i8* @stg_BCO_info
Where references to `stg_BCO_info` will use the alias
`stg_BCO_info$alias`. This is not permitted under the new alias
behavior, resulting in errors resembling,
Alias must point to a definition
i8* @"stg_BCO_info$alias"
To fix this, we invert the naming relationship between aliases and
definitions. That is, now the symbol definition takes the name
`@stg_BCO_info$def` and references use the actual name, `@stg_BCO_info`.
This means the external symbols can be handled by simply emitting an
`external` declaration,
@stg_BCO_info = external global i8
Whereas in the case of a forward declaration we emit,
@stg_BCO_info = alias private i8* @stg_BCO_info$def
Reviewed By: austin
Differential Revision: https://phabricator.haskell.org/D155
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit b23ba2a7d612c6b466521399b33fe9aacf5c4f75.
Conflicts:
compiler/cmm/PprCmmDecl.hs
compiler/nativeGen/PPC/Ppr.hs
compiler/nativeGen/SPARC/Ppr.hs
compiler/nativeGen/X86/Ppr.hs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The primary reason for doing this is assisting debuggability:
if static closures are all in the same section, they are
guaranteed to be adjacent to one another. This will help
later when we add some code that takes section start/end and
uses this to sanity-check the sections.
Part of remove HEAP_ALLOCED patch set (#8199)
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
Test Plan: validate
Reviewers: simonmar, austin
Subscribers: simonmar, ezyang, carter, thomie
Differential Revision: https://phabricator.haskell.org/D263
GHC Trac Issues: #8199
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
reorganized, while following the convention, to
- place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
any `{-# OPTIONS_GHC #-}`-lines.
- Moreover, if the list of language extensions fit into a single
`{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
individual language extension. In both cases, try to keep the
enumeration alphabetically ordered.
(The latter layout is preferable as it's more diff-friendly)
While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This combined patch reworks the LLVM backend in a number of ways:
1. Most prominently, we introduce a LlvmM monad carrying the contents of
the old LlvmEnv around. This patch completely removes LlvmEnv and
refactors towards standard library monad combinators wherever possible.
2. Support for streaming - we can now generate chunks of Llvm for Cmm as
it comes in. This might improve our speed.
3. To allow streaming, we need a more flexible way to handle forward
references. The solution (getGlobalPtr) unifies LlvmCodeGen.Data
and getHsFunc as well.
4. Skip alloca-allocation for registers that are actually never written.
LLVM will automatically eliminate these, but output is smaller and
friendlier to human eyes this way.
5. We use LlvmM to collect references for llvm.used. This allows places
other than cmmProcLlvmGens to generate entries.
|
|
|
|
|
| |
Also give them a proper constructor - getGlobalVar and getGlobalValue
map directly to the accessors.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes the OldCmm data type and the CmmCvt pass that converts
new Cmm to OldCmm. The backends (NCGs, LLVM and C) have all been
converted to consume new Cmm.
The main difference between the two data types is that conditional
branches in new Cmm have both true/false successors, whereas in OldCmm
the false case was a fallthrough. To generate slightly better code we
occasionally need to invert a conditional to ensure that the
branch-not-taken becomes a fallthrough; this was previously done in
CmmCvt, and it is now done in CmmContFlowOpt.
We could go further and use the Hoopl Block representation for native
code, which would mean that we could use Hoopl's postorderDfs and
analyses for native code, but for now I've left it as is, using the
old ListGraph representation for native code.
|
| |
|
|
|
|
|
|
| |
I've switched to passing DynFlags rather than Platform, as (a) it's
simpler to not have to extract targetPlatform in so many places, and
(b) it may be useful to have DynFlags around in future.
|
|
|
|
|
|
|
|
| |
Compile time still isn't as good as I'd like but no easy changes
available. LLVM backend could do with a big rewrite to improve
performance as there are some ugly designs in it.
At least the test case isn't 10min anymore, just a few seconds now.
|
|
|
|
| |
And some knock-on changes
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I observed that the [CmmStatics] within CmmData uses the list in a very stylised way.
The first item in the list is almost invariably a CmmDataLabel. Many parts of the
compiler pattern match on this list and fail if this is not true.
This patch makes the invariant explicit by introducing a structured type CmmStatics
that holds the label and the list of remaining [CmmStatic].
There is one wrinkle: the x86 backend sometimes wants to output an alignment directive just
before the label. However, this can be easily fixed up by parameterising the native codegen
over the type of CmmStatics (though the GenCmmTop parameterisation) and using a pair
(Alignment, CmmStatics) there instead.
As a result, I think we will be able to remove CmmAlign and CmmDataLabel from the CmmStatic
data type, thus nuking a lot of code and failing pattern matches. This change will come as part
of my next patch.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes the new code generator to make use of the Hoopl package
for dataflow analysis. Hoopl is a new boot package, and is maintained
in a separate upstream git repository (as usual, GHC has its own
lagging darcs mirror in http://darcs.haskell.org/packages/hoopl).
During this merge I squashed recent history into one patch. I tried
to rebase, but the history had some internal conflicts of its own
which made rebase extremely confusing, so I gave up. The history I
squashed was:
- Update new codegen to work with latest Hoopl
- Add some notes on new code gen to cmm-notes
- Enable Hoopl lag package.
- Add SPJ note to cmm-notes
- Improve GC calls on new code generator.
Work in this branch was done by:
- Milan Straka <fox@ucw.cz>
- John Dias <dias@cs.tufts.edu>
- David Terei <davidterei@gmail.com>
Edward Z. Yang <ezyang@mit.edu> merged in further changes from GHC HEAD
and fixed a few bugs.
|
| |
|
| |
|
|
|
|
|
|
|
| |
This involved removing the old constant handling mechanism
which was fairly hard to use. Now being constant or not is
simply a property of a global variable instead of a separate
type.
|
| |
|
| |
|
|
|
|
|
|
|
| |
We do this through a gnu as feature called subsections,
where you can put data/code into a numbered subsection
and those subsections will be joined together in descending
order by gas at compile time.
|
|
This was done as part of an honours thesis at UNSW, the paper describing the
work and results can be found at:
http://www.cse.unsw.edu.au/~pls/thesis/davidt-thesis.pdf
A Homepage for the backend can be found at:
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/Backends/LLVM
Quick summary of performance is that for the 'nofib' benchmark suite, runtimes
are within 5% slower than the NCG and generally better than the C code
generator. For some code though, such as the DPH projects benchmark, the LLVM
code generator outperforms the NCG and C code generator by about a 25%
reduction in run times.
|