summaryrefslogtreecommitdiff
path: root/compiler/ghc.cabal.in
Commit message (Collapse)AuthorAgeFilesLines
* ghc: Bump Cabal-Version to 1.22Ben Gamari2021-10-311-1/+1
| | | | This is necessary to use reexported-modules
* make build system: RTS should use dist-install not distJohn Ericson2021-10-291-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | This is the following find and replace: - `rts/dist` -> `rts/dist-install` # for paths - `rts_dist` -> `rts_dist-install` # for make rules and vars - `,dist` -> `,dist-install` # for make, just in rts/ghc.mk` Why do this? Does it matter when the RTS is just built once? The answer is, yes, I think it does, because I want the distdir--stage correspondence to be consistent. In particular, for #17191 and continuing from d5de970dafd5876ef30601697576167f56b9c132 I am going to make the headers (`rts/includes`) increasingly the responsibility of the RTS (hence their new location). However, those headers are current made for multiple stages. This will probably become unnecessary as work on #17191 progresses and the compiler proper becomes more of a freestanding cabal package (e.g. a library that can be downloaded from Hackage and built without any autoconf). However, until that is finished, we have will transitional period where the RTS and headers need to agree on dirs for multiple stages. I know the make build system is going away, but it's not going yet, so I need to change it to unblock things :).
* Refactor package importsSylvain Henry2021-10-221-0/+1
| | | | | | | | | Use an (Raw)PkgQual datatype instead of `Maybe FastString` to represent package imports. Factorize the code that renames RawPkgQual into PkgQual in function `rnPkgQual`. Renaming consists in checking if the FastString is the magic "this" keyword, the home-unit unit-id or something else. Bump haddock submodule
* Introduce Concrete# for representation polymorphism checkssheaf2021-10-171-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | PHASE 1: we never rewrite Concrete# evidence. This patch migrates all the representation polymorphism checks to the typechecker, using a new constraint form Concrete# :: forall k. k -> TupleRep '[] Whenever a type `ty` must be representation-polymorphic (e.g. it is the type of an argument to a function), we emit a new `Concrete# ty` Wanted constraint. If this constraint goes unsolved, we report a representation-polymorphism error to the user. The 'FRROrigin' datatype keeps track of the context of the representation-polymorphism check, for more informative error messages. This paves the way for further improvements, such as allowing type families in RuntimeReps and improving the soundness of typed Template Haskell. This is left as future work (PHASE 2). fixes #17907 #20277 #20330 #20423 #20426 updates haddock submodule ------------------------- Metric Decrease: T5642 -------------------------
* Move BreakInfo into own moduleJoachim Breitner2021-10-141-0/+1
| | | | | | | | | | while working on GHCi stuff, e.g. `GHC.Runtime.Eval.Types`, I observed a fair amount of modules being recompiled that I didn’t expect to depend on this, from byte code interpreters to linkers. Turns out that the rather simple `BreakInfo` type is all these modules need from the `GHC.Runtime.Eval.*` hierarchy, so by moving that into its own file we make the dependency tree wider and shallower, which is probably worth it.
* Use Info Table Provenances to decode cloned stack (#18163)Sven Tennie2021-09-231-0/+1
| | | | | | | | | | | | | | | | Emit an Info Table Provenance Entry (IPE) for every stack represeted info table if -finfo-table-map is turned on. To decode a cloned stack, lookupIPE() is used. It provides a mapping between info tables and their source location. Please see these notes for details: - [Stacktraces from Info Table Provenance Entries (IPE based stack unwinding)] - [Mapping Info Tables to Source Positions] Metric Increase: T12545
* Code Gen: Use more efficient block merging algorithmMatthew Pickering2021-09-171-0/+1
| | | | | | | | | | | | | | | | | | The previous algorithm scaled poorly when there was a large number of blocks and edges. The algorithm links together block chains which have edges between them in the CFG. The new algorithm uses a union find data structure in order to efficiently merge together blocks and calculate which block chain each block id belonds to. I copied the UnionFind data structure which already existed in Cabal into the GHC library rathert than reimplement it myself. This change results in a very significant reduction in allocations when compiling the mmark package. Ticket: #19471
* Convert diagnostics in GHC.Tc.Validity to proper TcRnMessage.hainq2021-09-011-0/+1
| | | | | | | | | | | | | | | | | | | | - Add 19 new messages. Update test outputs accordingly. - Pretty print suggest-extensions hints: remove space before interspersed commas. - Refactor Rank's MonoType constructors. Each MonoType constructor should represent a specific case. With the Doc suggestion belonging to the TcRnMessage diagnostics instead. - Move Rank from Validity to its own `GHC.Tc.Types.Rank` module. - Remove the outdated `check_irred_pred` check. - Remove the outdated duplication check in `check_valid_theta`, which was subsumed by `redundant-constraints`. - Add missing test cases for quantified-constraints/T16474 & th/T12387a.
* Driver rework pt3: the upsweepMatthew Pickering2021-08-181-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch specifies and simplifies the module cycle compilation in upsweep. How things work are described in the Note [Upsweep] Note [Upsweep] ~~~~~~~~~~~~~~ Upsweep takes a 'ModuleGraph' as input, computes a build plan and then executes the plan in order to compile the project. The first step is computing the build plan from a 'ModuleGraph'. The output of this step is a `[BuildPlan]`, which is a topologically sorted plan for how to build all the modules. ``` data BuildPlan = SingleModule ModuleGraphNode -- A simple, single module all alone but *might* have an hs-boot file which isn't part of a cycle | ResolvedCycle [ModuleGraphNode] -- A resolved cycle, linearised by hs-boot files | UnresolvedCycle [ModuleGraphNode] -- An actual cycle, which wasn't resolved by hs-boot files ``` The plan is computed in two steps: Step 1: Topologically sort the module graph without hs-boot files. This returns a [SCC ModuleGraphNode] which contains cycles. Step 2: For each cycle, topologically sort the modules in the cycle *with* the relevant hs-boot files. This should result in an acyclic build plan if the hs-boot files are sufficient to resolve the cycle. The `[BuildPlan]` is then interpreted by the `interpretBuildPlan` function. * `SingleModule nodes` are compiled normally by either the upsweep_inst or upsweep_mod functions. * `ResolvedCycles` need to compiled "together" so that the information which ends up in the interface files at the end is accurate (and doesn't contain temporary information from the hs-boot files.) - During the initial compilation, a `KnotVars` is created which stores an IORef TypeEnv for each module of the loop. These IORefs are gradually updated as the loop completes and provide the required laziness to typecheck the module loop. - At the end of typechecking, all the interface files are typechecked again in the retypecheck loop. This time, the knot-tying is done by the normal laziness based tying, so the environment is run without the KnotVars. * UnresolvedCycles are indicative of a proper cycle, unresolved by hs-boot files and are reported as an error to the user. The main trickiness of `interpretBuildPlan` is deciding which version of a dependency is visible from each module. For modules which are not in a cycle, there is just one version of a module, so that is always used. For modules in a cycle, there are two versions of 'HomeModInfo'. 1. Internal to loop: The version created whilst compiling the loop by upsweep_mod. 2. External to loop: The knot-tied version created by typecheckLoop. Whilst compiling a module inside the loop, we need to use the (1). For a module which is outside of the loop which depends on something from in the loop, the (2) version is used. As the plan is interpreted, which version of a HomeModInfo is visible is updated by updating a map held in a state monad. So after a loop has finished being compiled, the visible module is the one created by typecheckLoop and the internal version is not used again. This plan also ensures the most important invariant to do with module loops: > If you depend on anything within a module loop, before you can use the dependency, the whole loop has to finish compiling. The end result of `interpretBuildPlan` is a `[MakeAction]`, which are pairs of `IO a` actions and a `MVar (Maybe a)`, somewhere to put the result of running the action. This list is topologically sorted, so can be run in order to compute the whole graph. As well as this `interpretBuildPlan` also outputs an `IO [Maybe (Maybe HomeModInfo)]` which can be queried at the end to get the result of all modules at the end, with their proper visibility. For example, if any module in a loop fails then all modules in that loop will report as failed because the visible node at the end will be the result of retypechecking those modules together. Along the way we also fix a number of other bugs in the driver: * Unify upsweep and parUpsweep. * Fix #19937 (static points, ghci and -j) * Adds lots of module loop tests due to Divam. Also related to #20030 Co-authored-by: Divam Narula <dfordivam@gmail.com> ------------------------- Metric Decrease: T10370 -------------------------
* Move `/includes` to `/rts/include`, sort per package betterJohn Ericson2021-08-091-0/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | In order to make the packages in this repo "reinstallable", we need to associate source code with a specific packages. Having a top level `/includes` dir that mixes concerns (which packages' includes?) gets in the way of this. To start, I have moved everything to `rts/`, which is mostly correct. There are a few things however that really don't belong in the rts (like the generated constants haskell type, `CodeGen.Platform.h`). Those needed to be manually adjusted. Things of note: - No symlinking for sake of windows, so we hard-link at configure time. - `CodeGen.Platform.h` no longer as `.hs` extension (in addition to being moved to `compiler/`) so as not to confuse anyone, since it is next to Haskell files. - Blanket `-Iincludes` is gone in both build systems, include paths now more strictly respect per-package dependencies. - `deriveConstants` has been taught to not require a `--target-os` flag when generating the platform-agnostic Haskell type. Make takes advantage of this, but Hadrian has yet to.
* Use Reductions to keep track of rewritingssheaf2021-08-041-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | We define Reduction = Reduction Coercion !Type. A reduction of the form 'Reduction co new_ty' witnesses an equality ty ~co~> new_ty. That is, the rewriting happens left-to-right: the right-hand-side type of the coercion is the rewritten type, and the left-hand-side type the original type. Sticking to this convention makes the codebase more consistent, helping to avoid certain applications of SymCo. This replaces the parts of the codebase which represented reductions as pairs, (Coercion,Type) or (Type,Coercion). Reduction being strict in the Type argument improves performance in some programs that rewrite many type families (such as T9872). Fixes #20161 ------------------------- Metric Decrease: T5321Fun T9872a T9872b T9872c T9872d -------------------------
* move bytecode preparation into the STG pipelineLuite Stegeman2021-08-031-0/+1
| | | | | this makes it possible to combine passes to compute free variables more efficiently in a future change
* Introduce FinderLocations for decoupling Finder from DynFlagsFendor2021-07-231-0/+1
|
* Add proper GHCHints for most PsMessage constructorswip/adinapoli-issue-20055Alfredo Di Napoli2021-07-121-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds proper hints to most diagnostic types in the `GHC.Parser.Errors.Types` module. By "proper" we mean that previous to this commit the hints were bundled together with the diagnostic message, whereas now we moved most of them as proper `[GhcHint]` in the implementation of `diagnosticHints`. More specifically, this is the list of constructors which now has proper hints: * PsErrIllegalBangPattern * PsWarnOperatorWhitespaceExtConflict * PsErrLambdaCase * PsErrIllegalPatSynExport * PsWarnOperatorWhitespace * PsErrMultiWayIf * PsErrIllegalQualifiedDo * PsErrNumUnderscores * PsErrLinearFunction * PsErrIllegalTraditionalRecordSyntax * PsErrIllegalExplicitNamespace * PsErrOverloadedRecordUpdateNotEnabled * PsErrIllegalDataTypeContext * PsErrSemiColonsInCondExpr * PsErrSemiColonsInCondCmd * PsWarnStarIsType * PsWarnImportPreQualified * PsErrImportPostQualified * PsErrEmptyDoubleQuotes * PsErrIllegalRoleName * PsWarnStarBinder For some reason, this patch increases the peak_megabyte_allocated of the T11545 test to 90 (from a baseline of 80) but that particular test doesn't emit any parsing diagnostic or hint and the metric increase happens only for the `aarch64-linux-deb10`. Metric Increase: T11545
* driver: Convert runPipeline to use a free monadMatthew Pickering2021-07-071-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch converts the runPipeline function to be implemented in terms of a free monad rather than the previous CompPipeline. The advantages of this are three-fold: 1. Different parts of the pipeline can return different results, the limits of runPipeline were being pushed already by !5555, this opens up futher fine-grainedism of the pipeline. 2. The same mechanism can be extended to build-plan at the module level so the whole build plan can be expressed in terms of one computation which can then be treated uniformly. 3. The pipeline monad can now be interpreted in different ways, for example, you may want to interpret the `TPhase` action into the monad for your own build system (such as shake). That bit will probably require a bit more work, but this is a step in the right directin. There are a few more modules containing useful functions for interacting with the pipelines. * GHC.Driver.Pipeline: Functions for building pipelines at a high-level * GHC.Driver.Pipeline.Execute: Functions for providing the default interpretation of TPhase, in terms of normal IO. * GHC.Driver.Pipeline.Phases: The home for TPhase, the typed phase data type which dictates what the phases are. * GHC.Driver.Pipeline.Monad: Definitions to do with the TPipelineClass and MonadUse class. Hooks consumers may notice the type of the `phaseHook` has got slightly more restrictive, you can now no longer control the continuation of the pipeline by returning the next phase to execute but only override individual phases. If this is a problem then please open an issue and we will work out a solution. ------------------------- Metric Decrease: T4029 -------------------------
* Dynflags: introduce DiagOptsSylvain Henry2021-07-011-0/+1
| | | | | | | | | | | | | | | | | | | | | | Use DiagOpts for diagnostic options instead of directly querying DynFlags (#17957). Surprising performance improvements on CI: T4801(normal) ghc/alloc 313236344.0 306515216.0 -2.1% GOOD T9961(normal) ghc/alloc 384502736.0 380584384.0 -1.0% GOOD ManyAlternatives(normal) ghc/alloc 797356128.0 786644928.0 -1.3% ManyConstructors(normal) ghc/alloc 4389732432.0 4317740880.0 -1.6% T783(normal) ghc/alloc 408142680.0 402812176.0 -1.3% Metric Decrease: T4801 T9961 T783 ManyAlternatives ManyConstructors Bump haddock submodule
* Put tracing functions into their own moduleSylvain Henry2021-06-221-0/+2
| | | | | | | | Now that Outputable is independent of DynFlags, we can put tracing functions using SDocs into their own module that doesn't transitively depend on any GHC.Driver.* module. A few modules needed to be moved to avoid loops in DEBUG mode.
* Introduce `hsExprType :: HsExpr GhcTc -> Type` in the new modulewip/hsExprTypeRyan Scott2021-06-081-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | `GHC.Hs.Syn.Type` The existing `hsPatType`, `hsLPatType` and `hsLitType` functions have also been moved to this module This is a less ambitious take on the same problem that !2182 and !3866 attempt to solve. Rather than have the `hsExprType` function attempt to efficiently compute the `Type` of every subexpression in an `HsExpr`, this simply computes the overall `Type` of a single `HsExpr`. - Explicitly forbids the `SplicePat` `HsIPVar`, `HsBracket`, `HsRnBracketOut` and `HsTcBracketOut` constructors during the typechecking phase by using `Void` as the TTG extension field - Also introduces `dataConCantHappen` as a domain specific alternative to `absurd` to handle cases where the TTG extension points forbid a constructor. - Turns HIE file generation into a pure function that doesn't need access to the `DsM` monad to compute types, but uses `hsExprType` instead. - Computes a few more types during HIE file generation - Makes GHCi's `:set +c` command also use `hsExprType` instead of going through the desugarer to compute types. Updates haddock submodule Co-authored-by: Zubin Duggal <zubin.duggal@gmail.com>
* Make Logger independent of DynFlagsSylvain Henry2021-06-071-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce LogFlags as a independent subset of DynFlags used for logging. As a consequence in many places we don't have to pass both Logger and DynFlags anymore. The main reason for this refactoring is that I want to refactor the systools interfaces: for now many systools functions use DynFlags both to use the Logger and to fetch their parameters (e.g. ldInputs for the linker). I'm interested in refactoring the way they fetch their parameters (i.e. use dedicated XxxOpts data types instead of DynFlags) for #19877. But if I did this refactoring before refactoring the Logger, we would have duplicate parameters (e.g. ldInputs from DynFlags and linkerInputs from LinkerOpts). Hence this patch first. Some flags don't really belong to LogFlags because they are subsystem specific (e.g. most DumpFlags). For example -ddump-asm should better be passed in NCGConfig somehow. This patch doesn't fix this tight coupling: the dump flags are part of the UI but they are passed all the way down for example to infer the file name for the dumps. Because LogFlags are a subset of the DynFlags, we must update the former when the latter changes (not so often). As a consequence we now use accessors to read/write DynFlags in HscEnv instead of using `hsc_dflags` directly. In the process I've also made some subsystems less dependent on DynFlags: - CmmToAsm: by passing some missing flags via NCGConfig (see new fields in GHC.CmmToAsm.Config) - Core.Opt.*: - by passing -dinline-check value into UnfoldingOpts - by fixing some Core passes interfaces (e.g. CallArity, FloatIn) that took DynFlags argument for no good reason. - as a side-effect GHC.Core.Opt.Pipeline.doCorePass is much less convoluted.
* Adds AArch64 Native Code GeneratorMoritz Angermann2021-06-051-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In which we add a new code generator to the Glasgow Haskell Compiler. This codegen supports ELF and Mach-O targets, thus covering Linux, macOS, and BSDs in principle. It was tested only on macOS and Linux. The NCG follows a similar structure as the other native code generators we already have, and should therfore be realtively easy to follow. It supports most of the features required for a proper native code generator, but does not claim to be perfect or fully optimised. There are still opportunities for optimisations. Metric Decrease: ManyAlternatives ManyConstructors MultiLayerModules PmSeriesG PmSeriesS PmSeriesT PmSeriesV T10421 T10421a T10858 T11195 T11276 T11303b T11374 T11822 T12227 T12545 T12707 T13035 T13253 T13253-spj T13379 T13701 T13719 T14683 T14697 T15164 T15630 T16577 T17096 T17516 T17836 T17836b T17977 T17977b T18140 T18282 T18304 T18478 T18698a T18698b T18923 T1969 T3064 T5030 T5321FD T5321Fun T5631 T5642 T5837 T783 T9198 T9233 T9630 T9872d T9961 WWRec Metric Increase: T4801
* Port HsToCore messages to new infrastructureAlfredo Di Napoli2021-06-031-0/+1
| | | | | | | | | | | This commit converts a bunch of HsToCore (Ds) messages to use the new GHC's diagnostic message infrastructure. In particular the DsMessage type has been expanded with a lot of type constructors, each encapsulating a particular error and warning emitted during desugaring. Due to the fact that levity polymorphism checking can happen both at the Ds and at the TcRn level, a new `TcLevityCheckDsMessage` constructor has been added to the `TcRnMessage` type.
* Split GHC.Utils.Monad.State into .Strict and .LazyBen Gamari2021-05-291-1/+2
|
* Rip GHC.Tc.Solver.Monad asunder (only)Richard Eisenberg2021-05-291-0/+2
| | | | | | | | | | | This creates new modules GHC.Tc.Solver.InertSet and GHC.Tc.Solver.Types. The Monad module is still pretty big, but this is an improvement. Moreover, it means that GHC.HsToCore.Pmc.Solver.Types no longer depends on the constraint solver (it now depends on GHC.Tc.Solver.InertSet), making the error-messages work easier. This patch thus contributes to #18516.
* Support new parser types in GHCAlfredo Di Napoli2021-05-261-1/+0
| | | | | | | | | | | | | | This commit converts the lexers and all the parser machinery to use the new parser types and diagnostics infrastructure. Furthermore, it cleans up the way the parser code was emitting hints. As a result of this systematic approach, the test output of the `InfixAppPatErr` and `T984` tests have been changed. Previously they would emit a `SuggestMissingDo` hint, but this was not at all helpful in resolving the error, and it was even confusing by just looking at the original program that triggered the errors. Update haddock submodule
* Introduce Strict.Maybe, Strict.Pair (#19156)Vladislav Zavialov2021-05-231-0/+1
| | | | | | | | | | | | | This patch fixes a space leak related to the use of Maybe in RealSrcSpan by introducing a strict variant of Maybe. In addition to that, it also introduces a strict pair and uses the newly introduced strict data types in a few other places (e.g. the lexer/parser state) to reduce allocations. Includes a regression test.
* Extensible Hints for diagnostic messagesAlfredo Di Napoli2021-05-201-0/+1
| | | | | | | | | | | | | | | | | | This commit extends the GHC diagnostic hierarchy with a `GhcHint` type, modelling helpful suggestions emitted by GHC which can be used to deal with a particular warning or error. As a direct consequence of this, the `Diagnostic` typeclass has been extended with a `diagnosticHints` method, which returns a `[GhcHint]`. This means that now we can clearly separate out the printing of the diagnostic message with the suggested fixes. This is done by extending the `printMessages` function in `GHC.Driver.Errors`. On top of that, the old `PsHint` type has been superseded by the new `GhcHint` type, which de-duplicates some hints in favour of a general `SuggestExtension` constructor that takes a `GHC.LanguageExtensions.Extension`.
* Fully remove HsVersions.hSylvain Henry2021-05-121-2/+0
| | | | | | | | | | Replace uses of WARN macro with calls to: warnPprTrace :: Bool -> SDoc -> a -> a Remove the now unused HsVersions.h Bump haddock submodule
* Replace CPP assertions with Haskell functionsSylvain Henry2021-05-121-0/+1
| | | | | | | | | | | | | | | There is no reason to use CPP. __LINE__ and __FILE__ macros are now better replaced with GHC's CallStack. As a bonus, assert error messages now contain more information (function name, column). Here is the mapping table (HasCallStack omitted): * ASSERT: assert :: Bool -> a -> a * MASSERT: massert :: Bool -> m () * ASSERTM: assertM :: m Bool -> m () * ASSERT2: assertPpr :: Bool -> SDoc -> a -> a * MASSERT2: massertPpr :: Bool -> SDoc -> m () * ASSERTM2: assertPprM :: m Bool -> SDoc -> m ()
* Add GhcMessage and ancillary typesAlfredo Di Napoli2021-04-291-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds GhcMessage and ancillary (PsMessage, TcRnMessage, ..) types. These types will be expanded to represent more errors generated by different subsystems within GHC. Right now, they are underused, but more will come in the glorious future. See https://gitlab.haskell.org/ghc/ghc/-/wikis/Errors-as-(structured)-values for a design overview. Along the way, lots of other things had to happen: * Adds Semigroup and Monoid instance for Bag * Fixes #19746 by parsing OPTIONS_GHC pragmas into Located Strings. See GHC.Parser.Header.toArgs (moved from GHC.Utils.Misc, where it didn't belong anyway). * Addresses (but does not completely fix) #19709, now reporting desugarer warnings and errors appropriately for TH splices. Not done: reporting type-checker warnings for TH splices. * Some small refactoring around Safe Haskell inference, in order to keep separate classes of messages separate. * Some small refactoring around initDsTc, in order to keep separate classes of messages separate. * Separate out the generation of messages (that is, the construction of the text block) from the wrapping of messages (that is, assigning a SrcSpan). This is more modular than the previous design, which mixed the two. Close #19746. This was a collaborative effort by Alfredo di Napoli and Richard Eisenberg, with a key assist on #19746 by Iavor Diatchki. Metric Increase: MultiLayerModules
* Always generate ModDetails from ModIfaceMatthew Pickering2021-04-141-1/+0
| | | | | | | | | | | | | | | | | | This vastly reduces memory usage when compiling with `--make` mode, from about 900M when compiling Cabal to about 300M. As a matter of uniformity, it also ensures that reading from an interface performs the same as using the in-memory cache. We can also delete all the horrible knot-tying in updateIdInfos. Goes some way to fixing #13586 Accept new output of tests fixing some bugs along the way ------------------------- Metric Decrease: T12545 -------------------------
* Move Iface.Load errors into Iface.Errors moduleAlfredo Di Napoli2021-04-081-0/+1
| | | | | | | This commit moves the error-related functions in `GHC.Iface.Load` into a brand new module called `GHC.Iface.Errors`. This will avoid boot files and circular dependencies in the context of #18516, in the pretty-printing modules.
* Rubbish literals for all representations (#18983)Sebastian Graf2021-03-261-0/+1
| | | | | | | | | | | | | | | | | This patch cleans up the complexity around WW's `mk_absent_let` by broadening the scope of `LitRubbish`. Rubbish literals now store the `PrimRep` they represent and are ultimately lowered in Cmm. This in turn allows absent literals of `VecRep` or `VoidRep`. The latter allows absent literals for unlifted coercions, as requested in #18983. I took the liberty to rewrite and clean up `Note [Absent fillers]` and `Note [Rubbish values]` to account for the new implementation and to make them more orthogonal in their description. I didn't add a new regression test, as `T18982` already contains the test in the ticket and its test output changes as expected. Fixes #18983.
* Bump Win32 to 2.13.0.0GHC GitLab CI2021-03-261-1/+1
| | | | Bumps Win32 submodule.
* Bump template-haskell version to 2.18.0.0wip/T19083Ryan Scott2021-03-201-1/+1
| | | | | | | This requires bumping the `exceptions` and `text` submodules to bring in commits that bump their respective upper version bounds on `template-haskell`. Fixes #19083.
* Generate GHCi bytecode from STG instead of Core and support unboxedLuite Stegeman2021-03-201-1/+1
| | | | | | tuples and sums. fixes #1257
* Transfer tickish things to GHC.Types.TickishLuite Stegeman2021-03-201-0/+1
| | | | | Metric Increase: MultiLayerModules
* Bump bytestring submodule to 0.11.1.0Ben Gamari2021-03-101-1/+1
|
* DynFlags: move temp file management into HscEnv (#17957)Sylvain Henry2021-03-081-1/+1
|
* Implement riscv64 LLVM backendAndreas Schwab2021-03-051-0/+1
| | | | This enables a registerised build for the riscv64 architecture.
* Add -finfo-table-map which maps info tables to source positionsMatthew Pickering2021-03-031-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This new flag embeds a lookup table from the address of an info table to information about that info table. The main interface for consulting the map is the `lookupIPE` C function > InfoProvEnt * lookupIPE(StgInfoTable *info) The `InfoProvEnt` has the following structure: > typedef struct InfoProv_{ > char * table_name; > char * closure_desc; > char * ty_desc; > char * label; > char * module; > char * srcloc; > } InfoProv; > > typedef struct InfoProvEnt_ { > StgInfoTable * info; > InfoProv prov; > struct InfoProvEnt_ *link; > } InfoProvEnt; The source positions are approximated in a similar way to the source positions for DWARF debugging information. They are only approximate but in our experience provide a good enough hint about where the problem might be. It is therefore recommended to use this flag in conjunction with `-g<n>` for more accurate locations. The lookup table is also emitted into the eventlog when it is available as it is intended to be used with the `-hi` profiling mode. Using this flag will significantly increase the size of the resulting object file but only by a factor of 2-3x in our experience.
* Revert "Remove GHC.Types.Unique.Map module"Matthew Pickering2021-03-031-0/+1
| | | | This reverts commit 1c7c6f1afc8e7f7ba5d256780bc9d5bb5f3e7601.
* Improve handling of overloaded labels, literals, lists etcwip/T19154Simon Peyton Jones2021-02-191-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When implementing Quick Look I'd failed to remember that overloaded labels, like #foo, should be treated as a "head", so that they can be instantiated with Visible Type Application. This caused #19154. A very similar ticket covers overloaded literals: #19167. This patch fixes both problems, but (annoyingly, albeit temporarily) in two different ways. Overloaded labels I dealt with overloaded labels by buying fully into the Rebindable Syntax approach described in GHC.Hs.Expr Note [Rebindable syntax and HsExpansion]. There is a good overview in GHC.Rename.Expr Note [Handling overloaded and rebindable constructs]. That module contains much of the payload for this patch. Specifically: * Overloaded labels are expanded in the renamer, fixing #19154. See Note [Overloaded labels] in GHC.Rename.Expr. * Left and right sections used to have special code paths in the typechecker and desugarer. Now we just expand them in the renamer. This is harder than it sounds. See GHC.Rename.Expr Note [Left and right sections]. * Infix operator applications are expanded in the typechecker, specifically in GHC.Tc.Gen.App.splitHsApps. See Note [Desugar OpApp in the typechecker] in that module * ExplicitLists are expanded in the renamer, when (and only when) OverloadedLists is on. * HsIf is expanded in the renamer when (and only when) RebindableSyntax is on. Reason: the coverage checker treats HsIf specially. Maybe we could instead expand it unconditionally, and fix up the coverage checker, but I did not attempt that. Overloaded literals Overloaded literals, like numbers (3, 4.2) and strings with OverloadedStrings, were not working correctly with explicit type applications (see #19167). Ideally I'd also expand them in the renamer, like the stuff above, but I drew back on that because they can occur in HsPat as well, and I did not want to to do the HsExpanded thing for patterns. But they *can* now be the "head" of an application in the typechecker, and hence something like ("foo" @T) works now. See GHC.Tc.Gen.Head.tcInferOverLit. It's also done a bit more elegantly, rather than by constructing a new HsExpr and re-invoking the typechecker. There is some refactoring around tcShortCutLit. Ultimately there is more to do here, following the Rebindable Syntax story. There are a lot of knock-on effects: * HsOverLabel and ExplicitList no longer need funny (Maybe SyntaxExpr) fields to support rebindable syntax -- good! * HsOverLabel, OpApp, SectionL, SectionR all become impossible in the output of the typecheker, GhcTc; so we set their extension fields to Void. See GHC.Hs.Expr Note [Constructor cannot occur] * Template Haskell quotes for HsExpanded is a bit tricky. See Note [Quotation and rebindable syntax] in GHC.HsToCore.Quote. * In GHC.HsToCore.Match.viewLExprEq, which groups equal HsExprs for the purpose of pattern-match overlap checking, I found that dictionary evidence for the same type could have two different names. Easily fixed by comparing types not names. * I did quite a bit of annoying fiddling around in GHC.Tc.Gen.Head and GHC.Tc.Gen.App to get error message locations and contexts right, esp in splitHsApps, and the HsExprArg type. Tiresome and not very illuminating. But at least the tricky, higher order, Rebuilder function is gone. * Some refactoring in GHC.Tc.Utils.Monad around contexts and locations for rebindable syntax. * Incidentally fixes #19346, because we now print renamed, rather than typechecked, syntax in error mesages about applications. The commit removes the vestigial module GHC.Builtin.RebindableNames, and thus triggers a 2.4% metric decrease for test MultiLayerModules (#19293). Metric Decrease: MultiLayerModules T12545
* Refactor LoggerSylvain Henry2021-02-131-0/+1
| | | | | | | | | | | | | | | | | | | | | Before this patch, the only way to override GHC's default logging behavior was to set `log_action`, `dump_action` and `trace_action` fields in DynFlags. This patch introduces a new Logger abstraction and stores it in HscEnv instead. This is part of #17957 (avoid storing state in DynFlags). DynFlags are duplicated and updated per-module (because of OPTIONS_GHC pragma), so we shouldn't store global state in them. This patch also fixes a race in parallel "--make" mode which updated the `generatedDumps` IORef concurrently. Bump haddock submodule The increase in MultilayerModules is tracked in #19293. Metric Increase: MultiLayerModules
* Separate AST from GhcPass (#18936)John Ericson2021-01-231-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ---------------- What: There are two splits. The first spit is: - `Language.Haskell.Syntax.Extension` - `GHC.Hs.Extension` where the former now just contains helpers like `NoExtCon` and all the families, and the latter is everything having to do with `GhcPass`. The second split is: - `Language.Haskell.Syntax.<mod>` - `GHC.Hs.<mod>` Where the former contains all the data definitions, and the few helpers that don't use `GhcPass`, and the latter contains everything else. The second modules also reexport the former. ---------------- Why: See the issue for more details, but in short answer is we're trying to grasp at the modularity TTG is supposed to offer, after a long time of mainly just getting the safety benefits of more complete pattern matching on the AST. Now, we have an AST datatype which, without `GhcPass` is decently stripped of GHC-specific concerns. Whereas before, not was it GHC-specific, it was aware of all the GHC phases despite the parameterization, with the instances and parametric data structure side-by-side. For what it's worth there are also some smaller, imminent benefits: - The latter change also splits a strongly connected component in two, since none of the `Language.Haskell.Syntax.*` modules import the older ones. - A few TTG violations (Using GhcPass directly in the AST) in `Expr` are now more explicitly accounted for with new type families to provide the necessary indirection. ----------------- Future work: - I don't see why all the type families should live in `Language.Haskell.Syntax.Extension`. That seems anti-modular for little benefit. All the ones used just once can be moved next to the AST type they serve as an extension point for. - Decide what to do with the `Outputable` instances. Some of these are no orphans because they referred to `GhcPass`, and had to be moved. I think the types could be generalized so they don't refer to `GhcPass` and therefore can be moved back, but having gotten flak for increasing the size and complexity types when generalizing before, I did *not* want to do this. - We should triage the remaining contents of `GHC.Hs.<mod>`. The renaming helpers are somewhat odd for needing `GhcPass`. We might consider if they are a) in fact only needed by one phase b) can be generalized to be non-GhcPass-specific (e.g. take a callback rather than GADT-match with `IsPass`) and then they can live in `Language.Haskell.Syntax.<mod>`. For more details, see https://gitlab.haskell.org/ghc/ghc/-/wikis/implementing-trees-that-grow Bumps Haddock submodule
* Remove errShortString, cleanup error-related functionsAlfredo Di Napoli2021-01-091-0/+1
| | | | | | | | | | | This commit removes the errShortString field from the ErrMsg type, allowing us to cleanup a lot of dynflag-dependent error functions, and move them in a more specialised 'GHC.Driver.Errors' closer to the driver, where they are actually used. Metric Increase: T4801 T9961
* Split Driver.Env moduleAlfredo Di Napoli2020-12-181-0/+1
| | | | | | | This commit splits the GHC.Driver.Env module creating a separate GHC.Driver.Env.Types module where HscEnv and Hsc would live. This will pave the way to the structured error values by avoiding one boot module later down the line.
* Move Unit related fields from DynFlags to HscEnvSylvain Henry2020-12-141-0/+1
| | | | | | | | | | | | | The unit database cache, the home unit and the unit state were stored in DynFlags while they ought to be stored in the compiler session state (HscEnv). This patch fixes this. It introduces a new UnitEnv type that should be used in the future to handle separate unit environments (especially host vs target units). Related to #17957 Bump haddock submodule
* Parser: move parser utils into their own moduleSylvain Henry2020-12-111-0/+1
| | | | Move code unrelated to runtime evaluation out of GHC.Runtime.Eval
* Cmm.Sink: Optimize retaining of assignments, live sets.Andreas Klebinger2020-12-081-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | Sinking requires us to track live local regs after each cmm statement. We used to do this via "Set LocalReg". However we can replace this with a solution based on IntSet which is overall more efficient without losing much. The thing we lose is width of the variables, which isn't used by the sinking pass anyway. I also reworked how we keep assignments to regs mentioned in skipped assignments. I put the details into Note [Keeping assignemnts mentioned in skipped RHSs]. The gist of it is instead of keeping track of it via the use count which is a `IntMap Int` we now use the live regs set (IntSet) which is quite a bit faster. I think it also matches the semantics a lot better. The skipped (not discarded) assignment does in fact keep the regs on it's rhs alive so keeping track of this in the live set seems like the clearer solution as well. Improves allocations for T3294 by yet another 1%.
* Rename the flattener to become the rewriter.Richard Eisenberg2020-12-011-1/+1
| | | | | | | | Now that flattening doesn't produce flattening variables, it's not really flattening anything: it's rewriting. This change also means that the rewriter can no longer be confused the core flattener (in GHC.Core.Unify), which is sometimes used during type-checking.