| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
reorganized, while following the convention, to
- place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
any `{-# OPTIONS_GHC #-}`-lines.
- Moreover, if the list of language extensions fit into a single
`{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
individual language extension. In both cases, try to keep the
enumeration alphabetically ordered.
(The latter layout is preferable as it's more diff-friendly)
While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
|
|
|
|
|
|
|
| |
This checks that all the required extensions are enabled for the
inferred type signature.
Updates binary and vector submodules.
|
|
|
|
|
| |
Slightly more documentation, removed unused label map (huh),
removed MonadIO instance on LlvmM to improve encapsulation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This combined patch reworks the LLVM backend in a number of ways:
1. Most prominently, we introduce a LlvmM monad carrying the contents of
the old LlvmEnv around. This patch completely removes LlvmEnv and
refactors towards standard library monad combinators wherever possible.
2. Support for streaming - we can now generate chunks of Llvm for Cmm as
it comes in. This might improve our speed.
3. To allow streaming, we need a more flexible way to handle forward
references. The solution (getGlobalPtr) unifies LlvmCodeGen.Data
and getHsFunc as well.
4. Skip alloca-allocation for registers that are actually never written.
LLVM will automatically eliminate these, but output is smaller and
friendlier to human eyes this way.
5. We use LlvmM to collect references for llvm.used. This allows places
other than cmmProcLlvmGens to generate entries.
|
|
|
|
|
| |
Also give them a proper constructor - getGlobalVar and getGlobalValue
map directly to the accessors.
|
|
|
|
|
| |
LLVM 3.3rc3 complains when the llvm.used global is an empty array, so don't
define llvm.used at all when it would be empty.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This controls whether or not the compiler warns if we're using an LLVM
version that's too old or too new. It's mostly useful when building the
compiler knowingly with an unsupported version, so you don't get a lot
of warnings in the build process.
There's no documentation for this since it's a flag only a few
developers would care about anyway.
Signed-off-by: Austin Seipp <mad.one@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes the OldCmm data type and the CmmCvt pass that converts
new Cmm to OldCmm. The backends (NCGs, LLVM and C) have all been
converted to consume new Cmm.
The main difference between the two data types is that conditional
branches in new Cmm have both true/false successors, whereas in OldCmm
the false case was a fallthrough. To generate slightly better code we
occasionally need to invert a conditional to ensure that the
branch-not-taken becomes a fallthrough; this was previously done in
CmmCvt, and it is now done in CmmContFlowOpt.
We could go further and use the Hoopl Block representation for native
code, which would mean that we could use Hoopl's postorderDfs and
analyses for native code, but for now I've left it as is, using the
old ListGraph representation for native code.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We now have accurate global register liveness information attached to all Cmm
procedures and jumps. With this patch, the LLVM back end uses this information
to pass only the live floating point (F and D) registers on tail calls. This
makes the LLVM back end compatible with the new register allocation strategy.
Ideally the GHC LLVM calling convention would put all registers that are always
live first in the parameter sequence. Unfortunately the specification is written
so that on x86-64 SpLim (always live) is passed after the R registers. Therefore
we must always pass *something* in the R registers, so we pass the LLVM value
undef.
|
|
|
|
|
|
|
| |
All Cmm procedures now include the set of global registers that are live on
procedure entry, i.e., the global registers used to pass arguments to the
procedure. Only global registers that are use to pass arguments are included in
this list.
|
|
|
|
|
|
| |
I've switched to passing DynFlags rather than Platform, as (a) it's
simpler to not have to extract targetPlatform in so many places, and
(b) it may be useful to have DynFlags around in future.
|
| |
|
|
|
|
|
|
| |
To explicitly choose whether you want an unregisterised build you now
need to use the "--enable-unregisterised"/"--disable-unregisterised"
configure flags.
|
|
|
|
|
|
|
|
|
| |
Proc-point splitting is only required by backends that do not support
having proc-points within a code block (that is, everything except the
native backend, i.e. LLVM and C).
Not doing proc-point splitting saves some compilation time, and might
produce slightly better code in some cases.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
In particular, this makes life simpler when we want to use a general
GHC SDoc in the middle of some LLVM.
|
| |
|
|
|
|
| |
is used for optimisation. (enabled by default)
|
| |
|
|
|
|
|
|
|
|
| |
Compile time still isn't as good as I'd like but no easy changes
available. LLVM backend could do with a big rewrite to improve
performance as there are some ugly designs in it.
At least the test case isn't 10min anymore, just a few seconds now.
|
| |
|
| |
|
|
|
|
| |
And some knock-on changes
|
|
|
|
|
| |
CmmTop -> CmmDecl
CmmPgm -> CmmGroup
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
There's now a variant of the Outputable class that knows what
platform we're targetting:
class PlatformOutputable a where
pprPlatform :: Platform -> a -> SDoc
pprPlatformPrec :: Platform -> Rational -> a -> SDoc
and various instances have had to be converted to use that class,
and we pass Platform around accordingly.
|
|
|
|
|
|
|
|
|
|
|
|
| |
I introduced this to support explicitly recording the info table label
in RawCmm for another patch I am working on, but it turned out to lead
to significant simplification in those parts of the compiler that
consume RawCmm.
Now, instead of lots of tests for null [CmmStatic] we have a simple
test of a Maybe, and have reduced the number of guys that need to know
how to convert entry->info labels by a TON. There are only 3 callers
of that function now!
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I observed that the [CmmStatics] within CmmData uses the list in a very stylised way.
The first item in the list is almost invariably a CmmDataLabel. Many parts of the
compiler pattern match on this list and fail if this is not true.
This patch makes the invariant explicit by introducing a structured type CmmStatics
that holds the label and the list of remaining [CmmStatic].
There is one wrinkle: the x86 backend sometimes wants to output an alignment directive just
before the label. However, this can be easily fixed up by parameterising the native codegen
over the type of CmmStatics (though the GenCmmTop parameterisation) and using a pair
(Alignment, CmmStatics) there instead.
As a result, I think we will be able to remove CmmAlign and CmmDataLabel from the CmmStatic
data type, thus nuking a lot of code and failing pattern matches. This change will come as part
of my next patch.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes the new code generator to make use of the Hoopl package
for dataflow analysis. Hoopl is a new boot package, and is maintained
in a separate upstream git repository (as usual, GHC has its own
lagging darcs mirror in http://darcs.haskell.org/packages/hoopl).
During this merge I squashed recent history into one patch. I tried
to rebase, but the history had some internal conflicts of its own
which made rebase extremely confusing, so I gave up. The history I
squashed was:
- Update new codegen to work with latest Hoopl
- Add some notes on new code gen to cmm-notes
- Enable Hoopl lag package.
- Add SPJ note to cmm-notes
- Improve GC calls on new code generator.
Work in this branch was done by:
- Milan Straka <fox@ucw.cz>
- John Dias <dias@cs.tufts.edu>
- David Terei <davidterei@gmail.com>
Edward Z. Yang <ezyang@mit.edu> merged in further changes from GHC HEAD
and fixed a few bugs.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
This involved removing the old constant handling mechanism
which was fairly hard to use. Now being constant or not is
simply a property of a global variable instead of a separate
type.
|
| |
|
|
|
|
|
|
|
| |
We do this through a gnu as feature called subsections,
where you can put data/code into a numbered subsection
and those subsections will be joined together in descending
order by gas at compile time.
|
|
This was done as part of an honours thesis at UNSW, the paper describing the
work and results can be found at:
http://www.cse.unsw.edu.au/~pls/thesis/davidt-thesis.pdf
A Homepage for the backend can be found at:
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/Backends/LLVM
Quick summary of performance is that for the 'nofib' benchmark suite, runtimes
are within 5% slower than the NCG and generally better than the C code
generator. For some code though, such as the DPH projects benchmark, the LLVM
code generator outperforms the NCG and C code generator by about a 25%
reduction in run times.
|