| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes #12441, where definitions in a Haskell module and its boot
file which differed only in their quantifiers produced a confusing error
message. Here we teach GHC to always show quantifiers for these errors.
Reviewers: goldfire, simonmar, erikd, austin, hvr, bgamari
Reviewed By: bgamari
Subscribers: snowleopard, simonpj, mpickering, thomie
Differential Revision: https://phabricator.haskell.org/D2734
GHC Trac Issues: #12441
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit implements the proposal in
https://github.com/ghc-proposals/ghc-proposals/pull/29 and
https://github.com/ghc-proposals/ghc-proposals/pull/35.
Here are some of the pieces of that proposal:
* Some of RuntimeRep's constructors have been shortened.
* TupleRep and SumRep are now parameterized over a list of RuntimeReps.
* This
means that two types with the same kind surely have the same
representation.
Previously, all unboxed tuples had the same kind, and thus the fact
above was
false.
* RepType.typePrimRep and friends now return a *list* of PrimReps. These
functions can now work successfully on unboxed tuples. This change is
necessary because we allow abstraction over unboxed tuple types and so
cannot
always handle unboxed tuples specially as we did before.
* We sometimes have to create an Id from a PrimRep. I thus split PtrRep
* into
LiftedRep and UnliftedRep, so that the created Ids have the right
strictness.
* The RepType.RepType type was removed, as it didn't seem to help with
* much.
* The RepType.repType function is also removed, in favor of typePrimRep.
* I have waffled a good deal on whether or not to keep VoidRep in
TyCon.PrimRep. In the end, I decided to keep it there. PrimRep is *not*
represented in RuntimeRep, and typePrimRep will never return a list
including
VoidRep. But it's handy to have in, e.g., ByteCodeGen and friends. I can
imagine another design choice where we have a PrimRepV type that is
PrimRep
with an extra constructor. That seemed to be a heavier design, though,
and I'm
not sure what the benefit would be.
* The last, unused vestiges of # (unliftedTypeKind) have been removed.
* There were several pretty-printing bugs that this change exposed;
* these are fixed.
* We previously checked for levity polymorphism in the types of binders.
* But we
also must exclude levity polymorphism in function arguments. This is
hard to check
for, requiring a good deal of care in the desugarer. See Note [Levity
polymorphism
checking] in DsMonad.
* In order to efficiently check for levity polymorphism in functions, it
* was necessary
to add a new bit of IdInfo. See Note [Levity info] in IdInfo.
* It is now safe for unlifted types to be unsaturated in Core. Core Lint
* is updated
accordingly.
* We can only know strictness after zonking, so several checks around
* strictness
in the type-checker (checkStrictBinds, the check for unlifted variables
under a ~
pattern) have been moved to the desugarer.
* Along the way, I improved the treatment of unlifted vs. banged
* bindings. See
Note [Strict binds checks] in DsBinds and #13075.
* Now that we print type-checked source, we must be careful to print
* ConLikes correctly.
This is facilitated by a new HsConLikeOut constructor to HsExpr.
Particularly troublesome
are unlifted pattern synonyms that get an extra void# argument.
* Includes a submodule update for haddock, getting rid of #.
* New testcases:
typecheck/should_fail/StrictBinds
typecheck/should_fail/T12973
typecheck/should_run/StrictPats
typecheck/should_run/T12809
typecheck/should_fail/T13105
patsyn/should_fail/UnliftedPSBind
typecheck/should_fail/LevPolyBounded
typecheck/should_compile/T12987
typecheck/should_compile/T11736
* Fixed tickets:
#12809
#12973
#11736
#13075
#12987
* This also adds a test case for #13105. This test case is
* "compile_fail" and
succeeds, because I want the testsuite to monitor the error message.
When #13105 is fixed, the test case will compile cleanly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In this commit
commit 6c0f10fac767c49b65ed71e8eb8e78ca4f9062d5
Author: Ben Gamari <bgamari.foss@gmail.com>
Date: Sun Nov 13 16:17:37 2016 -0500
Kill Type pretty-printer
we switched to pretty-printing a type by converting it to an
IfaceType and pretty printing that. Very good.
This patch fixes two things
* The new story is terrible for debug-printing with -ddump-tc-trace,
because all the extra info in an open type was discarded ty the
conversion to IfaceType.
This patch adds IfaceTcTyVar to IfaceType, to carry a TcTyVar in
debug situations. Quite an easy change, happily. These things
never show up in interface files.
* Now that we are going via IfaceType, it's essential to tidy before
converting; otherwise
forall k_23 k_34. blah
is printed as
forall k k. blah
which is very unhelpful. Again this only shows up in debug
printing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Here we consolidate the pretty-printing logic for types in IfaceType. We
need IfaceType regardless and the printer for Type can be implemented in
terms of that for IfaceType. See #11660.
Note that this is very much a work-in-progress. Namely I still have yet
to ponder how to ease the hs-boot file situation, still need to rip out
more dead code, need to move some of the special cases for, e.g., `*` to
the IfaceType printer, and need to get it to validate. That being said,
it comes close to validating as-is.
Test Plan: Validate
Reviewers: goldfire, austin
Subscribers: goldfire, thomie, simonpj
Differential Revision: https://phabricator.haskell.org/D2528
GHC Trac Issues: #11660
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In the old implementation of hsig files, we directly
reused the implementation of abstract data types from
hs-boot files. However, this was WRONG. Consider the
following program (an abridged version of bkpfail24):
{-# LANGUAGE GADTs #-}
unit p where
signature H1 where
data T
signature H2 where
data T
module M where
import qualified H1
import qualified H2
f :: H1.T ~ H2.T => a -> b
f x = x
Prior to this patch, M was accepted, because the type
inference engine concluded that H1.T ~ H2.T does not
hold (indeed, *presently*, it does not). However, if
we subsequently instantiate p with the same module for
H1 and H2, H1.T ~ H2.T does hold! Unsound.
The key is that abstract types from signatures need to
be treated like *skolem variables*, since you can interpret
a Backpack unit as a record which is universally quantified
over all of its abstract types, as such (with some fake
syntax for structural records):
p :: forall t1 t2. { f :: t1 ~ t2 => a -> b }
p = { f = \x -> x } -- ill-typed
Clearly t1 ~ t2 is not solvable inside p, and also clearly
it could be true at some point in the future, so we better
not treat the lambda expression after f as inaccessible.
The fix seems to be simple: do NOT eagerly fail when trying
to simplify the given constraints. Instead, treat H1.T ~ H2.T
as an irreducible constraint (rather than an insoluble
one); this causes GHC to treat f as accessible--now we will
typecheck the rest of the function (and correctly fail).
Per the OutsideIn(X) paper, it's always sound to fail less
when simplifying givens.
We do NOT apply this fix to hs-boot files, where abstract
data is also guaranteed to be nominally distinct (since
it can't be implemented via a reexport or a type synonym.)
This is a somewhat unnatural state of affairs (there's
no way to really interpret this in Haskell land) but
no reason to change behavior.
I deleted "representationally distinct abstract data",
which is never used anywhere in GHC.
In the process of constructing this fix, I also realized
our implementation of type synonym matching against abstract
data was not sufficiently restrictive. In order for
a type synonym T to be well-formed type, it must be a
nullary synonym (i.e., type T :: * -> *, not type T a = ...).
Furthermore, since we use abstract data when defining
instances, they must not have any type family applications.
More details in #12680. This probably deserves some sort
of short paper report.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Test Plan: validate
Reviewers: goldfire, simonpj, austin, bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2594
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously BinIface had some dedicated logic for handling tuple names in
the symbol table. As it turns out, this logic was essentially dead code
as it was superceded by the special handling of known-key things. Here
we cull the tuple code-path and use the known-key codepath for all
tuple-ish things.
This had a surprising number of knock-on effects,
* constraint tuple datacons had to be made known-key (previously they
were not)
* IfaceTopBndr was changed from being a synonym of OccName to a
synonym of Name (since we now need to be able to deserialize Names
directly from interface files)
* the change to IfaceTopBndr complicated fingerprinting, since we need
to ensure that we don't go looking for the fingerprint of the thing
we are currently fingerprinting in the fingerprint environment (see
notes in MkIface). Handling this required distinguishing between
binding and non-binding Name occurrences in the Binary serializers.
* the original name cache logic which previously lived in IfaceEnv has
been moved to a new NameCache module
* I ripped tuples and sums out of knownKeyNames since they introduce a
very large number of entries. During interface file deserialization
we use static functions (defined in the new KnownUniques module) to
map from a Unique to a known-key Name (the Unique better correspond
to a known-key name!) When we need to do an original name cache
lookup we rely on the parser implemented in isBuiltInOcc_maybe.
* HscMain.allKnownKeyNames was folded into PrelInfo.knownKeyNames.
* Lots of comments were sprinkled about describing the new scheme.
Updates haddock submodule.
Test Plan: Validate
Reviewers: niteria, simonpj, austin, hvr
Reviewed By: simonpj
Subscribers: simonmar, niteria, thomie
Differential Revision: https://phabricator.haskell.org/D2467
GHC Trac Issues: #12532, #12415
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch implements Backpack for GHC. It's a big patch but I've tried quite
hard to keep things, by-in-large, self-contained.
The user facing specification for Backpack can be found at:
https://github.com/ezyang/ghc-proposals/blob/backpack/proposals/0000-backpack.rst
A guide to the implementation can be found at:
https://github.com/ezyang/ghc-proposals/blob/backpack-impl/proposals/0000-backpack-impl.rst
Has a submodule update for Cabal, as well as a submodule update
for filepath to handle more strict checking of cabal-version.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Test Plan: validate
Reviewers: simonpj, austin, simonmar, bgamari, goldfire
Subscribers: thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D1482
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This commit removes the information about whether or not
a TyCon is "recursive", as well as the code responsible
for calculating this information.
The original trigger for this change was complexity regarding
how we computed the RecFlag for hs-boot files. The problem
is that in order to determine if a TyCon is recursive or
not, we need to determine if it was defined in an hs-boot
file (if so, we conservatively assume that it is recursive.)
It turns that doing this is quite tricky. The "obvious"
strategy is to typecheck the hi-boot file (since we are
eventually going to need the typechecked types to check
if we properly implemented the hi-boot file) and just extract
the names of all defined TyCons from the ModDetails, but
this actually does not work well if Names from the hi-boot
file are being knot-tied via if_rec_types: the "extraction"
process will force thunks, which will force the typechecking
process earlier than we have actually defined the types
locally.
Rather than work around all this trickiness (it certainly
can be worked around, either by making interface loading
MORE lazy, or just reading of the set of defined TyCons
directly from the ModIface), we instead opted to excise
the source of the problem, the RecFlag.
For one, it is not clear if the RecFlag even makes sense,
in the presence of higher-orderness:
data T f a = MkT (f a)
T doesn't look recursive, but if we instantiate f with T,
then it very well is! It was all very shaky.
So we just don't bother anymore. This has two user-visible
implications:
1. is_too_recursive now assumes that all TyCons are
recursive and will bail out in a way that is still mysterious
to me if there are too many TyCons.
2. checkRecTc, which is used when stripping newtypes to
get to representation, also assumes all TyCons are
recursive, and will stop running if we hit the limit.
The biggest risk for this patch is that we specialize less
than we used to; however, the codeGen tests still seem to
be passing.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Reviewers: simonpj, austin, bgamari
Subscribers: goldfire, thomie
Differential Revision: https://phabricator.haskell.org/D2360
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, following the TypeInType innovations,
each TyCon had two lists:
- tyConBinders :: [TyBinder]
- tyConTyVars :: [TyVar]
They were in 1-1 correspondence and contained
overlapping information. More broadly, there were many
places where we had to pass around this pair of lists,
instead of a single list.
This commit tidies all that up, by having just one list of
binders in a TyCon:
- tyConBinders :: [TyConBinder]
The new data types look like this:
Var.hs:
data TyVarBndr tyvar vis = TvBndr tyvar vis
data VisibilityFlag = Visible | Specified | Invisible
type TyVarBinder = TyVarBndr TyVar VisibilityFlag
TyCon.hs:
type TyConBinder = TyVarBndr TyVar TyConBndrVis
data TyConBndrVis
= NamedTCB VisibilityFlag
| AnonTCB
TyCoRep.hs:
data TyBinder
= Named TyVarBinder
| Anon Type
Note that Var.TyVarBdr has moved from TyCoRep and has been
made polymorphic in the tyvar and visiblity fields:
type TyVarBinder = TyVarBndr TyVar VisibilityFlag
-- Used in ForAllTy
type TyConBinder = TyVarBndr TyVar TyConBndrVis
-- Used in TyCon
type IfaceForAllBndr = TyVarBndr IfaceTvBndr VisibilityFlag
type IfaceTyConBinder = TyVarBndr IfaceTvBndr TyConBndrVis
-- Ditto, in interface files
There are a zillion knock-on changes, but everything
arises from these types. It was a bit fiddly to get the
module loops to work out right!
Some smaller points
~~~~~~~~~~~~~~~~~~~
* Nice new functions
TysPrim.mkTemplateKiTyVars
TysPrim.mkTemplateTyConBinders
which help you make the tyvar binders for dependently-typed
TyCons. See comments with their definition.
* The change showed up a bug in TcGenGenerics.tc_mkRepTy, where the code
was making an assumption about the order of the kind variables in the
kind of GHC.Generics.(:.:). I fixed this; see TcGenGenerics.mkComp.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With TypeInType Richard combined ForAllTy and FunTy, but that was often
awkward, and yielded little benefit becuase in practice the two were
always treated separately. This patch re-introduces FunTy. Specfically
* New type
data TyVarBinder = TvBndr TyVar VisibilityFlag
This /always/ has a TyVar it. In many places that's just what
what we want, so there are /lots/ of TyBinder -> TyVarBinder changes
* TyBinder still exists:
data TyBinder = Named TyVarBinder | Anon Type
* data Type = ForAllTy TyVarBinder Type
| FunTy Type Type
| ....
There are a LOT of knock-on changes, but they are all routine.
The Haddock submodule needs to be updated too
|
|
|
|
|
| |
I needed this instance when debugging, so I thought I'd add
it permanently.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In particular, this allows correct tracking of specified/invisible
for variables in Haskell98 data constructors and in pattern synonyms.
GADT-syntax constructors are harder, and are left until #11721.
This was all inspired by Simon's comments to my fix for #11512,
which this subsumes.
Test case: ghci/scripts/TypeAppData
[skip ci] (The test case fails because of an unrelated problem
fixed in the next commit.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now the existentially quantified type variables are printed
at the correct location when printing a pattern synonym type
from an `IfacePatSyn`. The function `pprIfaceContextMaybe`
has been removed as it is no longer needed.
Fixes #11524.
Reviewers: austin, goldfire, thomie, bgamari, mpickering
Reviewed By: bgamari
Differential Revision: https://phabricator.haskell.org/D1958
GHC Trac Issues: #11524
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
See Note [TYPE] in TysPrim. There are still some outstanding
pieces in #11471 though, so this doesn't actually nail the bug.
This commit also contains a few performance improvements:
* Short-cut equality checking of nullary type syns
* Compare types before kinds in eqType
* INLINE coreViewOneStarKind
* Store tycon binders separately from kinds.
This resulted in a ~10% performance improvement in compiling
the Cabal package. No change in functionality other than
performance. (This affects the interface file format, though.)
This commit updates the haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In the past the canonical way for constructing an SDoc string literal was the
composition `ptext . sLit`. But for some time now we have function `text` that
does the same. Plus it has some rules that optimize its runtime behaviour.
This patch takes all uses of `ptext . sLit` in the compiler and replaces them
with calls to `text`. The main benefits of this patch are clener (shorter) code
and less dependencies between module, because many modules now do not need to
import `FastString`. I don't expect any performance benefits - we mostly use
SDocs to report errors and it seems there is little to be gained here.
Test Plan: ./validate
Reviewers: bgamari, austin, goldfire, hvr, alanz
Subscribers: goldfire, thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D1784
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This re-working of the typechecker algorithm is based on
the paper "Visible type application", by Richard Eisenberg,
Stephanie Weirich, and Hamidhasan Ahmed, to be published at
ESOP'16.
This patch introduces -XTypeApplications, which allows users
to say, for example `id @Int`, which has type `Int -> Int`. See
the changes to the user manual for details.
This patch addresses tickets #10619, #5296, #10589.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This moves code around to more sensible places.
- Construction for CoAxiom is localised in FamInstEnv
- orphNamesOfxx moves to CoreFVs
- roughMatchTcs, instanceCantMatch moves to Unify
- mkNewTypeCo moves from Coercion to FamInstEnv, and is
renamed mkNewTypeCoAxiom, which makes more sense
|
|
|
|
| |
[skip ci]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the ideas originally put forward in
"System FC with Explicit Kind Equality" (ICFP'13).
There are several noteworthy changes with this patch:
* We now have casts in types. These change the kind
of a type. See new constructor `CastTy`.
* All types and all constructors can be promoted.
This includes GADT constructors. GADT pattern matches
take place in type family equations. In Core,
types can now be applied to coercions via the
`CoercionTy` constructor.
* Coercions can now be heterogeneous, relating types
of different kinds. A coercion proving `t1 :: k1 ~ t2 :: k2`
proves both that `t1` and `t2` are the same and also that
`k1` and `k2` are the same.
* The `Coercion` type has been significantly enhanced.
The documentation in `docs/core-spec/core-spec.pdf` reflects
the new reality.
* The type of `*` is now `*`. No more `BOX`.
* Users can write explicit kind variables in their code,
anywhere they can write type variables. For backward compatibility,
automatic inference of kind-variable binding is still permitted.
* The new extension `TypeInType` turns on the new user-facing
features.
* Type families and synonyms are now promoted to kinds. This causes
trouble with parsing `*`, leading to the somewhat awkward new
`HsAppsTy` constructor for `HsType`. This is dispatched with in
the renamer, where the kind `*` can be told apart from a
type-level multiplication operator. Without `-XTypeInType` the
old behavior persists. With `-XTypeInType`, you need to import
`Data.Kind` to get `*`, also known as `Type`.
* The kind-checking algorithms in TcHsType have been significantly
rewritten to allow for enhanced kinds.
* The new features are still quite experimental and may be in flux.
* TODO: Several open tickets: #11195, #11196, #11197, #11198, #11203.
* TODO: Update user manual.
Tickets addressed: #9017, #9173, #7961, #10524, #8566, #11142.
Updates Haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch began as a modest refactoring of HsType and friends, to
clarify and tidy up exactly where quantification takes place in types.
Although initially driven by making the implementation of wildcards more
tidy (and fixing a number of bugs), I gradually got drawn into a pretty
big process, which I've been doing on and off for quite a long time.
There is one compiler performance regression as a result of all
this, in perf/compiler/T3064. I still need to look into that.
* The principal driving change is described in Note [HsType binders]
in HsType. Well worth reading!
* Those data type changes drive almost everything else. In particular
we now statically know where
(a) implicit quantification only (LHsSigType),
e.g. in instance declaratios and SPECIALISE signatures
(b) implicit quantification and wildcards (LHsSigWcType)
can appear, e.g. in function type signatures
* As part of this change, HsForAllTy is (a) simplified (no wildcards)
and (b) split into HsForAllTy and HsQualTy. The two contructors
appear when and only when the correponding user-level construct
appears. Again see Note [HsType binders].
HsExplicitFlag disappears altogether.
* Other simplifications
- ExprWithTySig no longer needs an ExprWithTySigOut variant
- TypeSig no longer needs a PostRn name [name] field
for wildcards
- PatSynSig records a LHsSigType rather than the decomposed
pieces
- The mysterious 'GenericSig' is now 'ClassOpSig'
* Renamed LHsTyVarBndrs to LHsQTyVars
* There are some uninteresting knock-on changes in Haddock,
because of the HsSyn changes
I also did a bunch of loosely-related changes:
* We already had type synonyms CoercionN/CoercionR for nominal and
representational coercions. I've added similar treatment for
TcCoercionN/TcCoercionR
mkWpCastN/mkWpCastN
All just type synonyms but jolly useful.
* I record-ised ForeignImport and ForeignExport
* I improved the (poor) fix to Trac #10896, by making
TcTyClsDecls.checkValidTyCl recover from errors, but adding a
harmless, abstract TyCon to the envt if so.
* I did some significant refactoring in RnEnv.lookupSubBndrOcc,
for reasons that I have (embarrassingly) now totally forgotten.
It had to do with something to do with import and export
Updates haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does some signficant refactoring to the treatment
of default methods in class declarations, and more generally
to the type checking of type/class decls.
Highlights:
* When the class has a generic-default method, such as
class C a where
op :: a -> a -> Bool
default op :: Ord a => a -> a -> a
the ClassOpItem records the type of the generic-default,
in this case the type (Ord a => a -> a -> a)
* I killed off Class.DefMeth in favour of the very-similar
BasicTypes.DefMethSpec. However it turned out to be better
to use a Maybe, thus
Maybe (DefMethSpec Type)
with Nothing meaning "no default method".
* In TcTyClsDecls.tcTyClGroup, we used to accumulate a [TyThing],
but I found a way to make it much simpler, accumulating only
a [TyCon]. Much less wrapping and unwrapping.
* On the way I also fixed Trac #10896 in a better way. Instead
of killing off all ambiguity checks whenever there are any type
errors (the fix in commit 8e8b9ed), I instead recover in
TcTyClsDecls.checkValidTyCl.
There was a lot of associated simplification all round
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After the changes, the three functions used to print type families
were identical, so they are refactored into one.
Original RHSs of data instance declarations are recreated and
printed in user error messages.
RHSs containing representation TyCons are printed in the
Coercion Axioms section in a typechecker dump.
Add vbar to the list of SDocs exported by Outputable.
Replace all text "|" docs with it.
Fixes #10839
Reviewers: goldfire, jstolarek, austin, bgamari
Reviewed By: jstolarek
Subscribers: jstolarek, thomie
Differential Revision: https://phabricator.haskell.org/D1441
GHC Trac Issues: #10839
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the second attempt at merging D757.
This patch implements the idea floated in Trac #9858, namely that we
should generate type-representation information at the data type
declaration site, rather than when solving a Typeable constraint.
However, this turned out quite a bit harder than I expected. I still
think it's the right thing to do, and it's done now, but it was quite
a struggle.
See particularly
* Note [Grand plan for Typeable] in TcTypeable (which is a new module)
* Note [The overall promotion story] in DataCon (clarifies existing
stuff)
The most painful bit was that to generate Typeable instances (ie
TyConRepName bindings) for every TyCon is tricky for types in ghc-prim
etc:
* We need to have enough data types around to *define* a TyCon
* Many of these types are wired-in
Also, to minimise the code generated for each data type, I wanted to
generate pure data, not CAFs with unpackCString# stuff floating about.
Performance
~~~~~~~~~~~
Three perf/compiler tests start to allocate quite a bit more. This isn't
surprising, because they all allocate zillions of data types, with
practically no other code, esp. T1969
* T1969: GHC allocates 19% more
* T4801: GHC allocates 13% more
* T5321FD: GHC allocates 13% more
* T9675: GHC allocates 11% more
* T783: GHC allocates 11% more
* T5642: GHC allocates 10% more
I'm treating this as acceptable. The payoff comes in Typeable-heavy
code.
Remaining to do
~~~~~~~~~~~~~~~
* I think that "TyCon" and "Module" are over-generic names to use for
the runtime type representations used in GHC.Typeable. Better might
be
"TrTyCon" and "TrModule". But I have not yet done this
* Add more info the the "TyCon" e.g. source location where it was
defined
* Use the new "Module" type to help with Trac Trac #10068
* It would be possible to generate TyConRepName (ie Typeable
instances) selectively rather than all the time. We'd need to persist
the information in interface files. Lacking a motivating reason I
have
not done this, but it would not be difficult.
Refactoring
~~~~~~~~~~~
As is so often the case, I ended up refactoring more than I intended.
In particular
* In TyCon, a type *family* (whether type or data) is repesented by a
FamilyTyCon
* a algebraic data type (including data/newtype instances) is
represented by AlgTyCon This wasn't true before; a data family
was represented as an AlgTyCon. There are some corresponding
changes in IfaceSyn.
* Also get rid of the (unhelpfully named) tyConParent.
* In TyCon define 'Promoted', isomorphic to Maybe, used when things are
optionally promoted; and use it elsewhere in GHC.
* Cleanup handling of knownKeyNames
* Each TyCon, including promoted TyCons, contains its TyConRepName, if
it has one. This is, in effect, the name of its Typeable instance.
Updates haddock submodule
Test Plan: Let Harbormaster validate
Reviewers: austin, hvr, goldfire
Subscribers: goldfire, thomie
Differential Revision: https://phabricator.haskell.org/D1404
GHC Trac Issues: #9858
|
|
|
|
|
|
|
|
| |
This reverts commit bef2f03e4d56d88a7e9752a7afd6a0a35616da6c.
This merge was botched
Also reverts haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements the idea floated in Trac #9858, namely that we
should generate type-representation information at the data type
declaration site, rather than when solving a Typeable constraint.
However, this turned out quite a bit harder than I expected. I still
think it's the right thing to do, and it's done now, but it was quite
a struggle.
See particularly
* Note [Grand plan for Typeable] in TcTypeable (which is a new module)
* Note [The overall promotion story] in DataCon (clarifies existing stuff)
The most painful bit was that to generate Typeable instances (ie
TyConRepName bindings) for every TyCon is tricky for types in ghc-prim
etc:
* We need to have enough data types around to *define* a TyCon
* Many of these types are wired-in
Also, to minimise the code generated for each data type, I wanted to
generate pure data, not CAFs with unpackCString# stuff floating about.
Performance
~~~~~~~~~~~
Three perf/compiler tests start to allocate quite a bit more. This isn't
surprising, because they all allocate zillions of data types, with
practically no other code, esp. T1969
* T3294: GHC allocates 110% more (filed #11030 to track this)
* T1969: GHC allocates 30% more
* T4801: GHC allocates 14% more
* T5321FD: GHC allocates 13% more
* T783: GHC allocates 12% more
* T9675: GHC allocates 12% more
* T5642: GHC allocates 10% more
* T9961: GHC allocates 6% more
* T9203: Program allocates 54% less
I'm treating this as acceptable. The payoff comes in Typeable-heavy
code.
Remaining to do
~~~~~~~~~~~~~~~
* I think that "TyCon" and "Module" are over-generic names to use for
the runtime type representations used in GHC.Typeable. Better might be
"TrTyCon" and "TrModule". But I have not yet done this
* Add more info the the "TyCon" e.g. source location where it was
defined
* Use the new "Module" type to help with Trac Trac #10068
* It would be possible to generate TyConRepName (ie Typeable
instances) selectively rather than all the time. We'd need to persist
the information in interface files. Lacking a motivating reason I have
not done this, but it would not be difficult.
Refactoring
~~~~~~~~~~~
As is so often the case, I ended up refactoring more than I intended.
In particular
* In TyCon, a type *family* (whether type or data) is repesented by a
FamilyTyCon
* a algebraic data type (including data/newtype instances) is
represented by AlgTyCon This wasn't true before; a data family
was represented as an AlgTyCon. There are some corresponding
changes in IfaceSyn.
* Also get rid of the (unhelpfully named) tyConParent.
* In TyCon define 'Promoted', isomorphic to Maybe, used when things are
optionally promoted; and use it elsewhere in GHC.
* Cleanup handling of knownKeyNames
* Each TyCon, including promoted TyCons, contains its TyConRepName, if
it has one. This is, in effect, the name of its Typeable instance.
Requires update of the haddock submodule.
Differential Revision: https://phabricator.haskell.org/D757
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements an extension to pattern synonyms which allows user
to specify pattern synonyms using record syntax. Doing so generates
appropriate selectors and update functions.
=== Interaction with Duplicate Record Fields ===
The implementation given here isn't quite as general as it could be with
respect to the recently-introduced `DuplicateRecordFields` extension.
Consider the following module:
{-# LANGUAGE DuplicateRecordFields #-}
{-# LANGUAGE PatternSynonyms #-}
module Main where
pattern S{a, b} = (a, b)
pattern T{a} = Just a
main = do
print S{ a = "fst", b = "snd" }
print T{ a = "a" }
In principle, this ought to work, because there is no ambiguity. But at
the moment it leads to a "multiple declarations of a" error. The problem
is that pattern synonym record selectors don't do the same name mangling
as normal datatypes when DuplicateRecordFields is enabled. They could,
but this would require some work to track the field label and selector
name separately.
In particular, we currently represent datatype selectors in the third
component of AvailTC, but pattern synonym selectors are just represented
as Avails (because they don't have a corresponding type constructor).
Moreover, the GlobalRdrElt for a selector currently requires it to have
a parent tycon.
(example due to Adam Gundry)
=== Updating Explicitly Bidirectional Pattern Synonyms ===
Consider the following
```
pattern Silly{a} <- [a] where
Silly a = [a, a]
f1 = a [5] -- 5
f2 = [5] {a = 6} -- currently [6,6]
```
=== Fixing Polymorphic Updates ===
They were fixed by adding these two lines in `dsExpr`. This might break
record updates but will be easy to fix.
```
+ ; let req_wrap = mkWpTyApps (mkTyVarTys univ_tvs)
- , pat_wrap = idHsWrapper }
+, pat_wrap = req_wrap }
```
=== Mixed selectors error ===
Note [Mixed Record Field Updates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following pattern synonym.
data MyRec = MyRec { foo :: Int, qux :: String }
pattern HisRec{f1, f2} = MyRec{foo = f1, qux=f2}
This allows updates such as the following
updater :: MyRec -> MyRec
updater a = a {f1 = 1 }
It would also make sense to allow the following update (which we
reject).
updater a = a {f1 = 1, qux = "two" } ==? MyRec 1 "two"
This leads to confusing behaviour when the selectors in fact refer the
same field.
updater a = a {f1 = 1, foo = 2} ==? ???
For this reason, we reject a mixture of pattern synonym and normal
record selectors in the same update block. Although of course we still
allow the following.
updater a = (a {f1 = 1}) {foo = 2}
> updater (MyRec 0 "str")
MyRec 2 "str"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch swaps the order of provided and required constraints in
a pattern signature, so it now goes
pattern P :: req => prov => t1 -> ... tn -> res_ty
See the long discussion in Trac #10928.
I think I have found all the places, but I could have missed something
particularly in comments.
There is a Haddock changes; so a submodule update.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements DuplicateRecordFields, the first part of the
OverloadedRecordFields extension, as described at
https://ghc.haskell.org/trac/ghc/wiki/Records/OverloadedRecordFields/DuplicateRecordFields
This includes fairly wide-ranging changes in order to allow multiple
records within the same module to use the same field names. Note that
it does *not* allow record selector functions to be used if they are
ambiguous, and it does not have any form of type-based disambiguation
for selectors (but it does for updates). Subsequent parts will make
overloading selectors possible using orthogonal extensions, as
described on the wiki pages. This part touches quite a lot of the
codebase, and requires changes to several GHC API datatypes in order
to distinguish between field labels (which may be overloaded) and
selector function names (which are always unique).
The Haddock submodule has been adapted to compile with the GHC API
changes, but it will need further work to properly support modules
that use the DuplicateRecordFields extension.
Test Plan: New tests added in testsuite/tests/overloadedrecflds; these
will be extended once the other parts are implemented.
Reviewers: goldfire, bgamari, simonpj, austin
Subscribers: sjcjoosten, haggholm, mpickering, bgamari, tibbe, thomie,
goldfire
Differential Revision: https://phabricator.haskell.org/D761
|
|
|
|
|
|
|
|
|
|
|
| |
Show the minimal complete definition on :info in ghci. They
are shown like MINIMAL pragmas in code. If the minimal complete
definition is empty or only a specific method from a class is
requested, nothing is shown.
Reviewed By: simonpj, austin, thomie
Differential Revision: https://phabricator.haskell.org/D1241
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For details see #6018, Phab:D202 and the wiki page:
https://ghc.haskell.org/trac/ghc/wiki/InjectiveTypeFamilies
This patch also wires-in Maybe data type and updates haddock submodule.
Test Plan: ./validate
Reviewers: simonpj, goldfire, austin, bgamari
Subscribers: mpickering, bgamari, alanz, thomie, goldfire, simonmar,
carter
Differential Revision: https://phabricator.haskell.org/D202
GHC Trac Issues: #6018
|
|
|
|
|
|
|
|
|
|
|
|
| |
Updates haddock submodule.
Reviewers: tibbe, goldfire, simonpj, austin, bgamari
Reviewed By: simonpj, bgamari
Subscribers: goldfire, thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D1069
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Two main things here
* Previously we only warned about the "head" function of the rule,
but actually the warning applies to any free variable on the LHS.
* We now warn not only when one of these free vars can inline, but
also if it has an active RULE (c.f. Trac #10528)
See Note [Rules and inlining/other rules] in Desugar
This actually shows up quite a few warnings in the libraries, notably
in Control.Arrow, where it correctly points out that rules like
"compose/arr" forall f g .
(arr f) . (arr g) = arr (f . g)
might never fire, because the rule for 'arr' (dictionary selection)
might fire first. I'm not really sure what to do here; there is some
discussion in Trac #10595.
A minor change is adding BasicTypes.pprRuleName to pretty-print RuleName.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make tuple constraints be handled by a perfectly ordinary
type class, with the component constraints being the
superclasses:
class (c1, c2) => (c2, c2)
This change was provoked by
#10359 inability to re-use a given tuple
constraint as a whole
#9858 confusion between term tuples
and constraint tuples
but it's generally a very nice simplification. We get rid of
- In Type, the TuplePred constructor of PredTree,
and all the code that dealt with TuplePreds
- In TcEvidence, the constructors EvTupleMk, EvTupleSel
See Note [How tuples work] in TysWiredIn.
Of course, nothing is ever entirely simple. This one
proved quite fiddly.
- I did quite a bit of renaming, which makes this patch
touch a lot of modules. In partiuclar tupleCon -> tupleDataCon.
- I made constraint tuples known-key rather than wired-in.
This is different to boxed/unboxed tuples, but it proved
awkward to have all the superclass selectors wired-in.
Easier just to use the standard mechanims.
- While I was fiddling with known-key names, I split the TH Name
definitions out of DsMeta into a new module THNames. That meant
that the known-key names can all be gathered in PrelInfo, without
causing module loops.
- I found that the parser was parsing an import item like
T( .. )
as a *data constructor* T, and then using setRdrNameSpace to
fix it. Stupid! So I changed the parser to parse a *type
constructor* T, which means less use of setRdrNameSpace.
I also improved setRdrNameSpace to behave better on Exact Names.
Largely on priciple; I don't think it matters a lot.
- When compiling a data type declaration for a wired-in thing like
tuples (,), or lists, we don't really need to look at the
declaration. We have the wired-in thing! And not doing so avoids
having to line up the uniques for data constructor workers etc.
See Note [Declarations for wired-in things]
- I found that FunDeps.oclose wasn't taking superclasses into
account; easily fixed.
- Some error message refactoring for invalid constraints in TcValidity
- Haddock needs to absorb the change too; so there is a submodule update
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts multiple commits from Simon:
- 04a484eafc9eb9f8774b4bdd41a5dc6c9f640daf Test Trac #10359
- a9ccd37add8315e061c02e5bf26c08f05fad9ac9 Test Trac #10403
- c0aae6f699cbd222d826d0b8d78d6cb3f682079e Test Trac #10248
- eb6ca851f553262efe0824b8dcbe64952de4963d Make the "matchable-given" check happen first
- ca173aa30467a0b1023682d573fcd94244d85c50 Add a case to checkValidTyCon
- 51cbad15f86fca1d1b0e777199eb1079a1b64d74 Update haddock submodule
- 6e1174da5b8e0b296f5bfc8b39904300d04eb5b7 Separate transCloVarSet from fixVarSet
- a8493e03b89f3b3bfcdb6005795de050501f5c29 Fix imports in HscMain (stage2)
- a154944bf07b2e13175519bafebd5a03926bf105 Two wibbles to fix the build
- 5910a1bc8142b4e56a19abea104263d7bb5c5d3f Change in capitalisation of error msg
- 130e93aab220bdf14d08028771f83df210da340b Refactor tuple constraints
- 8da785d59f5989b9a9df06386d5bd13f65435bc0 Delete commented-out line
These break the build by causing Haddock to fail mysteriously when
trying to examine GHC.Prim it seems.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make tuple constraints be handled by a perfectly ordinary
type class, with the component constraints being the
superclasses:
class (c1, c2) => (c2, c2)
This change was provoked by
#10359 inability to re-use a given tuple
constraint as a whole
#9858 confusion between term tuples
and constraint tuples
but it's generally a very nice simplification. We get rid of
- In Type, the TuplePred constructor of PredTree,
and all the code that dealt with TuplePreds
- In TcEvidence, the constructors EvTupleMk, EvTupleSel
See Note [How tuples work] in TysWiredIn.
Of course, nothing is ever entirely simple. This one
proved quite fiddly.
- I did quite a bit of renaming, which makes this patch
touch a lot of modules. In partiuclar tupleCon -> tupleDataCon.
- I made constraint tuples known-key rather than wired-in.
This is different to boxed/unboxed tuples, but it proved
awkward to have all the superclass selectors wired-in.
Easier just to use the standard mechanims.
- While I was fiddling with known-key names, I split the TH Name
definitions out of DsMeta into a new module THNames. That meant
that the known-key names can all be gathered in PrelInfo, without
causing module loops.
- I found that the parser was parsing an import item like
T( .. )
as a *data constructor* T, and then using setRdrNameSpace to
fix it. Stupid! So I changed the parser to parse a *type
constructor* T, which means less use of setRdrNameSpace.
I also improved setRdrNameSpace to behave better on Exact Names.
Largely on priciple; I don't think it matters a lot.
- When compiling a data type declaration for a wired-in thing like
tuples (,), or lists, we don't really need to look at the
declaration. We have the wired-in thing! And not doing so avoids
having to line up the uniques for data constructor workers etc.
See Note [Declarations for wired-in things]
- I found that FunDeps.oclose wasn't taking superclasses into
account; easily fixed.
- Some error message refactoring for invalid constraints in TcValidity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes #9840 and #10306, and includes an alternative resolution to #8028.
This permits empty closed type families, and documents them in the user
guide. It updates the Haddock submodule to support the API change.
Test Plan: Added `indexed-types/should_compile/T9840` and updated
`indexed-types/should_fail/ClosedFam4` and `th/T8028`.
Reviewers: austin, simonpj, goldfire
Reviewed By: goldfire
Subscribers: bgamari, jstolarek, thomie, goldfire
Differential Revision: https://phabricator.haskell.org/D841
GHC Trac Issues: #9840, #10306
|
|
|
|
| |
In particular about the dcSrcBangs field of an imported DataCon
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The idea was promted by Trac #9939, but it was Christmas, so I did
some recreational programming that went much further.
The idea is to warn when a constraint in a user-supplied context is
redundant. Everything is described in detail in
Note [Tracking redundant constraints]
in TcSimplify.
Main changes:
* The new ic_status field in an implication, of type ImplicStatus.
It replaces ic_insol, and includes information about redundant
constraints.
* New function TcSimplify.setImplicationStatus sets the ic_status.
* TcSigInfo has sig_report_redundant field to say whenther a
redundant constraint should be reported; and similarly
the FunSigCtxt constructor of UserTypeCtxt
* EvBinds has a field eb_is_given, to record whether it is a given
or wanted binding. Some consequential chagnes to creating an evidence
binding (so that we record whether it is given or wanted).
* AbsBinds field abs_ev_binds is now a *list* of TcEvBiinds;
see Note [Typechecking plan for instance declarations] in
TcInstDcls
* Some significant changes to the type checking of instance
declarations; Note [Typechecking plan for instance declarations]
in TcInstDcls.
* I found that TcErrors.relevantBindings was failing to zonk the
origin of the constraint it was looking at, and hence failing to
find some relevant bindings. Easy to fix, and orthogonal to
everything else, but hard to disentangle.
Some minor refactorig:
* TcMType.newSimpleWanteds moves to Inst, renamed as newWanteds
* TcClassDcl and TcInstDcls now have their own code for typechecking
a method body, rather than sharing a single function. The shared
function (ws TcClassDcl.tcInstanceMethodBody) didn't have much code
and the differences were growing confusing.
* Add new function TcRnMonad.pushLevelAndCaptureConstraints, and
use it
* Add new function Bag.catBagMaybes, and use it in TcSimplify
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The purpose of silent superclass parameters was to solve the
awkward problem of superclass dictinaries being bound to bottom.
See THE PROBLEM in Note [Recursive superclasses] in TcInstDcls
Although the silent-superclass idea worked,
* It had non-local consequences, and had effects even in Haddock,
where we had to discard silent parameters before displaying
instance declarations
* It had unexpected peformance costs, shown up by Trac #3064 and its
test case. In monad-transformer code, when constructing a Monad
dictionary you had to pass an Applicative dictionary; and to
construct that you neede a Functor dictionary. Yet these extra
dictionaries were often never used. (All this got much worse when
we added Applicative as a superclass of Monad.) Test T3064
compiled *far* faster after silent superclasses were eliminated.
* It introduced new bugs. For example SilentParametersOverlapping,
T5051, and T7862, all failed to compile because of instance overlap
directly because of the silent-superclass trick.
So this patch takes a new approach, which I worked out with Dimitrios
in the closing hours before Christmas. It is described in detail
in THE PROBLEM in Note [Recursive superclasses] in TcInstDcls.
Seems to work great!
Quite a bit of knock-on effect
* The main implementation work is in tcSuperClasses in TcInstDcls
Everything else is fall-out
* IdInfo.DFunId no longer needs its n-silent argument
* Ditto IDFunId in IfaceSyn
* Hence interface file format changes
* Now that DFunIds do not have silent superclass parameters, printing
out instance declarations is simpler. There is tiny knock-on effect
in Haddock, so that submodule is updated
* I realised that when computing the "size of a dictionary type"
in TcValidity.sizePred, we should be rather conservative about
type functions, which can arbitrarily increase the size of a type.
Hence the new datatype TypeSize, which has a TSBig constructor for
"arbitrarily big".
* instDFunType moves from TcSMonad to Inst
* Interestingly, CmmNode and CmmExpr both now need a non-silent
(Ord r) in a couple of instance declarations. These were previously
silent but must now be explicit.
* Quite a bit of wibbling in error messages
|
|
|
|
|
|
|
|
|
|
|
| |
Universal coercions allow casting between arbitrary types, so it is a
good idea to keep track where they came from, which now we can do by
using the provenance field in `UnivCo`.
This is also handy for type-checker plugins that provide functionality
beyond what's expressible by GHC's standard coercions: such plugins
can generate universal coercions, but they should still tag them,
so that if something goes wrong we can link the casts to the plugin.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces "SourceNote" tickishs that link Core to the
source code that generated it. The idea is to retain these source code
links throughout code transformations so we can eventually relate
object code all the way back to the original source (which we can,
say, encode as DWARF information to allow debugging). We generate
these SourceNotes like other tickshs in the desugaring phase. The
activating command line flag is "-g", consistent with the flag other
compilers use to decide DWARF generation.
Keeping ticks from getting into the way of Core transformations is
tricky, but doable. The changes in this patch produce identical Core
in all cases I tested -- which at this point is GHC, all libraries and
nofib. Also note that this pass creates *lots* of tick nodes, which we
reduce somewhat by removing duplicated and overlapping source
ticks. This will still cause significant Tick "clumps" - a possible
future optimization could be to make Tick carry a list of Tickishs
instead of one at a time.
(From Phabricator D169)
|
|
Signed-off-by: Austin Seipp <austin@well-typed.com>
|